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Abstract
Almost every abiotic surface of a material is readily colonised by bacteria, algae, and fungi, contributing to the degradation 
processes of materials. Both biocorrosion and microbially influenced corrosion (MIC) refer to the interaction of microbial 
cells and their metabolic products, such as exopolymeric substances (EPS), with an abiotic surface. Therefore, biofouling 
and biodeterioration of manufactured goods have economic and environmental ramifications for the user to tackle or remove 
the issue. While MIC is typically applied to metallic materials, newly developed and evolving materials frequently succumb 
to the effects of corrosion, resulting in a range of chemical reactions and transport mechanisms occurring in the material. 
Recent research on biocorrosion and biofouling of conventional and novel materials is discussed in this paper, showcasing 
the current knowledge regarding microbial and material interactions that contribute to biocorrosion and biofouling, including 
biofilms, anaerobic and aerobic environments, microbial assault, and the various roles microorganisms’ play. Additionally, 
we show the latest analytical techniques used to characterise and identify MIC on materials using a borescope, thermal 
imaging, Fourier transform infrared (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray 
photoelectron microscopy (XPS), X-ray diffraction (XRD), optical and epifluorescence microscopy, electrochemical imped-
ance spectroscopy, and mass spectrometry, and chemometrics.

Keywords Biocorrosion · Biofilm

1 Introduction

The processes by which microbial organisms accelerate the 
corrosion rate of materials by microorganisms are generally 
referred to as biocorrosion, or more specifically, microbi-
ally induced corrosion (MIC) [1–3]. Materials that undergo 
microbial colonisation typically undergo chemical reactions, 
which are cathodic or anodic, or the establishment of differ-
ential oxygen concentration cells in a localised electrolytic 
environment. The economic cost of biocorrosion has been 
estimated to be at least 20% for material corrosion, amount-
ing to a direct cost of 30–50 billion dollars per year globally 
[4]. For example, Michelangelo’s statue of David underwent 
cleaning measures for the first time in 500 years and cost 
€165k [5]. The French have injected some $250 million into 
a corrosion clean-up and protection of the Eiffel Tower in 
1989 [6]. Thus, corrosion researchers and engineers have 
been interested in preventing biocorrosion for structural 
materials for decades. Numerous strategies, including bioc-
ides, cathodic protection, beneficial bacterial biofilms, and 
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protective coatings, have been proposed to combat biocor-
rosion [7].

MIC was first reported in the twentieth century by Gaines, 
R.H. (1910), who discussed the inherent corrosion causes of 
steel [8]. Further investigation was then intensified by von 
Wolzogen Kuhr and Van der Vlugt in 1934, in an attempt 
to interpret MIC using electrochemistry, whereby they pro-
posed the theory of cathodic depolarisation to explain the 
role of sulphate-reducing bacteria (SRB) in the anaerobic 
MIC of steels [9].

Essentially, the cathodic depolarisation offered a classical 
mechanistic model for the explanation of MIC, where hydro-
gen is removed from the cathodic surface (iron), leading 
to the cathodic depolarisation where sulphate is reduced to 
sulphite [1–3, 10–13] (Fig. 1). The generation of hydroxide 
ions, which creates iron sulphide and hydroxide products, 
forces more iron to be dissolved at the site of the anode. 
The mechanistic approaches were only undertaken in the 
early 1960s; apart from these two efforts, publications are 
scarce. Any slight reference to MIC was made involving 
underground corrosion of iron structures by bacteria. An 
excellent review of these mechanistic behaviours has been 
recently published by [7].

2  Metal Corrosion

Corrosive processes for metals can occur in numerous forms, 
and classification of these processes can be addressed based 
on three primary factors [11, 14–16]:

 (i) The mechanism of corrosion involving the electro-
chemical effects or direct chemical surface reactions.

 (ii) The appearance of the corroded surface corrosion 
is either uniform, and the surface will corrode at the 

same rate over the whole surface, or it can be local-
ised, in which only small areas become affected.

 (iii) The nature of the environment the corrosion can be 
classified into two categories: ‘dry’ or ‘wet’.

Corrosion can be classed through physical appearance, 
either by the naked eye or microscopic techniques. The mor-
phology of the attack forms the basis for some classification. 
Figure 1 illustrates a schematic classification of the com-
mon types of corrosion, which includes the non-biological 
(referring to corrosion) and biocorrosion (which involves 
the microorganisms). Non-biological corrosion refers to cor-
rosion that does not involve microorganisms (i.e. bacteria, 
viruses, fungi).

Biological corrosion (i.e. biocorrosion) refers to corro-
sion that involves microorganisms. Biological corrosion 
occurs when microorganisms are present in a wet environ-
ment where they can feed on organic matter and produce 
acids.

Essentially, these corrosion types are evidently visible 
upon a surface of a material. However, some types of corro-
sion can fit into multiple categories, or some that are not so 
fitting into the category of corrosion. Each form of corrosion 
shall now be discussed in more detail. These points of dis-
cussion are always assumed to be in the aqueous state. How-
ever, corrosion can occur in other environments that cause 
the material to become stressed, for example, high tempera-
tures, high pressures, and salinity. It is safe to assume that all 
materials are affected by uniform corrosion. Passive materi-
als such as stainless steel (SS) or other high corrosion resist-
ing alloys are normally subjected to a more localised form of 
attack. Metals can resist corrosion by forming passive films 
upon the surface. This can also develop when exposed to air, 
also existing through chemical treatments, and exemplified 
through nitric acid treatment on austenitic steels. If the film 
is left intact, the surface will generally not undergo any form 
of corrosion [4, 11]. Examples of constant attack would be 
tarnishing of silver, green patina of copper, and the rusting 
of steel.

Microorganisms can either enhance the rate of corro-
sion or slow it down by colonising the surface of a uniform 
corroding material in a manner that would either form pro-
tection across the surface or cause other corrosive effects, 
many of which are shown in Fig. 2. Microbe adhesion to 
surfaces is critical for many ‘ideal’ living circumstances, 
which include resistance to external effects such as temper-
ature, pH, and even biocidal substances. Microorganisms 
and their metabolites and extracellular polymeric substances 
(EPS) produce biofilms because of this surface proliferation. 
Biofilms practically coat any material surface that encoun-
ters water. The homogenous nature of the material’s surface 
makes it a very suitable site for microbial colonisation. Uni-
form corrosion will usually entail through SRB, which may 

Fig. 1  Various factors influence corrosion versus biocorrosion—here, 
we show the formation of the microbial biofilm involved in the bio-
corrosion process
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form oxides of their metabolic processes and further enhance 
the rates of corrosion [17–19].

