
Analytical Calculation of Collapse Voltage of CMUT 
Membrane 

Amin Nikoozadeh, Baris Bayram, Goksen G. Yaralioglu, and Butrus T. Khuri-Yakub 
E. L. Ginzton Laboratory, Stanford University, Stanford, CA 

 
 

Abstract— Because the collapse voltage determines the operating 
point of the capacitive micromachined ultrasonic transducer 
(CMUT), it is crucial to calculate and control this parameter.  
One approach uses parallel plate approximation, where a parallel 
plate motion models the average membrane displacement.  This 
usually yields calculated collapse voltage 25 percent higher than 
the actual collapse voltage.  More accurate calculation involves 
finite element method (FEM) analysis.  However, depending on 
the required accuracy, the computation time may require many 
hours.   

In this paper, we propose a fast numerical algorithm for the 
calculation of collapse voltage.  The algorithm uses the parallel 
plate method to approximate the force distribution over the 
membrane, and then applies an analytical solution for the plate 
equation, loaded by the approximated force distribution.  Using 
this method, we are able to calculate the collapse voltage in a 
couple of seconds, within 0.1 percent accuracy.  We report on the 
collapse voltage calculation results using our method for four 
different design structures.  While computation time of our 
method is about three orders of magnitude less than the finite 
element method, the percentage error of collapse voltage 
calculation is, nevertheless, less than four percent in all the design 
structures.  The proposed algorithm is also suitable for the 
inclusion of any external force distribution on the membrane, 
such as atmospheric pressure. 

Keywords- Capacitive micromachined ultrasonic transducer, 
CMUT, collapse voltage. 

I. INTRODUCTION 
Collapse voltage of a capacitive micromachined ultrasonic 

transducer (CMUT) is a critical parameter for employing the 
device at the optimum operating point.  The operating DC bias 
voltage determines the performance of the transducer. It also 
determines the operating regime at which the device is 
operated, such as conventional and collapsed mode [1].  
Therefore, accurate knowledge of the collapse voltage is 
imperative.  

Initial attempts to calculate collapse voltage depended on 
parallel plate approximation [2].  In this approach, a piston 
transducer models the membrane displacement, and the 
displacement profile of the membrane is neglected.  The piston 
is held over an electrostatic gap by a spring whose compliance 
is determined by the average spring constant of the membrane.  
The collapse occurs when the electrostatic force gradient 
overcomes the gradient of mechanical restoring force exerted 
by the spring.  The collapse occurs as soon as the displacement 
reaches one third of the gap.  This method usually predicts a 
collapse voltage 30 to 40 percent greater than the actual value. 

Finite Element Method (FEM) simulation is considered the 
most reliable and accurate method to compute the collapse 
voltage.  On the other hand, FEM analysis requires iteration 
between electrostatic and mechanical solutions. Depending on 
the mesh size, FEM calculation may take several hours to 
complete. 

In this paper, we present a semi-analytical method for the 
calculation of membrane displacement and collapse voltage.  
The method depends on the known solution of the equation of 
motion for the membrane.  We assume that the membrane is 
clamped at the edges.  The electrostatic gap is divided into 
many parallel plate capacitors. The electrostatic pressure is 
assumed to be constant within the each segment.  Our method 
provides reasonably accurate results in much less time than 
FEM analysis.  

II. DESCRIPTION OF THE METHOD 
The proposed method, which uses vertical segmentation of 

the gap, an analytical solution of the motion for the membrane, 
and the method of superposition and iteration, is explained in 
the following sections. 

A. Segmentation 
To find the collapse voltage and displacement profile of the 

membrane, the electrostatic force between the two electrodes in 
the CMUT structure must be known. To approximate the 
electrostatic force acting on the membrane, we divide the 
electrostatic gap into several vertical segments.  Each segment 
is modeled as a usual parallel plate capacitor.  Provided that the 
number of segments is large enough, the electrostatic force is 
assumed to be constant over the each segment.  Fig. 1 shows 
the cross section of a circular membrane with partial 
metallization.  As shown in this figure, the region underneath 
the top electrode is divided into N segments.  Due to the 
symmetry, only half of the membrane is shown.  Note that each 
segment is a circular ring. 
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Figure 1.  Method of segmentation applied on a circular membrane 
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The electrostatic force acting on the top electrode on each 
segment is given by  
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where Vdc is the applied DC voltage between the two 
electrodes, S and gi are the area and the effective gap height of 
the ith capacitor, respectively. 

