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We investigate the effect of spacetime backreaction on the upper critical magnetic field
for s-wave holographic superconductors by using the matching method. The backreaction
of the constant external magnetic field and the electric field to the background geometry
leads to a dyonic black hole solution. The magnetic fields as well as the electric fields acting
as gravitational sources tend to depress the critical temperature of the superconductor. We
derive the analytical expression for the upper critical magnetic field up to O(κ2) order
and find that backreaction makes the upper critical magnetic field stronger. The result is
consistent with the previous numerical and analytical results.

Subject Index: 105, 454

§1. Introduction

The gauge/gravity duality1)–3) as the most fruitful idea stemming from string
theory, has been proved to be a powerful tool for studying the strongly coupled sys-
tems in field theory. By using a dual classical gravity description, we can effectively
calculate correlation functions in a strongly interacting field theory. Recently, a su-
perconducting phase was established with the help of black hole physics in higher
dimensional spacetime.4)–7)

Counting on the numerical calculations, the critical temperature was calculated
with and without the backreaction for various conditions.8)–24) The behavior of
holographic superconductors in the presence of an external magnetic field has been
widely studied in the probe limit.25)–35) The analytical calculation is useful for
gaining an insight into the strong interacting system. If the problem can be solved
analytically, however vaguely, one can usually gain some insight. As an analytical
approach for deriving the upper critical magnetic field, an expression was found
in the probe limit by extending the matching method first proposed in 9) to the
magnetic case,32) which is shown to be consistent with the Ginzburg-Landau theory.

Most of previous studies on the holographic superconductors focus on the probe
limit neglecting the backreaction of matter field on the spacetime. The probe limit
corresponds to the case the electric charge q → ∞ or the Newton constant approaches
zero. The backreaction of the spacetime becomes important in the case away from
the probe limit. At a lower temperature, the black hole becomes hairy and the
phase diagram might be modified. Recently, an analytical calculation on the critical
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1212 X.-H. Ge and H.-Q. Leng

temperature of the Gauss-Bonnet holographic superconductors with backreaction
was presented in 21) and confirmed the numerical results that backreaction makes
condensation harder.13),14),19),20)

Considering the above facts, it would be of great interest to explore the behavior
of the upper critical magnetic field for holographic superconductors in the presence
of the backreaction. In this work, we will first consider the effect of the spacetime
backreaction to s-wave holographic superconductors without the magnetic field. Dif-
ferent from the probe limit case, the backreaction of spacetime actually leads to a
charged black hole solution in AdS space at the leading order. We will compute the
critical temperature analytically by using this charged black hole metric through the
matching method. Secondly we will study the properties of holographic supercon-
ductors in the presence of external magnetic field. When we turn on the external
magnetic field, the resulting background geometry becomes the dyonic black hole so-
lution in AdS space to the zeroth order. The analytical investigation on the effect of
the spacetime backreaction to the upper critical magnetic field has not been carried
out so far. Therefore, the contents in this paper will be greatly different from the
probe limit case as we consider the spacetime backreaction. Note that in both cases,
the small backreaction approximation shall be used to obtain an analytical result.
In order to compare the analytic study with numerical results, we will also carry on
numerical computation.

The organization of the paper is as follows: We first consider the effects of back-
reaction on 2 + 1-dimensional s-wave holographic superconductors in §2. Without
the magnetic field, the critical temperature with backreaction will be derived first.
Then we continue the calculation to the strong external magnetic field case and find
an analytical expression for the backreaction on the upper critical magnetic field.
From the Einstein equation, we know that the presence of charge and magnetism
in 4-dimensional spacetime yields a dyonic black hole solution. The critical temper-
ature may influenced by the backreaction of the magnetism. We will compare the
analytic and numerical results. The conclusion will be presented in the last section.

§2. (2 + 1)-dimensional s-wave holographic superconductors

In this section, we first investigate the backreaction of electric field on supercon-
ductivity and derive the phase transition temperature Tc in this case. After that,
we turn to the backreaction of the external magnetic field and calculate the critical
magnetic field.

2.1. Critical temperature with backreaction in the absence of magnetic fields

We begin with a charged, complex scalar field into the 4-dimensional Einstein-
Maxwell action with a negative cosmological constant

S =
1

16πG4

∫
d4x

√−g
{
R− 2Λ− 1

4
FμνF

μν − |∂μψ − iqAμψ|2 −m2|ψ|2
}
, (2.1)

whereG4 is the 4-dimensional Newton constant, the cosmological constant Λ = −3/l2

and Fμν = ∂μAν − ∂νAμ. The hairy black hole solution is assumed to take the
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Analytical Calculation on Critical Magnetic Field 1213

following metric ansatz,

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+
r2

l2
(dx2 + dy2), (2.2)

together with
Aμ = (φ(r), 0, 0, 0), ψ = ψ(r). (2.3)

The Hawking temperature, which will be interpreted as the temperature of the holo-
graphic superconductors, is given by

T =
1
4π
f ′(r)e−χ(r)/2

∣∣∣∣
r=r+

, (2.4)

where a prime denotes a derivative with respect to r and r+ is the black hole horizon
defined by f(r+) = 0. ψ(r) can be taken to be real by using the U(1) transformation.
The gauge and scalar equations become