Pitting is one of the most destructive forms of corro-
sion and is one of the hardest types of corrosion to detect 
because of corrosion-based products often filling the holes 
[21, 22]. The pitting process is unpredictable, as the pro-
cess is autocatalytic and often requires a varied amount of 
time to process. Once the pitting process begins to evolve, 
the length of time a material ‘holds up’ could be a matter 
of days (depending on the overall environment), so the 
failure of the material could occur suddenly [23, 24]. Pit-
ting corrosion is different in the initiation stages, whereas 
crevice corrosion is initiated by a differential change in 
concentration of oxygen or ions surrounding the electro-
lyte [25–27], where the material alone initiates pitting. 
Microorganisms, in theory, could, therefore, enhance pit-
ting corrosion in terms of their excretion products, which 
causes further and subsequent degradation to the mate-
rial [28–30]. Further pits ensue across the surface of the 
material, where the natural pitting process will continue 
to propagate.

Crevice corrosion is another form of localised attack on 
a material, mainly occurring in areas of narrow spaces on 
metal–metal and non-metal–metal interfaces. Sometimes, 
the material is shielded in certain areas that are exposed to 
corrosives, which protects against this crevice action [31, 
32]. The attack is the result of high concentrations of cells 
formed between the electrolyte and the crevice. Usually, the 
crevice will become oxygen starved, and the surrounding 
electrolyte will gain oxygen, causing this crevice system to 
exist. Therefore, the material within this crevice system is 
acting as the anode, and the exterior will act as the cathode, 
completing the redox system. An example of this would be 
SS that is corroding in a neutral aerated sodium chloride sys-
tem. The anodic metal dissolution reaction within the crev-
ice, M →  Mn+  + ne−, is balanced by the cathodic reaction 
on the adjacent surface,  O2 +  2H2O +  4e−  →  4e−  →  4OH−. 
This increase in  M+ ions within the material crevice results 

in an influx of chloride ions, resulting in a net neutralisation 
reaction. An acidic reaction is then established, whereby 
releasing a free acid through the hydrolysis of the metal 
chloride, in Eq. 1:

The free acid produced by the hydrolysis reaction keeps 
the pH below 2, while the pH outside the crevice remains 
neutral [33]. This microenvironment and pH state mean that 
the electrolyte present within the crevice has a high con-
centration of hydrochloric acid also containing metal chlo-
ride ions, which are dissolved at concentrations near-total 
saturation.

Briefly, in both the aerated and deoxygenated solutions, 
the anodic reaction is always metal dissolution as shown in 
Eq. 2:

However, the reverse cathodic reaction depends on the 
solution conditions. For aerated solutions at neutral or alka-
line pH, the main cathodic reaction is the reduction of oxy-
gen as given in Eq. 3:

In addition, with all types of de-aerated solutions, as well 
as in aerated and acidic solutions, proton reduction occurs 
as seen in Eq. 4:

When ferrous materials begin rusting, we know this to 
be the most common type of corrosion. In the presence of 
oxygen and water, the new chemical reaction for iron rusting 
can be expressed as in Eq. 5:

(1)M
+
Cl

− + H2O → MOH = H
+
Cl

−
.

(2)M
0
→ M

2+ + 2e−.

(3)O2 + 2H2O + 4e− → 4OH
−
.

(4)2H
+ + 2e− → H2.

(5)Fe0 + 1∕2O2 + H2O → Fe2+ + 2OH
−
.

Fig. 2  Schematic illustra-
tion showing the involvement 
of various microbes such as 
aerobic bacteria, anaerobic 
sulphate-reducing bacteria in 
the biocorrosion mechanism 
of 304 L SS (obtained with 
permission from [20]
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Microorganisms present in a crevice corrosion system 
can cause more severe effects as a differential oxygen sys-
tem is established [34–36]. Having two different oxygen 
concentrations at two locations will cause a difference in 
electrical potential and consequently produce corrosion cur-
rents. Where a crevice exists, this gives the possibility of set-
ting up these parameters, meaning that respiring microbial 
colonies become anodic, causing the surrounding areas to 
become cathodic. Some metals develop a natural surface 
film or oxide layer that is a natural barrier for the stresses 
that erosion–corrosion brings to them. The ability of these 
films to protect the metal depends significantly on the speed 
it takes for them to be removed [37–39]. Therefore, a more 
complex and increased dense layer yields better protection 
than removed by mechanical action through ‘wear and tear’ 
as shown in Fig. 3. A film that is too brittle or cracks is not 
thoroughly protected. It is the film or surface coating that SS 
relies on for their inherent corrosion resistance.

Consequently, the materials will be vulnerable to corro-
sion in some way. The erosion–corrosion of a stainless steel 
type 316 (18Cr–12Ni) from a pectin extraction plant vessel 
was increased as temperature increased [40]. This vulner-
ability brought about a modification in the hydrodynamics, 
causing steam to increase the rate of corrosion attack [41]. 
The erosion–corrosion property of the steam has a stripping 
effect that lowers a dissolved oxidant gas, thus, causing an 
increased level of corrosion in the column of the distillation 
unit [42].

Erosion corrosion of a material is linked to the aggra-
vation of the corrosion process [44, 45]. For instance, 
if microorganisms are present in a system whereby 

erosion–corrosion is prevalent, the microbes can attach to 
the eroded surfaces of the material, thrive, and excrete by-
products that could enhance the overall corrosion process. In 
a comprehensive review by Cheung and Gu [43], the authors 
summarise the mechanisms of hexavalent chromium detoxi-
fication by microbes (Fig. 4). This process, in turn, has some 
benefit to the erosion–corrosion system; if microorganisms 
are allowed to build up, thin films will be beneficial in coat-
ing the points where erosion occurs, as they are small and 
localised [36]. This localisation of erosion, in turn, protects 
the material from the corrosive electrolyte, thus, reducing 
the problem temporarily to the survival or timescale of the 
biofilm [46, 47].