This method of segmentation presents a set of electrostatic 
forces that, along with the analytical solution and the method of 
superposition, are used later on to determine the deflection 
profile of the membrane.  In order to include the atmospheric 
pressure, and to ease programmatic implementation, the 
segmentation can extend to the whole gap.  In this case, the 
electrostatic force will be zero over the non-metalized region of 
the membrane. Comparison with FEM simulations shows that a 
model with 100 segments over the whole membrane would be 
sufficient to calculate the collapse voltage accurately in a 
couple of seconds. 

B. Equation of motion for the membrane 
As stated before, our algorithm uses an analytical solution 

to the equation of motion for a membrane under electrostatic 
and atmospheric pressure.  The governing equation for our 
method is a well-known equation from theory of plates. A plate 
is called “thin” if its thickness is at least one order of 
magnitude smaller than its span or diameter. If the deflection of 
a thin plate is small in comparison with its thickness, an 
acceptable approximate theory of bending of the plate can be 
developed.   In the case of a circular plate, symmetrically 
loaded about the axis perpendicular to the plate through its 
center, the deflections are also circularly symmetric.  
Therefore, deflections of the points on the plate are simply a 
function of distance from the center of the plate, r.  The 
resulting equation is [3]: 

prwD =∇∇ )(22                (2) 

where w is the deflection of the plate and p is the pressure 
applied over the plate.  D is the flexural rigidity of the plate and 
is given by 
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where E is the modulus of elasticity of the material, h is the 
thickness of the plate and v is Poisson’s ratio.  If flexural 
rigidity of the plate, D, is constant throughout the plate, the 
above equation becomes: 

D
prw =∇ )(4                (4) 

It is difficult to solve this equation for the general case in 
which the pressure changes continuously in the radial direction.  
However, having the deflections for the case of a load 
uniformly distributed along a concentric circle, any case of 
bending of a circular plate symmetrically loaded with respect to 
the center can be solved by using the method of superposition.   

In our case, two types of pressure act on the membrane: 
electrostatic force and atmospheric pressure, which are both 
symmetrical with respect to the center of membrane. Using the 
method of segmentation explained above, we find a set of 
forces. If the number of segments is large enough, and 
therefore, the difference between the inner and outer radii of 
the ring-shape segment is infinitesimally small, each of these 
forces can be considered to be constant within the each 
segment, and can be modeled as it is applied on a concentric 
circle on the membrane.  Therefore, we can solve the equation 
for the special case where there is simply a constant line load 
along a concentric circle on the plate.  Because the mentioned 
governing equation is linear, we can then employ the method of 
superposition to find the total solution.  

C. Circular plate concentrically loaded 
As explained in the previous section, we need to solve the 

thin plate equation for the case of a circular plate of radius a, in 
which the load is uniformly distributed along a concentric 
circle of radius b, as shown in Fig. 2.  
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Figure 2.  Circular clamped-edge plate concentrically loaded.  (a) shows the 
side and top view, and (b) shows the side view of the plate. 

Because we assume that the membrane is clamped at the edges, 
we must apply the clamped-edge boundary condition to the 
solution.  The analytical closed-form solution for this problem 
is available [3].  The deflection profile for the outer portion of 
the plate is 
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and for the inner portion, 
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Note that shearing stresses and normal pressures, acting on 
planes parallel to the surface of the plate, affect the bending of 
the plate.  In the above solutions, we neglect these effects.  The 
accuracy of these solutions depends on the thinness of the 
plate.  In other words, the accuracy is dependent on the ratio of 
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the thickness of the plate to the outer radius.  The smaller this 
ratio, the more accurate is the solution. 

D. Superposition and Iteration 
With the analytical closed-form solution for the equation of 

motion of a concentrically loaded circular plate, and the 
linearity of the equation, we can use the method of 
superposition to find the total solution due to the total force 
distribution.  We employ the analytical solution to find a 
closed-form solution for each of the forces, and then 
superimpose all the solutions.  

Because the electrostatic force is dependent on the gap 
height, we need to iterate the solution. In the first iteration, the 
electrostatic force is determined over the non-deflected 
membrane. The atmospheric pressure is added to the 
electrostatic force, and with this set of forces, we calculate the 
first estimate of the displacement profile. The next force 
distribution is found by using the new deflection profile. These 
steps are repeated until the solution converges within an 
acceptable error tolerance.  The displacement of the center of 
the membrane is used as a criterion to determine if the solution 
converges to a final result.   