φ′′ +
(
χ′

2
+

2
r

)
φ′ − 2q2ψ2

f
φ = 0, (2.5)

ψ′′ +
(
f ′

f
− χ′

2
+

2
r

)
ψ′ +

(
q2φ2eχ

f2
− m2

f

)
ψ = 0. (2.6)

The tt and rr components of the background Einstein equations yield

f ′ +
f

r
− 3r
l2

+ κ2r

[
eχ

2
φ′2 +m2ψ2 + f

(
ψ′2 +

q2φ2ψ2eχ

f2

)]
= 0, (2.7)

χ′ + 2κ2r

(
ψ′2 +

q2φ2ψ2eχ

f2

)
= 0. (2.8)

When the Hawking temperature is above a critical temperature, T > Tc the solution
is the well-known AdS-Reissner-Nordström (RNAdS) black holes

f =
r2

l2
− 1
r

(
r3+
l2

+
κ2ρ2

2r+

)
+
κ2ρ2

2r2
, χ = ψ = 0, φ = ρ

(
1
r+

− 1
r

)
, (2.9)

where κ2 = 8πG4. At the critical temperature T = Tc, the coupling of the scalar to
gauge field induces an effective negative mass term for the scalar field, the RNAdS
solution thus becomes unstable against perturbation of the scalar field. At the
asymptotic AdS boundary (r → ∞), the scalar and the Maxwell fields behave as

ψ =
〈OΔ−〉
rΔ−

+
〈OΔ+〉
rΔ+

, φ = μ− ρ

r
+ ... , (2.10)

where μ and ρ are interpreted as the chemical potential and charge density of the
dual field theory on the boundary. According to the gauge/gravity duality, 〈OΔ±〉
represents the expectation value of the operator OΔ± dual to the charged scalar
field ψ. The exponent Δ± is determined by the mass as Δ± = 3

2 ± 1
2

√
9 + 4m2.

Note that for ψ both of the falloffs are normalizable and we choose the boundary
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1214 X.-H. Ge and H.-Q. Leng

condition that either 〈OΔ−〉 or 〈OΔ+〉 is vanishing. We will impose that ρ is fixed
and take 〈OΔ−〉 = 0 as in 7). Moreover, we will consider the values of m2 which
must satisfy the Breitenlohner-Freedman (BF) bound m2

BF ≤ m2 < m2
BF + 1 with

m2
BF = −(d− 1)/437) for the dimensionality of the spacetime d = 4 in the following

analysis.
After introducing the new coordinate z = r+

r , the equations of motion become

−f ′ + f

z
− 3r2+
l2z3

+ κ2 r
2
+

z3

[
z4eχ

2r2+
φ′2 +m2ψ2 + f

(
z4

r2+
ψ′2 +

q2φ2ψ2eχ

f2

)]
= 0, (2.11)

−χ′ + 2κ2 r
2
+

z3

[
z4

r2+
ψ′2 +

q2φ2ψ2eχ

f2

]
= 0, (2.12)

φ′′ +
1
2
χ′φ′ − 2q2ψ2r2+

z4f
φ = 0, (2.13)

ψ′′ −
(
χ′ − f ′

f

)
ψ′ +

r2+
z4

(
q2φ2eχ

f2
− m2

f

)
ψ = 0, (2.14)

where the prime ′ denotes a derivative with respect to z. One may find that the
transformation φ→ φ/q and ψ → ψ/q does not change the form of the Maxwell and
the scalar equations, but the gravitational coupling of the Einstein equation changes
κ2 → κ2/q2. The probe limit studied in 7) corresponds to the limit q → ∞ in which
the matter sources drop out of the Einstein equations. The hairy black hole solution
requires to go beyond the probe limit. In 7), it was suggested to take finite q by
setting 2κ2 = 1. Recently, the author in 21) proposed to keep 2κ2 finite with setting
q = 1 instead. We will take the latter choice.

In the neighborhood of the critical temperature Tc, we can choose the order
parameter as an expansion parameter because it is small valued

ε ≡ 〈OΔ+〉. (2.15)

We find that given the structure of our equations of motion, only the even orders
of ε in the gauge field and gravitational field, and odd orders of ε in the scalar field
appear here. That is to say, we can expand the scalar field ψ, the gauge field as a
series in ε as

φ = φ0 + ε2φ2 + ε4φ4 + ... , (2.16)
ψ = εψ1 + ε3ψ3 + ε5ψ5 + ... . (2.17)

Let us expand the background geometry line elements f(z) and χ(z) around the
AdS-Reissner-Nordström solution

f = f0 + ε2f2 + ε4f4 + ... , (2.18)
χ = ε2χ2 + ε4χ4 + ... . (2.19)

The chemical potential μ should also expanded as

μ = μ0 + ε2δμ2, (2.20)
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Analytical Calculation on Critical Magnetic Field 1215

where δμ2 is positive. Therefore, near the phase transition, the order parameter as
a function of the chemical potential, has the form

ε =
(
μ− μ0

δμ2

)1/2

. (2.21)

It is clear that when μ approaches μ0, the order parameter ε approaches zero. The
phase transition occurs at the critical value μc = μ0. Note that the critical exponent
1/2 is the universal result from the Ginzburg-Landau mean field theory. The equation
of motion for φ is solved at zeroth order by φ0 = μ0(1 − z) and this gives a relation
ρ = μ0r+. So, to zeroth order the equation for f is solved as

f0(z) =
r2+
z2l2

(
1 − z

)(
1 + z + z2 − κ2l2μ2

0

2r2+
z3

)
. (2.22)

Now the horizon locates at z = 1. We will see that the critical temperature with
spacetime backreaction can be determined by solving the equation of motion for ψ
to the first order.