Some methods of prevention that could be employed to 
combat this erosion problem are choosing materials less sus-
ceptible to erosion, better the design of the system to which 
the materials will be employed, limiting enrichments that the 
materials are exposed to, and employing surface protective 
materials coatings [48–50].

Dealloying is known as selective leaching, parting cor-
rosion, or selective dissolution and is an essential electro-
chemical process associated with alloys formed by compo-
nents with different noble characters (with varied standard 
equilibrium potential) [51, 52]. Nobler component phases, 
formed during the dealloying process, play essential roles in 
stress corrosion of cracking metallic surfaces, but selective 
dissolution can be utilised via suitable technologies [53, 54].

In the dealloying process, one of two mechanisms can 
occur: alloy dissolution and re-plating the cathodic element 
or selective dissolution of an anodic alloy component. Both 
cases leave a spongy and porous metal, and all aspects of 
shape, rigidity, strength, and ductility are sacrificed. As with 
other types of corrosion discussed, the prime cause of the 
selective leaching effect is the galvanic reaction between the 
elements. Examples of alloy combinations and elemental 
leaching are described in Table 1.

3  Analytical Methods in MIC 
Characterisation

Many methods have been used over the last few decades 
to measure and determine corrosion rates. Ever since the 
first report of corrosion in 1910 until the present, techniques 
have developed and evolved. Some of these methods have 
not been explicitly designed for biocorrosion analysis and 
have merely been adapted. In this section, we report the 
state-of-the-art characterisation techniques for MIC and the 
processes of corrosion.

Fig. 3  Proposed biochemical pathway showing the reduction of  Cr6+ 
enzymatically under aerobic and anaerobic conditions mechanisms 
of enzymatic  Cr6+ reduction under aerobic (upper) and anaerobic 
(lower) conditions (obtained with the permission from [43])
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Fig. 4  Use of borescope images to show a (left) iron oxide and (right) 
clear. b Sample borescope images of manganese-oxide borescope 
images. A value of 1 was assigned if manganese oxide was removed 
or replaced with iron. The yellow colour is the abiotic iron-oxide 

replacement of the manganese oxide (Color figure online). Repro-
duced with permission from CCC Rightslink, Soil Society of Amer-
ica

Table 1  Alloy combinations and elemental leaching

Alloy Environment Element and dealloying term References

Brass Many waters, incredibly stagnant, or low aeration Zinc (dezincification) [55]
Grey iron Soils, most waters, engine blocks, and low tensile strength 

required housing
Iron (graphite corrosion) [56]

Aluminium bronzes Hydrofluoric acid, acids containing chloride ions, non-sparking 
environments

Aluminium (dealuminification) [57]

Copper nickels High heat flux and low water velocity (e.g. condenser tubes—
refineries). Offers exceptional resilience to corrosion of 
seawater

Nickel (denickelification) [58]

Gold alloys with silver or copper Sulphide solutions, human saliva Copper, silver [59]
Medium and high carbon steels Oxidising atmospheres, hydrogen at high temperatures Carbon (decarburisation) [60]
Iron-chromium alloys High-temperature oxidising atmospheres Chromium, protective film [61]
Nickel–molybdenum alloys Oxygen at high temperatures Molybdenum [61]
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3.1  Borescope

A borescope is an optical-based device, which enables online 
visual inspection of the internal surfaces of pressurised ves-
sels and reactors. Chiavari and co-workers implemented a 
borescope to measure visible corrosion in historical tubes 
of a pipe organ. This measurement was achieved using a 
37.5 cm borescope with a digital camera attachment [62]. 
Borescopes currently available do not support high-resolu-
tion inspection or automation. A recent study proposed a 
hyperspectral imaging (HSI) probe for corrosion monitoring 
that enables high-resolution scanning and automation [63]. 
Compared to RGB images, the proposed HSI modality cap-
tures reflectance at multiple wavelengths from multiple spa-
tial points on the sample and provides an enormous amount 
of spectral detail. A key research area that has been devel-
oped as a strategy for automatically detecting corrosion on 
aeroplane structures using images taken by a borescope and 
also using deep neural networks (DNNs) has been reported 
by [64]. The authors demonstrate that a robust model could 
be developed using a dataset that included D-Sight Airplanes 
Inspection System (DAIS) photos from various lap joints on 
Boeing and Airbus aircraft. With a precision of more than 
93%, this study proved that the use of DNNs can help reduce 
uncertainty caused by operator tiredness or insufficient train-
ing. This technology enables rapid, non-contact corrosion 
inspection, and the flexible fibre probe, which functions 
similarly to a borescope, can be utilised to inspect difficult-
to-access locations. Although primitive in the determination 
of corrosion or indeed rates of MIC on a material, the bore-
scope has been taken to advanced levels. For example, Scott 
et al. [65] used the borescope to create images of corrosion 
of metals in soils which bacteria were facilitating. Indica-
tor of reduction in soils (IRIS) is an important technology 
for identifying hydric soils. However, the method does not 
allow real-time analyses. The authors-built sample images 
that were scanned and then given a value of 1 if iron oxide 
was removed (Fig. 4). The method can be paired with Wi-Fi 
and, thus, continuous monitoring applied to the system. The 
authors set out to measure the rates of microbial influence 
and identify the bacteria responsible for the removal of the 
metal oxides—however, this proved difficult.

3.2  Thermal Imaging and FTIR

Thermographic imaging is a valuable tool for detecting less 
visible forms of corrosion. It has the advantage of scanning 
vast areas with high throughput to provide a more compre-
hensive view of simple structures. The method is fast and 
non-intrusive but does not offer a cost-effective way to quan-
tify low levels of corrosion. At low levels, the images lose 
clarity, and layered structures provide a problem. Mabrouki 
and colleagues investigated vibro-thermographic methods 

for detecting fatigue cracks in steel [66]. This technology 
is close to that used in electromagnetic shakers or ultra-
sonic burst actuators. The study focused on the efficient use 
of thermal imaging technology to predict fatigue cracks. 
Another work employed a dual-band infrared tomography 
system to seek out aircraft imperfections and hidden cor-
rosion [67]. Also, the infrared thermography was used to 
investigate the fatigue performance of structural steel under 
the laboratory and actual corrosive environments [68]. This 
system offers more excellent resolution in imaging and, 
therefore, better detection of surface corrosion.

