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Analytical calculation of nuclear magnetic resonance indirect spin–spin
coupling constants at the generalized gradient approximation and
hybrid levels of density-functional theory

Trygve Helgaker,a) Mark Watson, and Nicholas C. Handy
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW United Kingdom

~Received 27 July 2000; accepted 11 September 2000!

A fully analytical implementation of the nuclear magnetic resonance~NMR! indirect nuclear spin–
spin coupling constants at the density-functional theory~DFT! level is presented. The
implementation involves all four contributions of the nonrelativistic Ramsey theory: The dia- and
para-magnetic spin–orbit contributions as well as the paramagnetic Fermi-contact and spin–dipole
contributions. Three different exchange-correlation functionals—LDA~local density
approximation!, BLYP ~Becke–Lee–Yang–Parr!, and B3LYP ~hybrid BLYP!—are tested by
comparison with experiment and high-levelab initio calculations for a series of molecules
containing first-row elements. All three levels of theory represent a significant improvement on
restrictred Hartree–Fock~RHF! theory in the sense that the RHF instability problems are absent in
DFT. Also, there is a steady improvement in the quality of the calculated spin–spin couplings in the
sequence LDA, BLYP, and B3LYP. For the first-row molecules investigated by us, the hybrid
B3LYP functional performs particularly well, with errors similar to those observed at the bestab
initio levels of theory. ©2000 American Institute of Physics.@S0021-07-7~90!31545-3#
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I. INTRODUCTION

The indirect nuclear spin–spin coupling constants
one of the central parameters that characterize h
resolution nuclear magnetic resonance~NMR! spectra.
Within the Born–Oppenheimer approximation, these c
stants may be calculated as time-independent second-o
molecular properties, where the perturbations are the m
netic fields generated by the stationary nuclei.1 In practice,
however, the accurate calculation of spin–spin coupling c
stants has proved to be considerably more difficult than
calculation of other second-order properties such as q
dratic force constants, polarizabilities, magnetizabilities, a
nuclear shielding constants.2 The reasons for these difficu
ties are the following.

First, at the nonrelativistic level, several distinct mech
nisms contribute to the spin–spin couplings:1 The diamag-
netic spin–orbit~DSO! mechanism, the paramagnetic spin
orbit ~PSO! mechanism, the Fermi-contact~FC! mechanism,
and the spin–dipole~SD! mechanism. All mechanisms ma
be important and none can bea priori neglected; program
ming and computational efforts increase accordingly. S
ond, the indirect spin–spin coupling constants involve trip
perturbations, whose accurate calculation requires a hig
flexible description of the electronic system. The Hartre
Fock model, in particular, gives notoriously poor results a
is often in error by an order of magnitude, rendering t
basic model ofab initio theory useless for the calculation o
spin–spin coupling constants; as a result, there are curre
no levels ofab initio theory available for the calculation o
spin–spin coupling constants of large systems. Third,
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often dominant FC contribution to the spin–spin coupli
depends critically on the electron density at the nuclei;
basis-set convergence is consequently slow and large
must be employed for the results to be useful.

As a consequence, the calculation of NMR indire
spin–spin coupling constants is much less widespread
the calculation of NMR shielding constants, even thou
both sets of parameters are needed for a fully theoret
description of NMR spectra. The purpose of the present
per is to investigate the usefulness of density-functio
theory ~DFT! for the calculation of spin–spin coupling con
stants. In view of the success of the DFT methodology
recent years, it would in particular be interesting to see h
DFT performs vis-a`-vis the bestab initio methods with re-
spect to the calculation of spin–spin coupling constants.

There have been several previous attempts at the ca
lation of spin–spin coupling constants at the DFT level. T
first successful implementations are those of Malk
Malkina and Salahub from 19943 and by Dickson and
Ziegler from 1996.4 The pioneering studies of these autho
have been encouraging. In particular, their results dem
strated that DFT does not suffer from the triplet-instabil
problems that have plagued the application of Hartree–F
theory to the calculation of spin–spin coupling constants
is well established that the use of the random-phase appr
mation ~RPA! Hartree–Fock approach often gives po
singlet-to-triplet excitation energies, whereas there are n
ample results to show that the equivalent DFT calculatio
give much more accurate values for these excitat
energies.5 Moreover, Malkin et al.3 and Dickson and
Ziegler4 also demonstrated that the accuracy achieved
DFT with respect to spin–spin coupling constants is su
ciently high to be useful in the application of DFT to th
solution of chemical problems in NMR.
2 © 2000 American Institute of Physics
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Nevertheless, some limitations of the studies by Mal
et al. and by Dickson and Ziegler prompted us to underta
this study. First, both studies ignored the sometimes imp
tant SD contribution to the spin–spin coupling constan
second, their applications were restricted to the local-den
approximation~LDA ! and generalized gradient approxim
tion ~GGA! levels of theory; third, both implementation
were mixed analytical/finite difference implementations,
ducing their overall efficiency. In our work, we calculate a
four terms analytically, using standard response-the
methods; moreover, in addition to LDA6 and BLYP
~Becke–Lee–Yang–Parr!,7,8 our implementation includes
the hybrid functional B3LYP ~three-parameter hybrid
BLYP!.9,10 In view of the success of the B3LYP function
for the calculation of molecular structure and energetics—
which it matches high-levelab initio methods—it would be
interesting to see if a similar level of accuracy is achieved
hybrid methods in the calculation of spin–spin coupling co
stants.