At first order, we need solve the equation for ψ1 by the matching method. The
boundary condition and regularity at the horizon requires

ψ′(1) =
r2+m

2

f ′0(1)
ψ1(1). (2.23)

In the asymptotic AdS region, ψ1 behaves like

ψ1 = C+z
Δ+ . (2.24)

Now let us expand ψ1 in a Taylor series near the horizon

ψ1 = ψ1(1) − ψ′
1(1)(1 − z) +

1
2
ψ′′

1 (1)(1 − z)2 + ... . (2.25)

From (2.14), we obtain the second derivative of ψ1 at the horizon

ψ′′
1 (1) = −1

2

(
4 +

f ′′0 (1)
f ′0(1)

− m2r2+
f ′0(1)

)
ψ′

1(1) − r2+φ
′
0(1)2

2f ′20 (1)
ψ1(1). (2.26)

Using (2.23) and (2.26), we find the approximate solution near the horizon

ψ1(z) = ψ1(1) − r2+m
2

f ′0(1)
ψ1(1)(1 − z) +

[
− r2+m

2

4f ′0(1)

(
4 +

f ′′0 (1)
f ′0(1)

−r
2
+m

2

f ′0(1)

)
− r2+

4
φ′1(1)2

f ′0(1)2

]
ψ1(1)(1 − z)2 + ... . (2.27)

In order to determine ψ1(1) and C+, we match the solutions (2.24) and (2.25)
smoothly at zm. We find that

zΔ+
m C+ = ψ1(1) − r2+m

2

f ′0(1)
ψ1(1)(1 − zm) +

[
− r2+m

2

4f ′0(1)

(
4 +

f ′′0 (1)
f ′0(1)

− r2+m
2

f ′0(1)

)
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1216 X.-H. Ge and H.-Q. Leng

−r
2
+

4
φ′1(1)2

f ′0(1)2

]
ψ1(1)(1 − zm)2, (2.28)

Δ+z
Δ+−1
m C+ =

r2+m
2

f ′0(1)
ψ1(1) − 2

[
− r2+m

2

4f ′0(1)

(
4 +

f ′′0 (1)
f ′0(1)

− r2+m
2

f ′0(1)

)

−r
2
+

4
φ′1(1)2

f ′0(1)2

]
ψ1(1)(1 − zm). (2.29)

Solving the above equation, we obtain the expression for C+ in terms of ψ1(1)

C+ =
2zm

2zm + (1 − zm)Δ+
z−Δ+
m

(
1 − 1 − zm

2
r2+m

2

f ′0(1)

)
ψ1(1). (2.30)

Substituting the above equation back into (2.29), we get a non-trivial relation pro-
vided ψ1(1) 	= 0,

2Δ+

2zm + (1 − zm)Δ+
−
[

(1 − zm)Δ+

2zm + (1 − zm)Δ+
+ (3 − 2zm)

]
r2+m

2

f ′0(1)

− (1 − zm)r2+m
2

2
f ′′0 (1)
f ′0(1)2

+
1 − zm

2
r4+m

4

f ′0(1)2
− (1 − zm)r2+

2
φ′0(1)2

f ′0(1)2
= 0. (2.31)

Note that f ′0(1) = − r2
+

l2

(
3 − κ2l2μ2

0

2r2
+

)
, f ′′0 (1) =

r2
+

l2

(
6 + κ2l2μ2

0

r2
+

)
and φ′0(1) = −μ0.

Plugging these relations back into (2.31), we obtain an equation for μ0

κ4l4

2r4+

Δ+

2zm + (1 − zm)Δ+
μ4

0 −
l4(1 − zm)

2r2+

{
1 + 2κ2 r2+

l4(1 − zm)

[
m2l4(1 − zm)Δ+

2r2+(2zm + (1 − zm)Δ+)

+
6Δ+l

2

r2+(2zm + (1 − zm)Δ+)
− m2l4

r2+

(
3
2
zm − 2

)]}
μ2

0

+3m2l2(2 − zm) +
m4l4

2
(1 − zm) − 18 + 3m2l2(1 − zm)

zm(Δ+ − 2) −Δ+
Δ+ = 0. (2.32)

The main idea of 21) is to work in the small backreaction approximation κ2 
 1
together with the matching method so that all the functions can be expanded by κ2

and the κ4 term in the above equation can be neglected. In this sense, μ0 is solved
as