We used the geometry depicted in Fig. 3 to compare FEM 
and our calculation method. The membrane is under 
atmospheric pressure. We assumed the bottom electrode covers 
the surface of the substrate. In this case, the effect of parasitic 
capacitance is enhanced. 

 

Vacuum gap 
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Figure 3.  CMUT geometry. Top and bottom electrodes are shown by black 
lines and assumed to be infinitesimally thin in ANSYS calculation. 

Fig. 4 compares the displacement profile of the middle 
plane of the membrane calculated using our method to the 
profile calculated using the FEM analysis. Although the 
computation time is significantly smaller for our algorithm, our 
result is analogous to the FEM simulation, within an acceptable 
error for practical purposes.   

E. Collapse voltage 
When the electrostatic force gradient overcomes the 

restoring mechanical force, the membrane will collapse onto 
the substrate.   
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Figure 4.  Displacement profile of the membrane.  The bias voltage is 150V, 
which is less than the collapse voltage. 

The collapse voltage is calculated using a binary search 
algorithm.  As mentioned above, the displacement of the center 
of the membrane is used as a criterion to determine whether the 
solution converges or diverges.  When the bias voltage is 
higher than the collapse voltage, the displacement of the center 
of the membrane diverges quickly.  Fig. 5 compares the 
displacement of the center of the membrane versus number of 
iterations for different DC bias voltages.  
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Figure 5.  Center displacement as function of iteration number for various 
bias voltages. The collapse voltage is 104.5V. 

According to these plots, in all the cases where center 
displacement converges to a finite value, the second derivative 
of displacement (with respect to the number of iterations) is 
always negative. For the divergence case, the second derivative 
of the displacement (with respect to the number of iterations) 
becomes zero at a point, and then positive afterwards.  This 
observation can be used as a criterion to distinguish between 
convergence and divergence, and to decide whether the applied 
voltage is above or below the collapse voltage.  Therefore, 
using the binary search, we can find the collapse voltage with 
the desired accuracy.  
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III. RESULTS 
We compared the results of our algorithm with FEM 

simulation results, and found that 100 segments over the whole 
membrane are adequate to calculate the collapse voltage 
accurately.  Our calculation took a few seconds; the same 
calculation using FEM analysis would take several hours. 

Table 1 compares the result of our method to FEM 
simulations for four different design configurations.  All of 
devices are made from Silicon Nitride (Si3N4), and have the 
same membrane thickness of 1µm, insulator layer thickness of 
0.1µm, and gap distance of 1µm.  In order to make a relatively 
broad comparison, we changed the radius of membrane, radius 
of top electrode, and location of top electrode.  Location of top 
electrode refers to the relative location of top electrode with 
respect to the membrane: number “1” means that electrode is 
completely on top of the membrane; number “0” means that 
electrode has been placed underneath the membrane.  

Table 1 shows that our results match the FEM simulation.  
For all design cases, the results obtained using our method are 
within 5% of those obtained with FEM analysis.  However, the 
computation time required for our method was approximately 
three orders of magnitude less than for FEM analysis. 

TABLE I.  COMPARISON OF THE METHOD WITH ANSYS 

Four different design structures Design parameters # 1 # 2 # 3 # 4 
Radius of membrane (µm) 50 50 50 25 
Radius of top electrode (µm) 50 10 50 25 
Top electrode position 1 1 0 1 
Our collapse voltage (volts) 166.7 352.5 131.8 637.7 
FEM collapse voltage (volts) 164.8 350.3 126 630.4 
Percentage error 1.15 0.64 4.6 1.16 
Our computation time (sec) ~ 2 ~ 2 ~ 2 ~ 4 
FEM computation time (hours) ~ 4 ~ 4 ~ 4 ~ 4 

 

IV. CONCLUSION 
We developed a semi-analytical method to calculate the 

displacement profile of a circular membrane.  The same semi-
analytical algorithm was employed to compute the collapse 
voltage of a circular CMUT membrane.  

Our tool is extremely useful for the design of cMUT 
devices. By calculating the displacement profile, we can obtain 
other accurate and useful information, such as device 
capacitance and output pressure. .  It is easy to include the 
atmospheric pressure or, in general, the pressure of the 
medium, as well as residual stresses.  As shown in Table 1, the 
proposed algorithm is quickly calculated, and the accuracy is 
acceptable for most practical applications. 

In future work, we will include the fringing capacitance, 
and also improve the accuracy of the algorithm by considering 
the effect of shearing stresses and lateral pressures on 
deflection of the membrane.  We will also extend the same 
algorithm to any membrane shape, such as square and 
hexagonal, where the analytical solution exists. 
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