In the final stages of this project, we became aware o
similar study by Ziegler and co-workers.11 Very recently,
these authors have presented a fully analytical impleme
tion of DFT for the relativistic calculation of the indirec
spin–spin coupling constants at the LDA and GGA levels
theory. Apart from being nonrelativistic, our treatment d
fers from theirs in the use of Gaussian-type orbitals rat
than Slater-type orbitals and in that we are able to inclu
exact Hartree–Fock exchange in our calculations. As w
become apparent in this work, the inclusion of exact
change is essential in order to achieve an accuracy
matches that of the bestab initio methods—at least for the
organic molecules containing first-row atoms as studied
us.

II. THEORY AND IMPLEMENTATION

In the present section, we first review Ramsey’s expr
sion for the indirect spin–spin coupling constants;1 next, we
briefly consider the evaluation of these coupling constant
response theory; finally, we consider the implementation
DFT spin–spin coupling constants inDALTON.12

A. Ramsey’s expression

In the present work, the indirect spin–spin coupling co
stants are evaluated as derivatives of the electronic ene
To summarize, we recall that the nuclear magnetic mome
MK are related to the nuclear spinsIK as

MK5gK\I K , ~1!

where thegK are the nuclear magnetogyric ratios. The n
mal and reduced nuclear indirect spin–spin coupling c
stantsJKL and KKL may then be calculated as the total d
rivatives of the energy with respect to the nuclear magn
moments as follows:

JKL5h
gK

2p

gL

2p
KKL5h

gK

2p

gL

2p

d2E

dMKdML
. ~2!

In the Born–Oppenheimer approximation, the nonrelativis
Hamiltonian takes the following form in the presence
nuclear magnetic moments~atomic units!:
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H5
1

2 (
i

@pi1A~r i !#•@pi1A~r i !#1(
i

si•B~r i !

1Ven1Vee1Vnn , ~3!

wherepi is the conjugate momentum of electroni andsi its
spin. In the point-charge model of the atomic nuclei, t
vector potentialA(r i) and its inductionB(r i)5¹3A(r i) are
given by

A~r i !5a2(
K

MK3r iK

r iK
3 , ~4!

B~r i !5
8pa2

3 (
K

d~r iK !MK

1a2(
K

3r iKr iK
T 2r iK

2 I3

r iK
5 MK , ~5!

wherea is the fine-structure constant andr iK is the position
of electroni relative to nucleusK. Inserting the nuclear vec
tor potential ~4! and the induction~5! in the electronic
Hamiltonian~3! and rearranging, we obtain

H5
1

2 (
i

pi
21Ven1Vee1Vnn1(

KL
MK

ThKL
DSOML

1(
K

MK
ThK

PSO1(
K

MK
T~hK

FC1hK
SD!, ~6!

where we have introduced the diamagnetic spin–orbit~DSO!
and paramagnetic spin–orbit~PSO! operators

hKL
DSO5

a4

2 (
i

~r iK
T r iL !I32r iKr iL

T

r iK
3 r iL

3 , ~7!

hK
PSO5a2(

i

r iK3pi

r iK
3 , ~8!

as well as the triplet Fermi-contact~FC! and spin–dipole
~SD! operators

hK
FC5

8pa2

3 (
i

d~r iK !si , ~9!

hK
SD5a2(

i

3~si
Tr iL !r iK2r iK

2 si

r iK
5 . ~10!

In the traditional sum-over-states formulation of molecu
properties, this leads to the following Ramsey expression
the reduced spin–spin coupling constants:1

KKL5^0uhKL
DSOu0&12(

s.0

^0uhK
PSOus&^suhL

PSOu0&T

E02Es

12(
t

^0uhK
FC1hK

SDut&^tuhL
FC1hL

SDu0&T

E02Et
, ~11!

where the first summation is over all singlet states differ
from the reference state and the second summation ove
triplet states. Although this expression clearly expresses
different mechanisms that contribute to the spin–spin c
pling constants in the conventional formalism of tim
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9404 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Helgaker, Watson, and Handy
independent perturbation theory, it is not useful for calcu
tions since it requires a summation of the full set of exci
states~which are anyway not accessible in DFT!. In practice,
the spin–spin coupling constants are evaluated as a sec
order property according to~2!, using the standard proce
dures for linear response theory.