μ0 =
√

2
1 − zm

r+
l2

[
3m2l2(2 − zm) +

m4l4

2
(1 − zm)

−18 + 3m2l2(1 − zm)
zm(Δ+ − 2) −Δ+

Δ+

]1/2{
1 − 2κ2

l2(1 − zm)

[
m2l2(1 − zm)Δ+

4(2zm + (1 − zm)Δ+)

+
3Δ+

2zm + (1 − zm)Δ+
− 3m2l2zm

4
+m2l2

]}
. (2.33)

Without the κ2 term, the expression for μ0 can be reduced to the result of the probe
limit case. The κ2 term in the above equation is positive, which means that μ0
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Analytical Calculation on Critical Magnetic Field 1217

increase. By further using the relation μ0 = ρ
r+

, we find an expression for r+:

r+ = ρ1/2l

(
1 − zm

2

)1/4 [
3m2l2(2 − zm) +

m4l4

2
(1 − zm)

−18 + 3m2l2(1 − zm)
zm(Δ+ − 2) −Δ+

Δ+

]−1/4{
1 +

2κ2

l2(1 − zm)

[
m2l2

8(2zm + (1 − zm)Δ+)

+
3Δ+

2(2zm + (1 − zm)Δ+)
−
(

3zm

8
− 1

2

)
m2l2

]}
. (2.34)

The Hawking temperature is given by

T =
r+

4πl2

(
3 − κ2l2μ2

0

2r2+

)
. (2.35)

When μ0 = μc, the above Hawking temperature reaches the critical point Tc where
the order parameter approaches zero. From (2.33) and (2.35), we obtain the critical
temperature

Tc =
r+

4πl2

{
3 − κ2

l2(1 − zm)

[
3m2l2(2 − zm) +

m4l4

2
(1 − zm)

−18 + 3m2l2(1 − zm)
zm(Δ+ − 2) −Δ+

Δ+

]}
. (2.36)

Together with (2.34), we write the critical temperature in a form as

Tc = T1

(
1 − 2κ2

l2
T2

)
, (2.37)

where

T1 =
3ρ1/2

4πl

(
1 − zm

2

) 1
4
[
3m2l2(zm − 2) +

m4l4

2
(1 − zm)

−18 + 3m2l2(1 − zm)
zm(Δ+ − 2) −Δ+

Δ+

]− 1
4

, (2.38)

T2 =
36Δ+ +m2l2

8(1 − zm)[2zm + (1 − zm)Δ+]
+

m2l2Δ+

2[2zm + (1 − zm)Δ+]

+
(12 − 7zm)m2l2

8(1 − zm)
+
m4l4

12
. (2.39)

It is easy to check that when m2l2 = −2, zm = 1/2 and thus Δ+ = 2, we have
T1 = 3

√
ρ

4πl
√

2
√

7
, the exact result obtained in 9) for (2+1)-dimensional superconductors

and T2 = 5
6 . This result is also in good agreement with the numerical result by

choosing a proper matching point zm.7) We also find that the corrections due to the
backreaction T2 is positive for arbitrary zm in the region (0 < zm < 1). Therefore,
we confirm the result found in 19)–21) that the backreaction makes condensation
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1218 X.-H. Ge and H.-Q. Leng

harder. The reason for the decreasing of the critical temperature can be understood
from the relation Tc ∝ 1/μ1/2

0 .9) The value of μ0 increases due to the gravitational
backreaction and thus Tc decreases.

2.2. The upper critical magnetic field with backreaction

In this section, we will explore the effects of the backreaction on the external
critical magnetic field. In the neighborhood of the upper critical magnetic field
Bc2, the scalar field ψ is small and can be regarded as a perturbation. The scalar
field ψ becomes a function of the bulk coordinate z and the boundary coordinates
(x, y) simultaneously because of the presence of the magnetic field. According to
the AdS/CFT correspondence, if the scalar field ψ ∼ X(x, y)R(z), the vacuum
expectation values 〈O〉 ∝ X(x, y)R(z) at the asymptotic AdS boundary (i.e. z →
0).25),30) We can simply write 〈O〉 ∝ R(z) by dropping the overall factor X(x, y).
So, to the leading order, it is consistent to set the ansatz

At = φ0(z), Ax = 0, Ay = Bc2x. (2.40)

Note that the applied external magnetic is constant and homogenous. Considering
the fact that an external magnetic field is included, one may wonder whether such
a constant external magnetic field could backreact on the bulk gravity or not. We
may need to consider the effects of the spatial component of the gauge field in the
superconducting phase and assume the gauge field behaves as

A = φ0(z)dt+ b(z)dx. (2.41)

In other words, we need solve the bulk gravity equation for b(z) and the resulted
metric is anisotropic. following this line, we may obtain a kind of dyonic black hole
solution, which includes charge and magnetism. However, we notice that several
authors have already discussed such conditions in 36). In these works, b(z) is in-
terpreted as the vector hair of the black hole. At the AdS boundary, b(z) behaves
as

b(z) = σ − ξz + ... . (2.42)

According the AdS/CFT correspondence, ξ is the dual current density and σ is the
dual current source of the holographic superfluid. Of course, it is not proper to
regard ξ as a homogenous applied magnetic field. Actually, when we discuss the
vortex structure of the holographic superconductors, in general we should consider

ψ1 = ψ1(x, y, z), At = φ(x, y, z), Ax = Ax(x, y, z), Ay = Ay(x, y, z), (2.43)

or simply in the polar coordinate ψ1 = ψ1(�, z), At = φ0(�, z), Aϕ = Aϕ(�, z) as well
as the boundary condition that At(z = 1) = 0 and Aϕ(z = 1) regular.