An excellent use of thermography was demonstrated for 
concrete by Vishwakarma et al., where the authors used lock-
in thermography (LT) phase angles and amplitude images 
were compared between unexposed and exposed concrete 
specimens to characterise deterioration under biofilms. Fly 
ash-modified concrete showed least pH reduction and least 
density of total heterotrophic bacteria, SRB and SOB in the 
biofilms. In order to carry out the method, the authors used 
that a CEDIP Silver 420 camera was used for the study with 
thermal resolution of 25 mK. Two halogen lamps of 1000 W 
power each were used as optical light source. A function 
generator and an amplifier were used for generating sinu-
soidal stimulation. The samples were kept at a distance of 
40 cm from the camera [69].

Attenuated total reflectance Fourier transform infrared 
spectroscopy (ATR–FTIR) has been used to quantify rates 
of dissolution of thin metals. Changes to the atomic layers 
of thin metal can be measured using ATR–FTIR by non-
destructive means and in real time. For example, Bremer and 
Geesey used ATR–FTIR to monitor bacterial interactions on 
copper in both static and flowing conditions [70]. Addition-
ally, the use of FTIR to study material degradation in the 
presence of microbes was used by Nasrazadani et al., where 
FTIR was used to identify concrete degradation due to bio-
genic sulfuric acid attack. Concrete samples were exposed to 
electrolytes containing bio-species in laboratory-simulating 
field conditions and FTIR spectra of the reacted concrete 
were analysed for concrete phase formation. Streptomyces 
sp. was subsequently isolated and identified using S16 RNA 
sequencing which was then used as the biogenic medium 
to simulate MIC in the concrete samples which was then 
analysed using FTIR [71].

3.3  Atomic Force Microscopy (AFM)

AFM was first used in 1986 and is considered a foremost 
tool in nano-imaging and manipulation [72]. It has become 
a ubiquitous method in terms of the ability to characterise a 
surface at nanoscale, showing topographies that covers the 
show. It is an exact technique that provides topological and 
compositional information about a wide range of materials. 
These can include living cells, ceramics, or high-strength 
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steel. This is useful in understanding how microorganisms 
interact with a substrate, where they attach, and how they 
further colonise. Although AFM is not commonly used in 
corrosion studies, it has been successfully used for in situ 
electrochemical studies. Other authors performed an in situ 
electrochemical atomic force microscope to investigate pit-
ting corrosion on Cu films [73].

AFM has two main modes of operation, contact and 
non-contact. Contact mode is the basis for all AFM tech-
niques in which the probe tip is in physical contact with 
the sample surface of the material. While the tip scans 
along the surface, the sample topography induces a verti-
cal deflection of the cantilever, producing high-resolution 
surface topographical images [74]. Corrosion measure-
ments were performed using AFM in both modes (con-
tact and non-contact) to measure levels of corrosion on 
stainless steel SUS304 deposited with sulfuric acid [75]. 
An excellent example of work showing high-resolution 
AFM of MIC was demonstrated by Xu et al. [76]. This 
work shows high-resolution topological imaging of bac-
teria that are attached to steel surfaces. The AFM work 
showed not only single-cell SRB with EPS production but 
also SRB clusters [76]. AFM can also be used to assess 
various corrosion inhibitors such as non-ionic surfactants. 
Mu and Li investigated the inhibition action of Tween-
20 with sulfuric acid on SS [77]. Olivares-Xometl et al. 
performed similar work where imidazolines and amide 
precursors derived from oleic acid were evaluated as a 
corrosion inhibitor on steel, which can be seen from the 
AFM images that the corrosion inhibitors formed a film 
across the surface of the steel [78]. More recently, Yuan 
and co-workers have used AFM to evaluate the biofilm 
colonisation dynamics of Pseudomonas NCIMB 2021 and 
Desulfovibrio desulfuricans ATCC 27774 on 304 stainless 
sheets of steel [79]. This was achieved by measuring the 
forces and interactions of the tip of the biofilm and the 
stainless-steel coupon surface.

Electrochemical atomic force microscopy (EC-AFM), a 
subfield of scanning probe microscopy (SPM), is capable 
of high-resolution imaging of substrate topography (Fig. 5) 
[80]. It has been expanded to a diverse variety of research 
areas by continuous improvement since its inception. The 
presence of an electrolytic cell and a potentiostat enables 
real-time observation of the sample surface’s topographical 
changes. EC-AFM is used in situ corrosion research because 
electrically conductive samples are not required. EC-AFM 
operates similarly to AFM, with the instrument can be con-
trolled in either constant height or constant force mode. The 
imaging method is commonly classified into different oper-
ating modes based on the interaction force between the tip 
and the sample, including touch mode, non-contact mode, 
intermittent tapping (tapping mode), torsional resonance 
mode, and peak force-tapping mode. The first mode is touch, 

in which the probe’s tip is often in contact with the sam-
ple’s surface, and the force between the tip and the sample 
is repulsive. Due to the softness of the silicon nitride cantile-
ver and its high resonance frequency, which prevents vibra-
tion instability, a silicon nitride probe is often used in touch 
mode. Although the contact mode offers superior resolution 
and scan speed, it can cause damage to the sample’s surface.

In conclusion, AFM is a very versatile technique with an 
array of use in biocorrosion studies. The method has some 
drawback; due to its sensitivity, it is susceptible to environ-
mental interferences, i.e. vibration. The technique is also 
very time consuming due to its accuracy and results often 
must be treated for errors that exist.

3.4  Scanning Electron Microscopy (SEM)

SEM is a technique that is paramount and routine in deter-
mining biofouling and biocorrosion on a substratum. SEM 
has been used in many scientific papers and has become a 
susceptible and highly effective technique in identification, 
analysis, and characterisation [81–93]. For examples, field 
emission scanning electron microscopy (FESEM) and AFM 
were used to characterise the dimensional morphology of the 
SS after pitting [94]. It was shown that the bacterial adhesion 
increased with the pH and temperature, which significantly 
increased the surface roughness of the SS. SEM and AFM 
analyses showed cracks and dislocations on the surface of 
stainless steel underneath the attached bacteria, which sug-
gested a direct role of biofilm in corrosion induction.