B. Response theory

To outline the response-function approach to the ca
lation of spin–spin coupling constants,2 we write the Kohn–
Sham closed-shell energy in the formE(MK ,lS ,lT) where
theMK are the nuclear magnetic moments, and wherelS and
lT are two sets of parameters that represent singlet and
let variations in the electronic state. For the optimized
ergy, lS and lT are both zero. The reduced spin–spin co
pling constants may now be calculated as

KKL5
d2E

dMKdML
5

]2E

]MK]ML
1

]2E

]MK]lS

]lS

]ML

1
]2E

]MK]lT

]lT

]ML
, ~12!

where all derivatives are evaluated for the optimized ene
The derivatives oflS andlT with respect toML are obtained
by solving the response equations

]2E

]lS]lS

]lS

]ML
52

]2E

]lS]ML
, ~13!

]2E

]lT]lT

]lT

]ML
52

]2E

]lT]ML
, ~14!

where the symmetric matrices on the left-hand sides are
singlet and triplet electronic Hessians, respectively. Wher
the solution to the singlet equations~13! represents the per
turbing influence of the imaginary singlet PSO operator,
solution to the triplet equations~14! represents the influenc
of the real triplet FC1SD operator; for symmetry reason
there is no coupling between the singlet and triplet pertur
tions. The real singlet DSO operator enters the reduced
pling constant via the first term in~12! and requires no so
lution of linear equations.

The dimension of the imaginary singlet equations~13! is
equal to the number of parameters inlS—that is, to the
number of occupied MOs times the number of unoccup
MOs. This dimension is sufficiently large that the equatio
are solved iteratively, without constructing the Hessi
There are three equations to be solved for each paramag
nucleus—that is, one equation for each Cartesian compo
of the PSO operator~8!. The solution of these imaginar
singlet equations follows the same scheme as the solutio
the response equations for the calculation of chem
shieldings—see, for example, Ref. 2.

The solution of the real triplet equations~14! is more
difficult since, because of the three components of each
let state, the number of parameters inlT is three times the
number of parameters inlS . The triplet components do no
mix, however, reducing each of the three equations for e
nucleus to three separate smaller equations. In total, th
fore, there are nine triplet equations to be solved for e
Downloaded 09 Jan 2002 to 149.156.95.11. Redistribution subject to A
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nucleus, each of the same dimension as the singlet equa
~13!. By use of the Wigner–Eckart theorem, it is possible
reduce the number of independent equations for each nuc
to six, although this has not been done in our implemen
tion. Moreover, we treat the FC and SD contributions se
rately since the additional cost is small~there is only one
independent FC equation for each nucleus due to the h
symmetry of the FC operator! and since this gives usefu
additional information about the transmission of the coupl
~either as FC or SD!.

In short, we solve 13 linear equations for each param
netic nucleus: Three imaginary singlet equations involv
the PSO operator, one real triplet equation involving the
operator, and nine real triplet equations involving the S
operator. This situation should be compared with the cal
lation of shieldings, for which we never solve more th
three imaginary singlet equations for each molecule~one for
each direction of the external magnetic field!. In many cases,
the FC contribution dominates the spin–spin couplin
Since this contribution requires only one set of linear eq
tions to be solved for each nucleus, it is tempting to drop
remaining contributions. Unfortunately, it is impossible
predict with any certainty when the non-FC contributio
may be neglected and all terms should, therefore, be inclu
in the calculations.

C. Implementation in DALTON

Our implementation of NMR indirect spin–spin cou
pling constants is based on a previous such implementa
at the Hartree–Fock and MCSCF~multiconfiguration self-
consistent field! levels in DALTON13 and on a recently de
scribed implementation of DFT shieldings inDALTON.14 The
implementation of DFT inDALTON is based on that in
CADPAC,15 using the same routines for generating the abs
sas and weights of the density quadrature and for the fu
tionals. The optimized DFT energies are, therefore, ident
to those ofCADPAC. Moreover, the present implementatio
of DFT in DALTON is preliminary in that it does not utilize
point-group symmetry; also, there is no efficient screening
quadrature points and of the contributions from the in
vidual orbitals at each point. There are, however, no limi
tions with respect to the types of Gaussian basis sets tha
be used~segmented or generally contracted with spheric
harmonic or Cartesian components!. In addition to the calcu-
lation NMR shieldings and indirect spin–spin couplings
the GGA and hybrid levels,DALTON is capable of calculating
DFT molecular gradients as well as DFT singlet and trip
excitation energies at the RPA level.