In the presence of external magnetic field, not only the matter fields but also the
spacetime metric should depend on the coordinates (z, x, y). The background static
metric may have the form

ds2 = g00(z, x, y)dt2 + gzz(z, x, y)dz2 + gxx(z, x, y)dx2 + gyy(z, x, y)dy2. (2.44)
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Analytical Calculation on Critical Magnetic Field 1219

In this case, we need solve the Einstein equations

Rμν − 1
2
gμνR− 3

l2
gμν = κ2Tμν , (2.45)

where

Tμν = FμλF
λ
ν − 1

4
gμνF

λρFλρ − gμν(|Dψ|2 +m2|ψ|2) +
[
Dμψ(Dνψ)∗ +Dνψ(Dμψ)∗

]
,

(2.46)
together with the Klein-Gordon equation

1√−gDμ

(√−ggμνDνψ

)
= m2ψ, (2.47)

and the Maxwell equation

1√−g∂λ

(√−ggλμgρσFμσ

)
= gρσJσ, (2.48)

where we have defined Dμψ = ∂μψ − iAμψ and Jσ = i[ψ∗Dσψ − ψ(Dσψ)∗]. In
this case, we have three coupled nonlinear partial differential equations involving the
metric components, scalar field ψ, the scalar potential At and vector potential A
in which analytic study becomes very difficult to do. Note that we can expand the
background geometry in series of ε

gμν = g(0)
μν + ε2g(2)

μν + ε4g(4)
μν + ... . (2.49)

To solve these equations analytically we will follow the logic as shown in Table I.
In the absence of the external magnetic field, the backreaction of the electric field
to the background geometry leads to the RNAdS black hole solution at the zeroth
order. At the linear order, the metric receives no corrections from matter fields and
we need only solve the equation of motion for ψ1 at this moment. As we have done
from (2.14) to (2.37), all the equations depends only on the radial coordinate z. We
obtained the critical temperature with backreaction. When we turn on the external
magnetic field, the background spacetime changes because of the presence of Bc2.
We can still expand ψ, At and Aϕ in series of ε. At the leading order, the matter
field φ0 and A

(0)
ϕ result in a dyonic black hole solution in AdS space. By solving

ψ1(xi, z) (xi = x, y) at next to leading order, we should obtain the expression for
the upper critical magnetic field. The above arguments are actually the logic of the
calculation of the whole paper.

Table I. Logic of the analytic calculation.

Vanishing magnetic field External magnetic field

ψ = ε1ψ1(z) + ε3ψ3 + ... ε1ψ1(z, xi) + ε3ψ3(z, xi) + ...

At = ε0φ0(z) + ε2φ2(z) + ... ε0φ0(z) + ε2φ2(z, xi) + ...

Aϕ = 0 ε0A
(0)
ϕ (z, xi) + ε2A

(2)
ϕ (z, xi) + ...

gμν = ε0gRNAdS + ε2g
(2)
μν + ... ε0gdyonic + ε2g

(2)
μν + ...
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1220 X.-H. Ge and H.-Q. Leng

After justify the usage of (2.40), we can then solve the equations of motion
order by order. The black hole carries both electric and magnetic charge and the
bulk Maxwell field yields

A = Bc2xdy + φdt. (2.50)

At the zeroth order O(ε0), we solve the Einstein equation and the line elements of
the dyonic black hole metric are given by38)

ds2 = −f0dt
2 +

r2+
z2l2

(dx2 + dy2) +
r2+
z4f0

dz2, (2.51)

φ0 = μ0 − ρ

r+
z, A(0)

y = Bc2x, (2.52)

where f0 =
r2
+

z2l2
(1− z)(1+ z+ z2 − κ2l2μ2

0

2r2
+
z3 − κ2l4B2

c2

2r4
+

z3
)

. The Hawking temperature
at the event horizon is evaluated as

T =
r+

4πl2

(
3 − κ2l2μ2

0

2r2+
− κ2l2B2

c2

2r4+

)
. (2.53)

To the linear order, the equation of motion for ψ1 has its new form

f0ψ
′′
1 + f ′0ψ

′
1 +

r2+
z4

(
φ2

0

f0
−m2

)
ψ1 = − l2

z2

[
∂2

x + (∂y − iBc2x)2
]
ψ1, (2.54)

where the prime denotes a derivative with respect to z. We use separation of variables

ψ1 = eikyyXn(x)Rn(z), (2.55)

and obtain the equation of a two-dimensional harmonic oscillator and an equation
for R(z)