The technique is often coupled with energy dispersive 
spectroscopy (EDS) and has been extensively used to dem-
onstrate bacteria in corroded areas with the determination 
of surface chemistries from MIC [95–97]. The elemental 
chemistry of the base metal can also be determined using 
the EDS tandem with SEM. The preparation of biological 
material requires manipulation and fixation with some sam-
ples requiring dehydration or critical point drying because 
the SEM operates under high vacuum [98, 99]. Also, non-
conducting samples, inclusive of biofilms, must be coated 
with a thin film of metal before the specimen can be ana-
lysed, usually known as ‘sputter-coating’. If the sample was 
uncoated, a build-up of local electrons would occur, this is 
known as sample ‘charging’, and the imaging is regarded 
as unusable owing to localised charge effects superimposed 
over the detail of the image. EDS can be used to determine 
the elemental composition of a surface; this can only be 
achieved before sputter coating. EDS samples are collected 
from a specific area, removed from the sample chamber, 
sputter coated, and then returned to the sample chamber. 
This can cause problems as more than often, the sample will 
not be in the same place, so reproducibility in the position 
is often difficult. Sample preparation for SEM, inclusive of 
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solvent removal, and drying can decrease the areal surface 
by the biofilm, as Little et al. [100].

Some shortcomings of SEM and EDS come in the form of 
peak overlap in the data and spectral data output. For exam-
ple, spectral peaks for sulphur overlap with those of spectral 
peaks for molybdenum, thus, highlighting that for materi-
als and corrosion aligned with MIC can be problematic. In 
addition, the characteristic peak for manganese coincides 
with the secondary peak for chromium highlighting that that 
data need to be carefully analysed. In order to reduce these 

limitations, wavelength dispersive spectroscopy can be used 
to resolve overlapping EDS peaks.

Another area of SEM that is becoming more widely used 
is ‘environmental scanning electron microscopy’ (ESEM). 
The method is fast and accurate imagery can be obtained 
based on less vacuum and more appropriate imaging without 
the need for exhaustive sample preparation. The technique 
uses unique secondary electron detectors to form high-
resolution images at pressures ranging from 0.1 to 20 Torr. 
Charging is dissipated into a gaseous form in the chamber 

Fig. 5  A SEM micrographs showing the surfaces of steel substrates 
(a) prior to and (b) following biofilm and corrosion by-product 
removal. For 90-day incubation, these substrates were initially incu-
bated in the synthetic saltwater containing Bacillus sp. Following 
that, the surface was cleaned of biofilm and corrosion by-products. 

B Atomic force microscopic images showing the surface topography 
of the steel plates after submerging in artificial salt water for 90 days 
(a) before and (b) after biofilm removal, demonstrating the apparent 
pitting of the steel samples following biofilm removal (permission 
obtained from https:// www. mdpi. com/ 2079- 6412/ 10/ 10/ 983/ htm)

https://www.mdpi.com/2079-6412/10/10/983/htm
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at these pressures, enabling direct observations of uncoated 
or non-conductive samples [101].

Gregerová and co-workers used SEM as a technique for 
the identification of corrosion in concrete [102]. They state 
that it is an effective tool in analysing deteriorating material 
properties, mentioning that concrete is being attacked by 
sulphate and carbonation. Although this is true, considera-
tion should have been given to microorganisms attributing to 
the further corrosive action surmounted by biological means 
instead of pure chemical processes.

In short, SEM offers detailed structural topographical 
imagery. It can visualise flaws in materials but also highlight 
any microorganism attachment upon a substrate, especially 
in biocorrosion. Sample preparation is relatively simple and 
does not require a lengthy preparatory approach. The method 
has some disadvantages such as sample charging, the ability 
of reproducibility is limited and time consuming.

3.5  X‑Ray Photoelectron Spectroscopy (XPS)

XPS has been routinely used for quantitative surface com-
position analysis. Relative elemental concentrations are 
determined by comparing intensities of the characteristic 
signals [103]. XPS is excellent at quantitatively analysing 
outermost passive layers on a surface and has evolved as a 
predominant technique in biofilm analysis. Gregerová and 
co-workers used XPS to determine concrete composition 
from the Charles Bridge in Prague, Czech Republic [102]. 
This could be useful in determining an initial and final 
sample point and seeing the changes in composition and 
applied to further biocorrosion samples or environments. 
Yang and co-workers have analysed the surface morphol-
ogy of magnesium alloys, and XRD was applied to moni-
tor the biocorrosive characteristics for medical application 
[104]. X-ray photoelectron spectroscopy was used to study 
the interactions of an exopolymer-producing bacteria, Bur-
kholderia sp., with polished AISI 304 SS substrates (XPS) 
[105]. Another excellent example of how XPS is an excel-
lent technique in determining what compounds and effects 
are causing biocorrosion.

XPS, unlike SEM and EDX, produces far lower kinetic 
energies for Auger electrons and X-ray-excited photo-
electrons than those of fluorescence X-rays generated by 
the electron beam in a SEM. This lower energy produces 
meaningful information when they are not attenuated by 
surface layers; namely the photoelectrons and Auger elec-
trons from a few monolayers of the top of the surface are 
characteristic elements and molecules in these monolayers 
[106].

Juzeliunas et al., measured the rate of corrosion on zinc 
and aluminium in a two-year long study using fungi. Asper-
gillus niger, a filamentous ascomycete fungus, was isolated 
from the metal samples exposed to marine, rural, and urban 

sites in Lithuania, Europe. Al and Zn samples were subjected 
to the influence of A. niger under laboratory conditions in 
humid atmosphere for two years. The use of electrochemi-
cal impedance spectroscopy (EIS) ascertained microbially 
influenced corrosion acceleration (MICA) of Zn and MIC of 
Al. The surface analysis was carried out by XPS where the 
surface sputtering by ionised argon showed significant con-
tent of organic carbon within the layer of the material. The 
highest content of organic carbon was found on the top of 
the corrosion product layer (ca. 40 at.%), which comes from 
the dehydrated microorganisms and their metabolites. The 
noticeable concentrations of organic carbon were found to be 
in deeper levels (8–10 at.%) which have to be considered as 
the result of the organic acid penetration into the corrosion 
product layer, the authors provided this evidence as they did 
not find the carbon in the XRD data, highlighting that the 
multi-instrument analysis principles are imperative to cor-
rosion studies [107].