In principle, the only modifications needed to turn
Hartree–Fock code into a DFT code is to replace
Hartree–Fock exchange contributions to the energy
other quantities such as the Fock matrix by the correspo
ing exchange-correlation contributions of DFT. In hybr
theories, the Hartree–Fock exchange is not completely
moved but rather scaled by some factor. Since the perturb
operators~7!–~10! are one-electron operators, all quantiti
involving these operators in Kohn–Sham theory are forma
identical to those in Hartree–Fock theory. The only mod
cations needed for the calculation of spin–spin coupling c
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 09 J
TABLE I. Indirect nuclear spin–spin coupling constants~Hz!. All calculations have been carried out at th
equilibrium geometry in the HIII basis, except as noted for some MCSCF calculations. In the MCSCF
lations, a 6331 CAS was used except that RAS was used for HCN and full-valence CAS for H2 and C2H4. All
experimental results are vibrationally averaged except for H2, HF, and CH4, for which Re values are used.

RHF LDA BLYP B3LYP CAS exp.

H2 H–D 47.3 29.5 44.6 42.6 36.9 41.1a

HF 19F–H 632.7 385.5 373.3 419.5 517.7b 500620c

H2O
17O–H 297.1 262.3 267.8 271.8 274.5b 280.6d

NH3
14N–H 51.9 34.9 41.8 42.4 42.3e 43.6f

CH4
13C–H 146.1 94.0 123.1 122.4 116.7e 120.9g

HCN 15N–13C 2119.7 27.9 211.7 217.2 219.8b 218.5h

N2
14N–15N 215.0 3.9 2.9 1.6 0.8i 1.8j

CO 13C–7O 25.0 26.1 22.8 19.5 16.1i 16.4k

C2H4
13C–13C 1235.9 49.9 66.1 70.1 75.7l 67.5m

mean err. Hz 127.2 215.4 24.5 27.0 2.2
mean abs. err. Hz 170.7 24.4 24.1 11.2 4.9
stand. dev. Hz 395.7 39.9 49.0 27.7 7.2
mean err. % 119.1 22.6 12.3 22.3 26.5
mean abs. err. % 409.7 41.7 30.5 8.4 11.6
stand. dev. % 722.9 54.5 40.3 10.6 19.7

aReferences 13 and 21. hReference 27.
bReference 20. i12s7p3d/8s4p3d basis, Ref. 28.
cReferences 22 and 23. jReference 29.
dReference 24. kReference 30.
eHIV basis, Ref. 2. lqz12d1f basis, Ref. 2.
fReference 25. mReference 31.
gReference 26.
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stants therefore occur in the solution of the response e
tions, in order to take into account the contributions from
exchange-correlation potential to the singlet and triplet H
sians. We do not derive these contributions here since th
are the same as those that occur in DFT RPA theory, wh
have been described elsewhere.5 Our implementation of the
exchange-correlation contributions to the electronic Hess
has been tested by comparing the DFT RPA singlet and
let excitation energies obtained byDALTON with those ob-
tained byCADPAC. Since the calculation of the DFT indirec
spin–spin coupling constants otherwise uses the sameDAL-

TON routines as for Hartree–Fock calculations, we are c
fident that the calculated DFT indirect spin–spin coupli
constants are correct.

III. CALCULATIONS

A. The performance of LDA, BLYP, and B3LYP

In this section, we compare the LDA, BLYP, an
B3LYP indirect spin–spin coupling constants with the e
perimental ones and with those obtained at the Hartree–F
and CASSCF~complete active space self-consistent fie!
levels@RASSCF~restricted active space self-consistent fie!
for HCN#. The CASSCF level was chosen as being typica
a fairly simple yet qualitatively correctab initio level; in Sec.
III E, comparisons will be made with other levels ofab initio
theory.

Except as noted for some of the MCSCF calculations,
calculations have been carried out at the experimental ge
etries in the HIII basis,16,17 containing@7s6p2d# contracted
spherical-harmonic AOs~atomic orbitals! on each nonhydro-
gen atom and@4s2p# AOs on each hydrogen atom. Th
basis is commonly used for NMR shieldings and often a
an 2002 to 149.156.95.11. Redistribution subject to A
a-
e
-
se
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for spin–spin coupling constants.2 However, since the FC
operator~which contains the Dirac delta function! contrib-
utes to the spin–spin couplings but not to the shieldings,
basis-set requirements for the spin–spin coupling const
are more stringent.18–20As discussed in Sec. III B, the popu
lar HIII basis may therefore not be sufficiently flexible for a
accurate calculation spin–spin coupling constants. Still,
the initial comparison of the different schemes in Table I,
shall use the HIII basis.~The slightly larger HIV basis has
been used in some of the CASSCF calculations in Tabl
the differences between HIII and HIV are small and do n
invalidate the comparison.!