−X ′′
n(x) + (ky −Bc2x)2Xn(x) = λnBc2Xn(x), (2.56)

f0R
′′
n + f ′0R

′
n +

r2+
z4

(
φ2

0

f0
−m2

)
Rn =

λnBc2l
2

z2
Rn, (2.57)

where λn = 2n+1 is the eigenvalue of the harmonic oscillator equation, n = 0, 1, 2, ...
denotes the Landau energy level and the prime in (2.56) and (2.57) denote derivative
with respect to x and z, respectively. Equation (2.56) is solved by the Hermite
polynomials

Xn(x) = e
− (Bc2x−ky)2

2Bc2 Hn(x). (2.58)

Let us choose the lowest mode n = 0 in what follows, which is the first to condensate
and is the most stable solution after condensation. Actually, the Arikosov vortex
lattice is given by a superposition of the lowest energy solutions

ψ1 = R0(z)
∑

j

cje
ikjyX0(x), (2.59)

where cj are coefficients that determine the structure of the vortex lattice.
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Analytical Calculation on Critical Magnetic Field 1221

Now we are going to solve (2.57) by exploring the matching method and find
the correction to the upper critical magnetic field away from the probe limit. Again
regularity at the horizon requires

R′
0(1) =

m2r2+
f ′0(1)

R0(1) +
Bc2l

2

f ′0(1)
R0(1). (2.60)

The behavior of R0 at the asymptotic AdS boundary is given by

R0(z) = C+z
Δ+ . (2.61)

The scalar potential φ0 satisfies the boundary condition at the asymptotic AdS region
φ0(z) = μ − ρ

r+
z and vanishes at the horizon φ0 = 0, as z → 1. In the strong field

limit, the scalar field ψ is almost vanishing and we can drop out the |ψ|2 term on
the right-hand side of Eq. (2.13). One may find that φ0(z) = ρ

r+
(1− z) is a solution

that satisfies (2.13) and the corresponding boundary conditions.30)

In the presence of the external magnetic field, the Taylor expansion of R0 near
the horizon still goes as

R0(z) = R0(1) −R′
0(1)(1 − z) +

1
2
R′′

0(1)(1 − z)2 + ... . (2.62)

From (2.57), we know that near z = 1, R′′(1) is expressed as

R′′
0(1) = −1

2

(
4 +

f ′′0 (1)
f ′0(1)

− m2r2+
f ′0(1)

+
Bc2l

2

f ′0(1)

)
R′

0(1) +
Bc2l

2

f ′0(1)
R0(1) − r2+φ

′
0(1)2

2f ′20 (1)
R0(1).

(2.63)
Putting the expressions for R′

0(1) and R′′
0(1) into (2.62), we obtain

R0(z) = R0(1) −
(
r2+m

2

f ′0(1)
+
Bc2l

2

f ′0(1)

)
R0(1)(1 − z) +

[
− r2+m

2 +Bc2l
2

4f ′0(1)

(
4 +

f ′′0 (1)
f ′0(1)

−r
2
+m

2 +Bc2l
2

f ′0(1)

)
+

Bc2l
2

2f ′0(1)
− r2+

4
φ′1(1)2

f ′0(1)2

]
R0(1)(1 − z)2 + ... . (2.64)

We connect the two solutions (2.61) and (2.64) at a intermediate point zm smoothly
and thus find that

C+z
Δ+
m = R0(1) −

(
r2+m

2

f ′0(1)
+
Bc2l

2

f ′0(1)

)
R0(1)(1 − zm)

+
[
− r2+m

2 +Bc2l
2

4f ′0(1)

(
4 +

f ′′0 (1)
f ′0(1)

− r2+m
2 +Bc2l

2

f ′0(1)

)

+
Bc2l

2

2f ′0(1)
− r2+

4
φ′1(1)2

f ′0(1)2

]
R0(1)(1 − zm)2, (2.65)

Δ+z
Δ+−1
m C+ =

r2+m
2 +Bc2l

2

f ′0(1)
R0(1) − 2

[
− r2+m

2 +Bc2l
2

4f ′0(1)

(
4 +

f ′′0 (1)
f ′0(1)

−r
2
+m

2 +Bc2l
2

f ′0(1)

)
+

Bc2l
2

2f ′0(1)
− r2+

4
φ′1(1)2

f ′0(1)2

]
R0(1)(1 − zm). (2.66)
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From the above equations, we find that

C+ =
2zm

2zm + (1 − zm)Δ+
z−Δ+
m

(
1 − 1 − zm

2
r2+m

2 +Bc2l
2

f ′0(1)

)
R0(1). (2.67)

Substituting the above relation back into (2.66), we get a non-trivial expression

2Δ+

2zm + (1 − zm)Δ+
−
[

(1 − zm)Δ+

2zm + (1 − zm)Δ+
+ (3 − 2zm)

]
r2+m

2 +Bc2l
2

f ′0(1)

−(1 − zm)(r2+m
2 +Bc2l

2)
2

f ′′0 (1)
f ′0(1)2

+
1 − zm

2
(r2+m

2 +Bc2l
2)2

f ′0(1)2

+
Bc2l

2

f ′0(1)
(1 − zm) − (1 − zm)r2+

2
φ′0(1)2

f ′0(1)2
= 0. (2.68)