3.6  Optical Microscopy (OM) and Epifluorescence 
Microscopy (EM)

OM is likely to be the oldest technique in visually charac-
terising the level of corrosion that a material has suffered 
in more depth. Few researchers utilised this method to 
analyse bio-based films and immediately use SEM to char-
acterise a surface. OM can evaluate biological-based mate-
rial microstructures and has been done by Veiga-Santos 
et al. [108]. The technique offers excellent visual imaging 
of the sample, including colouring and hue depth, with 
the only limitation is that it cannot directly measure forces 
that biological samples exert on surfaces, such as bacte-
rial populations upon a substrate. This limitation can be 
overcome if combined with other techniques, for example, 
with AFM, which can measure forces of attachment by 
using the cantilever as a force measurement [109]. Another 
form of microscopy closely linked to OM is EM, and this 
will document numbers of bacteria present upon a surface 
and enumeration. EM has been used to evaluate the dis-
tribution of cells on a surface but requires a certain level 
of sample preparation. The sample needs to be fixed and 
stained (Fig. 6). It is often hard to distinguish individual 
cells within densely populated regions on the sample and 
can often be impossible to image with corrosion-based 
samples as the stain and products are impenetrable.

Confocal scanning laser microscopy is emerging as a 
combinational approach to distinguish material and MIC. 
For example, in a study by Arun et al., the MIC of UNS 
S32750 super-duplex stainless-steel joints fabricated 
was investigated using different welding methods. The 
authors introduced the sample into a medium inoculated 
with Macrococcus equipercicus isolated from a marine 
environment. The study found that when CLSM and AFM 
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could readily characterise the topography and formation 
of pits in the corroded samples. The authors successfully 
used CLSM for surface morphologies and the width of 
the pits of the SS materials which were then turned into 
2D and 3D interpretations created when in combination 
with AFM [52].

Interestingly, a material known to be relatively solid 
and robust was found to corrode when subjected to Pseu-
domonas aeruginosa. For example, Khan et al., found that 
MIC of pure titanium when studied using CLSM dem-
onstrated pitting corrosion. The pitting corrosion was 
investigated with the help of CLSM, and the largest pit 

depth found on Ti surface immersed in P. aeruginosa was 
1.2 μm. The study highlighted that Ti was not immune to 
MIC caused by P. aeruginosa [110]. CLSM is fast becom-
ing a method of analysis for pitting corrosion with many 
authors already using the microscopic method [111].

3.7  X‑Ray Diffraction (XRD)

XRD is widely used in works concerning corrosion. It works 
on the principle where X-rays are scanned to the surface 
of the sample, and a signature relay is measured, giving a 
signature for each element present. Reyes et al. investigated 

Fig. 6  Fluorescent micrographs showing the biofilm formation of 
Bacillus sp. on the steel surfaces which were incubated after a-1 
1 day, a-2 1 week, and a-3 1 month and side view images b-1 1 day, 

b-2 1 week, and b-3 1 month. Cross-section micrographs showing 
the thickness of formed biofilms on steel substrates (adapted with the 
permission from https:// www. mdpi. com/ 2079- 6412/ 10/ 10/ 983/ htm)

https://www.mdpi.com/2079-6412/10/10/983/htm
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the MIC of copper pipes at a low pH. This was to simulate 
the drinking water conditions in a typical rural home [112]. 
They took various sections of the water system’s copper 
pipes and analysed them using XRD. The analysis told them 
that the biofilms were growing around malachite that had 
formed due to oxidation of the copper pipe. Dinu et al. moni-
tored biomedical alloys for the growth and deposition of 
unwanted bacteria; hydrogen was tested as an alloying ele-
ment, and analysis was performed using XRD, another use 
of characterisation using XRD [113]. Gebert and co-workers 
analysed structural states of corroding NiMnGa alloys for 
memory applications [114], with XRD. Christina-Cardona 
and co-workers utilised XRD to characterise native microor-
ganisms that inhabited two coal types [115]. XRD was used 
to measure the depletion of pyrite peaks in the sample, thus, 
illustrating that microorganisms assisted in the breakdown 
of the coal samples.

Calle and co-workers performed leaching studies upon 
copper pipe in a household-plumbing system [116]. Micro-
organisms were deemed problematic in adding to the corro-
sion problem through biofilm attachment. XRD was used as 
a means of determining copper leachate. This needed to be 
further resolved with X-ray absorption spectroscopy, which 
then identified the species of copper released on the flux of 
the copper piping.

In a study by Khouzani et al., MIC on pipelines from a 
petrochemical plant was investigated. The authors utilised 
several techniques; however, they showed that the typical 
XRD patterns of corrosion products, taken from the surface 
of the pipe, could be successfully evaluated. The results 
showed that iron was present in the biofilm and on the mate-
rial, showing that the biofilm was using the pipe system 
to facilitate corrosion. The authors showed a typical XRD 
pattern of corrosion products, confirming the formation of 
a significant amount of oxide–hydroxide (FeOOH), iron 
oxide, and iron taken from the surface of the pipe. The 
results confirmed the formation of a significant amount 
of sulphide. The latter is a typical corrosion product when 
sulphate-reducing bacteria are the controlling microorgan-
ism [117].

In addition, Khanfar and Sitepu recently reported a case 
study of MIC and using XRD as a source of phase analy-
sis for deposits created in a refinery. The refinery environ-
ment was from crude cooler and reboilers which were then 
analysed for MIC using microbial, metallurgic, and spe-
cial analyses and correlates the Rietveld quantitative phase 
analysis of high-resolution X-ray powder diffraction (XRD) 
data of scale deposits with microbe compositions. There-
fore, rapid in-field microbiological assays could be carried 
out to assess the potential of MIC. Based on the results, it 
can be highlighted that the MIC investigation showed that 
total bacteria and SRB were detected in all sampling loca-
tions [118].