In comparing the spin–spin couplings with experime
one should bear in mind that the vibrational contributions
the experimentally observed coupling constants are mo
unknown. In our comparison, we use the experimental eq
librium values where these are available~for H2, HF, and
CH4); otherwise, we have used the directly observed~vibra-
tionally averaged! couplings. We note that the vibrationa
contribution can sometimes be substantial—in HF, for e
ample, the zero-point vibrational correction increases the
direct spin–spin coupling by about 25 Hz~5%!.23

From the results in Table I, it is clear that the calculat
DFT spin–spin coupling constants represent a significant
provement on the Hartree–Fock constants. For example
CC coupling of C2H4 is reduced from 1236 Hz at th
Hartree–Fock level to 50 Hz at the LDA level, in fair agre
ment with the experimental value of 68 Hz. Similar improv
ments are observed for the CN coupling in HCN and for
couplings in N2 and CO, all of which are poorly described
the Hartree–Fock level. In short, as we argued earlier, m
of the severe problems associated with the poor descrip
of the triplet perturbations at the Hartree–Fock level a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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solved at the LDA level. We also note that, whereas
Hartree–Fock model always overestimates the coup
~usually very significantly!, the LDA model mostly underes
timates it.

Passing on to the gradient-corrected BLYP level,
couplings usually increase, improving the agreement w
experiment somewhat. Nevertheless, the agreement is
from satisfactory, the BLYP mean absolute errors being
Hz and 31%. At the B3LYP level, however, there is a s
nificant improvement in the calculated couplings, with me
absolute errors of 11 Hz and 8%; the correspond
CASSCF errors being 5 Hz and 12%. These seemingly c
tradictory errors illustrate the difficulties associated w
judging the errors of calculated spin–spin coupling co
stants. Whereas CASSCF is better than B3LYP in abso
terms because of a large B3LYP error of 90 Hz for H
B3LYP is better than CASSCF in relative terms because
large CASSCF error of 100% for N2. Ignoring the HF cou-
pling, the B3LYP mean absolute error is 2.7 Hz. Thus, w
the reservation that B3LYP severely underestimates the
pling in HF, we conclude that it performs very well for th
calculation of indirect spin–spin couplings—for molecul
containing a variety of chemical bonds between first-row
oms.

B. The relative importance of the contributions to the
coupling constants

The cost of evaluating the indirect spin–spin coupli
constants is significantly reduced if we omit the SD con
butions. Indeed, in some applications, all contributions
cept the FC contribution are omitted, reducing the cost of
calculation by several factors. In Fig. 1, we have plotted
four contributions to the B3LYP/HIII couplings at the ex
perimental geometries. Although the FC contribution dom
nates in most cases@partly because of the large prefactor
~9!, which is squared in the calculated couplings#, this is not
always so. For example, in HF, the PSO contribution is
large as the FC contribution; moreover, in N2, the PSO con-
tribution is more than twice as large as the FC contribut
and the SD contribution as large as the PSO contribution

FIG. 1. The relative contributions to the indirect nuclear spin–spin coup
constants as calculated at the B3LYP/HIII level at experimental geomet
The DSO contribution is always small but noticeable at the top of the
umn for the N2 molecule.
Downloaded 09 Jan 2002 to 149.156.95.11. Redistribution subject to A
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of opposite sign. The SD mechanism also makes signific
contributions in HCN and CO. The DSO contribution is th
least important but it is sometimes as large as the P
contribution—see the discussion of the Karplus curve lat

In short, none of the coupling mechanisms that arise
Ramsey’s theory can bea priori neglected in accurate stud
ies of spin–spin couplings. However, significant savings c
sometimes be gained by carrying out pilot calculations in
small basis and only the dominant contributions—usually
FC contribution—in a large basis. This approach mak
sense since the FC contribution is usually more sensitive
the quality of the basis than the other contributions.

C. Basis-set saturation

It is well established that the quality of the calculat
indirect spin–spin couplings depends critically on the fle
ibility of the one-electron basis.18–20 This sensitivity arises
from the presence of the Dirac delta function in the FC o
erator, which appears to second-order in the coupling c
stants. Clearly, for the accurate calculation of indirect spi
spin coupling constants, we must provide a flexib
description of the core. However, it is also apparent from
form of the FC operator that sufficient flexibility is obtaine
by decontracting thes functions and by augmenting th
original energy-optimized basis with steeps functions, usu-
ally added as an even-tempered extension to the funct
present in the original basis set.