When we turn off the magnetic field Bc2 = 0, (2.68) returns to (2.31). In the presence
of the magnetic field, both the charge and the magnetic field can backreact on the
black hole. The critical temperature should receive further corrections from the
magnetic field. The difference between (2.68) and (2.32) comes from the Bc2 related
terms, which goes as

2Δ+

2zm + (1 − zm)
3κ2B2

c2 +
(

3 − 2zm +
(zm − 1)Δ+

zm(Δ+ − 2) −Δ+

)(
m2l2B2

c2

2
κ2 +

B3
c2κ

2

2r2+

−3Bc2r
2
+

)
+

1 − zm

2

(
m2l2B2

c2

κ

2

+
B3

c2κ
2

r2+
+ 6Bc2r

2
+ −B2

c2 + 2m2l2r2+Bc2

)

−Bc2(1 − zm)
(
κ2B2

c2

2r2+
− 3r2+

)
=
(

3 − 2zm +
(zm − 1)Δ+

zm(Δ+ − 2) −Δ+

)
Bc2κ

2

2
μ2

0. (2.69)

We obtain a relation between Bc2 and r+ by using (2.33) and m2l2 = −2, zm = 1/2,
q = 1, Δ+ = 2,

Bc2 =
58
5
r2+ − 812κ2r2+ + O(κ4). (2.70)

The critical temperature dropped because of the magnetic field

Tc = T1

(
1 − 1807

75
κ2

l2

)
, (2.71)

where T1 = 3
√

ρ

4πl
√

2
√

7
. This reflects the fact that condensation becomes even harder

when one turns on the external magnetic field.
Note that (2.70) is not enough to determine the relation among the upper critical

magnetic field, the system temperature T and the critical temperature Tc. Consid-
ering the values of f ′0(1), f ′′0 (1) and φ′0(1) and solving (2.68) to the first order of κ2,
we get

μ0 =
H√

1 − zml2

{
1 +

κ2

2l2

(
1

1 − zm
− B2

c2l
6

Hr4+

)(
12Δ+ + 2Bc2l

4

(
zm(3 + zm(Δ+ − 2)
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Analytical Calculation on Critical Magnetic Field 1223

−3Δ+) + 2Δ+ +m2l2(z(8 + 3zm(Δ+ − 2) − 8Δ+) + 5Δ+)/r2+

)
[zm(Δ+ − 2)

−Δ+]−1

)}
+ O(κ4), (2.72)

with

H =
{
B2

c2

r4+
l8(1 − zm) +

36Δ+

zm(Δ+ − 2) −Δ+

+
6m2l2

(
zm(4 + zm(Δ+ − 2) − 4Δ+) + 3Δ+

)
zm(Δ+ − 2) −Δ+

+ m4l4(zm − 1) +
12Bc2(zm +Δ+(1 − zm))
r2+(zm(Δ+ − 2) −Δ+)

}
[zm(Δ+ − 2) −Δ+]−1. (2.73)

Combining the above equation with μ0 = ρ
r+

, we can obtain a relation between
Bc2 and r+. We then substitute (2.33) and (2.70) into the Hawking temperature
T = r+

4πl2

(
3 − κ2l2μ2

0

2r2
+

− κ2l2B2
c2

2r4
+

)
and now the Hawking temperature plays the role

of the critical temperature in the presence of magnetic fields. In order to have a
clear picture, by choosing m2l2 = −2, Δ+ = 2 and zm = 1/2 and further using the
relation between r+ and T from the new Hawking temperature, we find that the
upper critical magnetic field Bc2 yields

Bc2 = B1 +B2κ
2 =

1
9

(√
5376π4T 4 +

81ρ2

l4
− 112π2T 2

)

+ κ2

[
14565376π4T 6 − 46575T 2ρ2

450
√

5376π4T 8 + 81T 4ρ2
− 455168

675
π2T 2

+
45ρ2

32π2T 2

]
+ O(κ4). (2.74)

In this case, the charge density can be evaluated from (2.71), that is ρ = 32
√

7π2

9 T 2
c

(
1−

2κ2

l2
T2

)−2. The upper critical magnetic field Bc2 in series of κ2 can be expressed as

Bc2 =
16
9
T 2

c π
2

[(√
7

√
4 + 3

T 4

T 4
c

− 7
T 2

T 2
c

)
+

(
4064
25

T 4

T 4
c

+ 5503
75√

4 + 3T 4

T 4
c

√
7 + 70

T 2
c

T 2

− 28448
75

T 2

T 2
c

)
κ2 + O(κ4)

]
. (2.75)

It is worth noting that Tc means the critical temperature without magnetic
fields and gravitational backreaction. The result (2.75) also implies that it is only
applicable near the critical temperature Tc because the κ2 term will be divergent
in the low temperature limit. One may find that when κ2 = 0, the result exactly
agrees with 32), which is also consistent with the Ginzburg-Landau theory where
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1224 X.-H. Ge and H.-Q. Leng

Fig. 1. (color online) The coefficient of the κ2 term of the upper critical magnetic field as a function

of the temperature T/Tc. We set Tc = 1 here.