3.8  Electrochemical Methods

An electrochemical method is a recent technique introduced 
to detect and monitor corrosion [82, 119, 120]. Most of these 
methods are governed by change by electron transfer within 
a sample as the basis of detection. The techniques covered 
are linear polarisation measurements, electrochemical 
impedance spectroscopy (EIS), electrochemical noise (EN), 
and mass spectrometry (MS).

3.8.1  Linear Polarisation Measurements

A linear polarisation technique can coherently measure the 
rate of corrosion based upon the Stern–Geary equation in 
Eq. 6 [121, 122]:

where corrosion current Icorr is deduced from corrosion test 
coupons [i.e. stainless steel (SS)], ∆I is the change in cur-
rent, and E is the change in potential. This is where the Tafel 
slope of K can be evaluated. There are limitations to this 
equation, with slight differences in the environment inflict-
ing limitations in the accuracy of Icorr and K. Therefore, it 
can only be achieved in specific environments but gives 
excellent results.

Linear polarisation can also be harnessed, measuring 
the resistance, and is a common electrochemical technique 
called linear polarisation resistance (LPR) [123]. LPR is 
an excellent chemical technique for measuring continuous 
rates of corrosion. Here, Rs (the solution resistance) between 
the corroding interface (i.e., the metal) and the reference 
electrode, and the polarisation resistance Rp is related to 
the corrosion rate. LPR requires a potential scan or step-
ping sequence that varies the probe’s potential concerning 
the corrosion potential Ecorr. The technique has been used 
across industrial sectors to monitor corrosion rates, which 
was historically constrained to aqueous environments. More 
recently, probe technology has advanced, and high resistance 
and atmospheric exposures can now be monitored [124]. 
Habib and Bouresli developed an optical sensor for the 
active detection of corrosion in 304 and 316 SS. This was 
achieved by basing the metre on 3D holographic interferom-
etry to measure micro-surface dissolution, i.e., mass loss. 
This was principally achieved through LPR [125].

3.8.2  Electrochemical Impedance Spectroscopy (EIS)

EIS has been applied to corrosion systems for over 30 years 
and is now a powerful tool for corrosion analysis [126, 127]. 
An advantage of using EIS over other laboratory techniques 
is the leeway of using small-amplitude signals without dis-
turbing properties being analysed. EIS studies the system 

(6)Icorr = K
[

ΔI∕ΔE
]

,
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response to the application of a periodic small-amplitude ac 
signal. EIS can determine the polarisation resistance (Rp), 
which is related to the rate of corrosion. EIS also provides 
a solution resistance (Rs) and mechanistic information and 
adds extrapolating to a steady-state condition. This is benefi-
cial as it allows for improved corrosion rate estimations. Guo 
et al. compared weathering resistance steels and weathering 
steels that are contained in performance bridge steel [128]. 
EIS results showed that rust layers of the resistant steels 
were more significant than the weathering steels.

Wenger and co-workers investigated open-pit morpholo-
gies upon an AISI 430 steel electrode using EIS [129]. Pits 
were initiated by using a sulfuric acid solution containing 
sodium chloride, where it could be noticed that pit mor-
phologies could be related to fluctuations in impedance 
data. Gabrielli and co-workers investigated pit propagation 
using EIS in iron [130]. The pit morphologies were different 
from Wenger et al.., as they were initiated using a scanning 
electrochemical microscope method (SECM). This method 
brings about a means of generating localised and controlled 
amounts of chloride ions.

3.8.3  Electrochemical Noise

EN involves measuring the electrochemical transient noise 
produced by the corrosion process [131, 132]. This is accom-
plished by measuring the potential noise of the potential 
difference between two identical electrodes or by tracking 
current differences between two similar electrodes using a 
zero resistance ammeter [133]. EN was initially designed to 
monitor corrosion such as pitting and crevice. EN recognises 
conditions versus stability, i.e., low noise to random events 
of material’s lifetime. Mansfield and co-workers developed 
EN to monitor both the initiation and propagation of stress 
corrosion cracks [134]. They developed electrochemical 
impedance and noise measurements taken bi-weekly through 
remote control modem access at Key West, Florida, over 
9 months of three polymers coated to SS. Analyses were 
performed in the time and  frequency domains. Conclusions 
were drawn that through the electrochemical analysis, a pol-
yurethane topcoat fared better than the latex coating [134]. 
All electrochemical methods are averaging techniques that 
work best when the chemical and electrochemical condi-
tions on the metal surface are uniform and at steady state, 
this is important when understanding MIC on the surface 
of a material.

3.9  Spectroscopic Techniques

The continuous proliferation of new bacterial species pre-
sents microbiologists with an ongoing typing challenge. 
Although molecular biology techniques are essential for bac-
terial typing, they are often laborious, time consuming, and 

inevitably fail when dealing with very closely related organ-
isms. When paired with chemometric approaches, spectro-
scopic techniques can be a feasible alternative to molecular 
methods in some instances, providing advantages in terms of 
analysis time and expense. For examples, a combination of 
ATR–FTIR and chemometrics revealed significant spectral 
differences below 1400  cm−1, which is frequently associated 
with phosphate and carbohydrates molecules [135]. PCA 
and HCA revealed three distinct clusters, each containing 
isolates from a single genus. Janbu et al. have used FTIRS 
and FTIR micro-spectroscopy to distinguish five Listeria 
species [136]. The performance rates of discrimination 
obtained were approximately 93 and 100%, respectively. 
The stepwise canonical discriminant analysis (SCDA) and 
partial least-squares regression discriminant analysis were 
used to obtain these findings.

As early as 1998, there were reports of FTIR being used 
to measure MIC by Hans-Curt Fleming and his team [137]. 
FTIR spectroscopy is suitable for the identification of micro-
organisms and presents a new addition to taxonomic and 
genetic characterisation methods. The FTIR analysis of bac-
terial isolates provides fingerprint spectra, allowing for more 
rapid characterisation of microbial strains and in complex 
matrices. When combined with the principles of attenuated 
total reflection (ATR), the FTIR–ATR technique can be used 
for the observation of biofilms forming directly on the inter-
face of an ATR crystals such as germanium. Spectra can 
be acquired non-destructively, in situ and in real time. For 
example, Chapman et al. have recently been using FTIR and 
NIR systems to study microbial proliferation and reactions 
to antibiotics [138–141].