In Table II, we have listed the B3LYP couplings calc
lated with such augmented basis sets. Whereas the effe
decontraction is mostly small~except in the hydrocarbons!,
the effect of adding steeps functions is significant. For HF
and H2O, the augmentation brings the calculated B3LY
couplings into better agreement with experiment; for H2,
CH4, and C2H2, the agreement with experiment becom
poorer. Clearly, for a useful comparison and evaluation
the different computational methods, basis sets larger t
HIII should be used. In our comparison with other metho
in Sec. III E, we have used both the HIII basis and t
HIII- su3 basis~in which the originals functions have been
decontracted and augmented with three steep functions!.

g
s.
l-

FIG. 2. The Karplus curve calculated at the B3LYP/HIII level compar
with the empirical Durette–Horton curve. The Durette–Horton curve
been obtained by plotting~17!; the B3LYP curves have been obtained b
third-order polynomial fittings to successive calculated points forf
50°,10°,...,180°.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 09 J
TABLE II. Basis-set convergence of the B3LYP indirect nuclear spin–spin coupling constants at the e
mental geometries~Hz!.

H2

H–D
HF

19F–H
H2O

17O–H
NH3

14N–H
CH4

13C–H
HCN

13C–15N
N2

14N–15N
CO

13C–17O
C2H2

13C–13C
C2H4

13C–13C

HIII 42.6 419.5 271.8 42.4 122.4 217.2 1.6 19.5 200.8 70.1
uncontracted 42.8 419.1271.3 41.7 120.6 217.2 1.5 18.9 195.8 68.5
1 s added 46.6 431.1 274.7 44.0 127.8 217.6 1.6 19.3 201.4 71.0
2 s added 48.3 437.5 276.3 45.1 131.1 217.7 1.6 19.4 204.0 72.1
3 s added 48.9 439.3 276.8 45.4 132.2 217.7 1.6 19.5 204.9 72.4
Experimental 41.1 500 280.6 43.6 120.9 218.5 1.8 16.4 184.5 67.5
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D. Rescaling of exact exchange

It has been found that, for NMR shieldings, a reoptim
zation of the exact Hartree–Fock exchange in B3LYP s
nificantly improves the agreement between calculated
experimental shieldings.32 In particular, if the Kohn–Sham
orbitals are first optimized at the B3LYP level with 5% exa
Hartree–Fock exchange~rather than 20%!, then a subsequen
calculation of shieldings in an uncoupled sum-over-sta
GGA fashion yields results that differ from the observ
ones by only a few percent.14,32In view of the success of this
approach, we have investigated the effect of changing
amount of exact Hartree–Fock exchange in the calculatio
spin–spin coupling constants.

In Table III, we have listed the indirect spin–spin co
pling constants as calculated at the B3LYP/HIII level w
different amounts of exact exchange: 15%, 20%~true
B3LYP! and 25%. From these results, it appears that
spin–spin coupling constants cannot be improved simply
rescaling the Hartree–Fock exchange. The mean absolut
rors are 12.5, 11.7, and 11.2 Hz, respectively, for 15%, 20
and 25% exact exchange~ignoring the HF molecule, the er
rors become 3.8, 4.1, and 4.6 Hz!; in relative terms, the er-
rors are 10.1%, 8.4%, and 10.2%. In short, the mean abso
errors are not much affected by the rescaling; if anything,
best results are obtained with the true B3LYP functional. W
conclude that any reoptimization of the empirical parame
in B3LYP must be carried out in a manner more general t
that attempted here~i.e., by changing all parameters! but is
not likely to lead to a significant improvement on the origin
functional.

E. Comparison of B3LYP with other methods

Having established that B3LYP performs better th
LDA and BLYP with respect to the accurate calculation
indirect spin–spin coupling constants, we now comp
B3LYP with availableab initio data from the literature—in
an 2002 to 149.156.95.11. Redistribution subject to A
-
d

t

s

e
of

e
y
er-
,

te
e
e
rs
n

l

f
e

particular, with MCSCF calculations and with SOP
PA~CCSD! ~second-order polarization propagator appro
mation with CCSD amplitudes!33 and CCSD ~coupled-
cluster singles-and-doubles!34 calculations. In addition,
comparisons are made with previous DFT calculations
Malkin et al.3 In their DFT calculations, these authors ha
used the Perdew and Wang exchange functional35 with the
Perdew correlation functional36 ~PP! and ignored the SD
contribution to the couplings.