Fig. 2. (color online) For fixed external magnetic field, the phase transition temperature decreases

if κ2 becomes larger. We set Tc = 1 here.

Bc2 ∝ (1 − T/Tc). We also find that the coefficient of the κ2 term is positive for
the system temperature T (see Fig. 1). This result indicates that the effects of the
backreaction enhance the value of the upper critical magnetic field. The increasing of
the magnetic fieldBc2 can be explained from the relation thatBc2 ∝ μ0 for fixed value
of r+.32) Therefore, if the value of μ0 becomes larger, then Bc2 increases. However,
this does not mean condensation become easy in the presence of the magnetic field.
We can see from Fig. 2 that for fixed magnetic field, the phase transition temperature
goes down as κ2 increases.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/128/6/1211/2938897 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Analytical Calculation on Critical Magnetic Field 1225

2.3. Numerical results

For completeness of our study, we carry on numerical computation in this sub-
section. We first solve the equations of motion (2.11) to (2.14) in the absence of the
external magnetic field and from which we can obtain the critical temperature and
the phase diagram. The properties of holographic superconductors without magnetic
fields away from the probe limit were studied numerically in 13) by setting 2κ2 = 1
and finite q. We work in the case q = 1 but finite κ2 instead and set r+ = 1 and
l = 1 in the numerical computation. The critical temperature T as a function of
the backreaction κ2 is shown in Table II. It is clear that the critical temperature T
drops as κ2 increases, which is in consistent with 13) and 19).

We then consider the behavior of the external magnetic field numerically to
the linear level by solving Eq. (2.54). In Fig. 3 (left), we find that the external
magnetic field drops in different ways for κ2 = 0 case and κ2 = 0.01 case. This
is in consistent with the analytic calculation in the range T ∼ Tc. That is to say,
although the critical temperature is significantly suppressed by a non-zero κ2, the
upper bound of Bc2 becomes larger. In Fig. 3 (right), we also plot the phase diagram
of the critical temperature against the gravitational backreaction. When we fix the
magnetic field, the phase transition temperature is depressed as κ2 increases, which
is also comparable with the analytic results at qualitative level since the analytic
method closely depends on the matching point. Note that the numerical results
presented here can be regarded as a side note because we mainly deal with analytical
calculation in this paper. A more general and thorough numerical computation in
the presence of external magnetic field with backreaction is called for in the future.

Table II. The critical temperature T drops as κ2 increases in the absence of the magnetic field.

κ2 0 0.025 0.05 0.1 0.15 0.2 0.3 0.35

T/
√
ρ 0.118 0.111 0.104 0.09 0.07 0.06 0.03 0.01

2

Fig. 3. (color online) Left: The external magnetic field as a function of T/Tc at κ2 = 0 (Green)

and κ2 = 0.01 (Blue). Right: The phase transition temperature decreases if κ2 increases in the

case that Bc2 = 2. In both cases, we choose Tc = 1.
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§3. Conclusion

In this paper, we have investigated the effect of backreaction to the upper crit-
ical magnetic field of (2 + 1)-dimensional holographic superconductors in Einstein
gravity by using the analytical method developed in.9),21) As a consistent check, we
have derived the critical temperature with backreaction in four-dimensional Einstein
gravity and confirmed the numerical result given in13) that backreaction makes the
condensation harder to form. We have obtained the spatially dependent condensate
solutions in the presence of the magnetism. The coefficient of spacetime backreaction
on the upper critical magnetic field is positive for Einstein gravity, which indicates
that the magnetic field becomes strong with respect to the backreaction in consistent
with Ref. 39). We have also shown the corresponding numerical results for each case.

We can see that the spacetime backreaction presents us an interesting property
of holographic superconductors: While the backreaction causes the depression of the
critical temperature, it can enhance the upper critical magnetic field. The upper
critical field Bc2 is an important parameter because it determines the value of the
coherence length and strongly affects the critical current density Jc. The improve-
ment in Bc2 has been the main research topic for some experiments. In this paper,
we work in the small backreaction limit (i.e. κ2 
 1). So if we regard the back-
reaction as a factor of “doping” in holographic superconductors, then we may find
that the backreaction plays the same role as carbon doping in MgB2 reported in
recent experiments:40) It results in the depression in Tc, while the Bc2 performance
is improved. Otherwise, we can treat the probe limit approximation as the “ef-
fective doping”: comparing with the superconducting properties with backreaction,
the probe limit approximation improves the critical temperature but reduces the
upper critical magnetic field. In microscopic models of high temperature supercon-
ductors, the interaction between doping and electrons contributes a potential term
in the Hamiltonian and the self-energy of the superconducting quasi-particles will
be changed. The self-energy can be calculated by using the Green function and the
correction to the critical temperature can be read off from the Green function.41) For
holographic superconductors, the effective mass term is changed with the variation
of κ2. The extension of this work to the five-dimensional Gauss-Bonnet gravity case
would be interesting.42)–47) But since the resulting metric is anisotropic and the
analytic calculation becomes very difficult and involving, we would like to leave it to
the future publication by using numerical calculations.
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