In Table IV, we have listed the coupling constants c
culated for a variety of molecular systems at different lev
of theory. One difficulty with the comparison of the differe
methods is the basis set, which is not the same in all ca
While this circumstance complicates the picture, it should
recalled that the requirement on the basis set varies con
erably among the different methods—being, for examp
much more stringent for CCSD calculations than for
stricted Hartree–Fock~RHF! calculations. Still, the require
ments with respect to the saturation of the inners core space
are the same for all methods. As demonstrated in Sec. II
it would be preferable to use basis sets of at least HIII-su3
quality in all calculations. However, many of the spin–sp
coupling constants reported in the literature have not b
calculated with this basis. For this reason, we have in Ta
IV listed the B3LYP couplings calculated using both the H
basis and the HIII-su3 basis. Finally, we note that, for som
of the coupling constants in Table IV~in particular those
calculated at the CCSD and PP levels!, not all contributions
have been included, further complicating the comparison

A comparison of the spin–spin coupling constants
Table IV reveals that the B3LYP method provides spin–s
coupling constants that rival those of CASSCF and CC
but not quite those of RASSCF and SOPPA~CCSD!. In ab-
solute terms~Hz!, the worst DFT performance is observe
for the HF molecule, which seems to be a particularly ha
case for DFT but does not present difficulties for theab initio
act
TABLE III. The indirect spin–spin coupling constants calculated at the B3LYP/HIII level with 15% ex
Hartree–Fock exchange, 20% exact exchange~true B3LYP! and 25% exact exchange~Hz!.

H2

H–D
HF

19F–H
H2O

17O–H
NH3

14N–H
CH4

13C–H
HCN

13C–15N
N2

14N–15N
CO

13C–17O
C2H2

13C–13C
C2H4

13C–13C

15% 42.0 409.1 270.5 41.7 120.4 215.4 2.1 20.6 197.7 67.6
20% 42.6 419.5 271.8 42.4 122.4 217.2 1.6 19.5 200.8 70.1
25% 43.3 430.1 273.2 43.0 124.5 219.1 1.2 18.3 204.0 72.7
exp. 41.1 500 280.6 43.6 120.9 218.5 1.8 16.4 184.5 67.5
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Comparison of B3LYP indirect spin–spin coupling constants withab initio coupling constants and with PP DFT coupling constants~Hz!.

RHF
HIII CAS RAS

SOPPA
~CCSD! CCSD

PP
HIII

B3LYP
HIII

B3LYP
HIII-su3 exp.

HF 1JFH 632.7 542.6a 529.1b 529.4c 513.4d 396.2e 419.5 439.3 500620f

H2O
1JOH 297.1 283.9a 277.1g 280.6c 274.9d 256.2e 271.8 276.8 280.6h

2JHH 220.7 29.6a 212.6g 28.8c 210.8d 27.1 28.1 27.11h

NH3
1JNH 51.9 42.3i 44.3* 41.8d 36.9e 42.4 45.4 43.6j
2JHH 221.9 29.8i 211.3* 212.1d 28.9 29.8 210.0j

CH4
1JCH 146.1 116.7i 121.9k 122.3c 121.6e 122.4 132.2 120.9l
2JHH 223.7 213.2i 213.6k 214.0c 210.6e 211.1 213.3 212.0l

N2
1JNN 215.3 0.5m 0.8m 2.1c 4.7e 1.6 1.6 1.8n

CO 1JCO 25.0 11.5m 16.1m 18.6c 25.9e 19.5 19.5 16.4o

C2H2
1JCC 353.3 187.7p 182.6q 190.0r 166.2s 184.3e 200.8 204.9 184.5t
1JCH 379.8 238.5p 241.4q 254.9r 226.7s 249.1e 253.8 274.0 242.4t
2JCH 251.0 47.0p 49.2q 51.7r 43.2s 49.1e 52.2 55.9 53.8t
3JHH 70.6 12.1p 12.6q 11.3r 7.6s 9.0e 10.3 11.0 10.1t

C2H4
1JCC 1235.9 75.7i 69.5i 70.1** 70.1u 61.2e 70.1 72.4 67.5v
1JCH 688.7 155.7i 154.0i 157.2** 153.2u 152.0e 154.2 166.7 156.3v
2JCH 2519.0 25.8i 23.0i 23.1** 23.0u 20.7e 21.3 21.5 22.4v

2JHH 2296.4 22.4i 1.3i 1.0** 0.4u 4.3e 3.2 3.8 2.4v
3Jcis 304.6 12.4i 11.6i 17.8** 11.6u 10.1e 11.0 13.0 11.7v

3Jtrans 343.9 18.4i 18.5i 24.7** 17.8u 16.9e 17.7 20.0 19.0v

aReference 20. mReference 28.
bReference 23, 544.2 Hz in Ref. 37. nReference 29.
cReference 33. oReference 30.
dEOM-CCSD Ref. 34. pReference 40.
eOnly FC for H2O and NH3, SD ignored in all cases, Ref. 3. qReference 41, see also Ref. 31.
fRe value, Refs. 22 and 23. rReference 42.
gReference 38. sReference 43.
hReference 24. tRe value, Ref. 42.
iReference 2. uReference 44.
jReference 25. vReference 31.
kReference 39. *Added in proof, Reference 51.
lRe value, Ref. 26. ** Added in proof, Reference 52.
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methods; observing the same difficulties in their PP calcu
tions, Malkinet al. related these to the large number of lo
pairs in HF.3 For the PP calculations in Table IV, omissio
of the SD contribution leads to poor results for HF, CO, a
N2. The latter two molecules are well described at t
B3LYP level, in particular in comparison with the CA
model. It is also gratifying to note that, for the unsatura
hydrocarbons C2H2 and C2H4, the full set of spin–spin cou
pling constants—that is, the one-bond, geminal, and vic
couplings—are well reproduced at the B3LYP level, with
unambiguous one-to-one correspondence between the
served and calculated coupling constants.

F. The Karplus relation

The indirect nuclear spin–spin coupling constants
sensitive to details of molecular structure and conformati
as illustrated by the famous Karplus relationship betwe
vicinal coupling constants and the dihedral anglef between
two CH bonds.45 In its simplest form, the Karplus equatio
may be expressed as

3J~f!5C01C1 cosf1C2 cos~2f!, ~15!

where3J(f) is the coupling constant between two hydrog
atoms on neighboring carbon atoms. In Fig. 2, we have p
ted the Karplus curve for ethane~in Hz! as calculated at the
B3LYP level in the HIII basis. For comparison, we ha
included the empirical Durette–Horton curve.46 We note,
Downloaded 09 Jan 2002 to 149.156.95.11. Redistribution subject to A
-

d
e

d

al
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e
,
n

t-

however, that several~similar! Karplus curves exist in the
literature;47–49 Refs. 48 and 49 also contain Karplus curv
calculated at the Hartree–Fock level.

The B3LYP curve is remarkably similar to the empiric
Karplus curve. In terms of the Fourier expansion~15!, these
curves may be expressed as

3J~f!B3LYP57.020.1 cosf16.5 cos~2f!, ~16!

3J~f!DH57.821.0 cosf15.6 cos~2f!. ~17!

Whereas the Durette–Horton curve is defined by the rela
~17! and obtained by adjusting to the observed spin–s
coupling constants of ethanelike molecules, the B3L
curve~16! has been obtained by fitting the calculated vicin
spin–spin coupling constants of ethane for the 19 torsio
angles 0°, 10°, ..., 180° to the three-term expansion~15!. We
note that the Karplus relation is completely dominated by
FC contribution, which depends critically on the dihedr
angle; the SD contribution is small and the DSO and P
contributions very nearly cancel. The near cancellation of
orbital contributions is a common feature of vicinal H–
couplings—see, for example, the discussion in Ref. 50.
B3LYP, the minimum in the Karplus curve occurs at 92.2
In conclusion, it appears that B3LYP represents an excel
model for the study of Karplus-type conformational relatio
in NMR spectroscopy.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. CONCLUSIONS

We have presented an implementation of indir
nuclear spin–spin coupling constants at the DFT level
GGA and hybrid functionals. The first applications of th
method to the calculation of spin–spin coupling consta
are promising, suggesting that the hybrid B3LYP function
gives results whose accuracy matches that of the besab
initio results in the literature. Compared with experiment,
errors are typically 10% although a more careful analysi
necessary to establish the effects of basis-set incomplete
and vibrational averaging. If anything, the errors observ
for the spin–spin couplings in our applications are sma
than those of the shielding constants calculated at the s
level of theory, suggesting that B3LYP provides a useful t
for the theoretical study of NMR spectra. Bearing in mi
that the B3LYP model can easily be applied to lar
systems—much larger than those studied by high-levelab
initio methods—it appears that we now for the first tim
have at our disposal a useful tool for the study of NM
shielding and spin–spin coupling constants of large orga
molecules. The results obtained at the LDA and BLYP lev
are poorer than those obtained at the B3LYP level, with
rors often several times larger~in particular at the LDA
level!. Still, even the simple LDA functional displays non
of the instability problems characteristic of the Hartree–Fo
model, suggesting that the crude effects of static correla
are included already at this simple level of theory.

Note added in proof. Recently, V. Sychrovsky, F
Gräfenstein, and D. Cremer have presented an indepen
analytical implementation of indirect spin–spin couplin
constants at the GGA and hybrid levels of nonrelativis
DFT, see Ref. 53. Their findings and conclusions agree w
ours, demonstrating that the evaluation of NMR spin–s
coupling constants by DFT is a potentially high-accura
semi-empirical approach. A discrepancy occurs for C2H4

since Sychrovskyet al. have used an incorrect geometry f
this molecule, with the values for the HCH and HCC bo
angles interchanged.
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