3.10  Mass Spectrometry (MS; Biochemical)

While many of the previous methods are used for imaging, 
MS can characterise complex molecular systems. More 
particular to corrosion analysis, secondary ion mass spec-
trometry (SIMS) has been used to determine the metal ion 
distribution in SS. Salaita (1995) reported using SIMS using 
a liquid metal ion source (LMIS) to achieve high-resolution 
chemical maps of the surface [142]. SIMS can yield images 
with high sensitivity and lateral resolutions of 100 nm or 
improved. The technique is primarily used for metal and 
inorganic materials. Severe limitations exist with SIMS, the 
first being that it is destructive to any organic surface layer, 
and second, extensive ionisation patterns make it challeng-
ing to analyse large molecules.

Matrix-assisted laser desorption/ionisation-mass spec-
trometry (MALDI-MS) was used to detect the polysaccha-
rides produced in a complex biofilm composed of a mixed 
consortium of marine microbes. For example, corrosion 
of aluminium exposed to seawater caused by a marine 
fungus was observed, and the fungus was identified using 
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MALDI-MS analysis of EPS [143]. Rapid, responsive, and 
direct MALDI-MS analysis of biofilms will significantly 
accelerate and expand our understanding of biofilms due to 
its outstanding advantages, such as simplicity, high sensitiv-
ity, high selectivity, and high speed. MALDI-TOF introduces 
a new, rapid, responsive, and selective platform for studying 
biofilms in natural water that eliminates the need for time-
consuming culture steps or complex sample pre-treatment 
procedures.

In a paper by Beale et al., a novel application using fluo-
rescence spectroscopy and GC–MS to analyse water samples 
exposed to copper piping which had undergone some degree 
of MC was carried out. Using 3D fluorescence spectroscopy, 
the author observed a ‘protein-like’ fluorophore associated 
with the presence of bacteria, which was then cross-refer-
enced with a series of derivatized fatty acid metabolites 
determined using GC–MS. This methodology was shown 
to be effective and simple as a screening tool to establish 
the presence of any microbial processes in waters and then 
correlate specific metabolite profiles with different microbes 
which again showcases an effective combinatory approach 
for MIC analyses [144].

More recently, the spatial distribution of microbial 
metabolites has become important, as the identification of 
metabolites for establishing the significance of these metab-
olites to MIC poses as important biochemical information to 
understand the processes of MIC and, thus, to provide valu-
able information for more precise mitigation techniques or 
methods. As MIC is a localised phenomenon, it is likely that 
the metabolites present at the biofilm–metal interface are 
more relevant to the processes linked to MIC. While most 
MS methods cannot be used for deriving information on the 
spatial localisation of metabolites, new and emerging MS 
techniques such as imaging mass spectrometry (IMS) [145] 
and laser ablation and solvent capture by aspiration mass 
spectrometry (LASCA MS) [146] can be used for in situ 
analysis to determine the spatial organisation of metabo-
lites in a more complex microbial biofilm. For example, 
using LASCA, a recent study by Brauer et al. [146] identi-
fied that metabolites that are corresponding to anodic activ-
ity appeared in the central carbon steel samples, while the 
metabolites corresponding to cathodic activity occurred at 
the outer edges of the steel samples. This rich information 
based on the spatial distribution of metabolites allows for the 
understanding of heterogeneity of biofilms on the samples 
and the underlying processes of MIC, but also their impact 
on the intrinsic mechanisms for MIC [147].

3.11  Significance of Analytical Tools for MIC 
Analysis

Suitable application of analytical techniques for both the 
detection and monitoring of MIC is critical to understand the 

mechanisms of microbial interactions with a given material 
and for selecting the correct inhibition, mitigatory, or control 
measures. This review provides the application of analytical 
techniques available for MIC measurement using ranges of 
methods such as electrochemical and surface analytical tech-
niques. Conventional electrochemical techniques, such as 
corrosion potential (Ecorr), redox potential, EIS, and micro-
electrode techniques, are important for fundamental mate-
rial and MIC studies. The emergence of an electrochemical 
quartz crystal microbalance has proved to be an important 
feature for the study of MIC. Microscopic techniques (SEM, 
ESEM, AFM, CLSM, confocal Raman microscopy) and 
spectroscopic analytical methods (FTIR, FTIR–ATR, NIR, 
and XPS) are also very important for the analysis of MIC 
and should be used in combination with methods. The het-
erogeneous characteristics of microbial consortia and use 
of special techniques to study their probable effects on the 
metal substrata are often difficult even without the issues 
of corrosion and material characterisation. The aim of this 
review is to motivate researchers to use a combination of 
new analytical techniques to perform practical measure-
ments to generate meaningful data to calculate the impact of 
MIC and biofilms on materials. With this in mind, research 
will be able to progress in making more precision changes to 
materials to prevent MIC—for example, understanding the 
metabolite and often the biofilm features when interacting 
with a material will generate new approaches to mitigate the 
MIC issue, thus, producing new materials capable of resist-
ing damage from microbes.

4  Conclusion and Future Perspectives

The long-term preservation of any material requires a holis-
tic method for mitigation. Understanding the bio- and chemi-
cal environments that the material is immersed in will be a 
firm step in preventing and applying the correct counter-
measures of fouling and biocorrosion. Without the aid of 
detection and monitoring, materials that are in contact with 
microorganisms will undergo rates of corrosion faster than 
ones that do. We have tried to capture the most important 
of these new trends in research and analytical methods of 
analysis.

Recent developments in the use of handheld systems will 
make it possible for online, site, and in-field measurements 
of MIC on materials. More attractive techniques using FTIR 
and NIR which are non-destructive will also play a key role 
in this area.

Electrochemical methods are still the gold-standard ana-
lytical method to measure the surface activity of kinetic 
and corrosion processes. The issue with electrochemical 
measurement is that the electrode surface tends to change 
because of the continuous electrode surface changes owing 
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to microbial adhesion and biofilm formation (biofouling). 
Noise analysis is the most typical method for the evaluation 
of MIC; however, its main disadvantage is the need for com-
plex mathematical models to obtain real current and voltage 
values. Therefore, we recommend using tandem electro-
chemical techniques in order to see the corrosive interaction 
and deterioration of the material when measuring the MIC.

Biofilms formed in different environments which are 
measured either in situ, in the field, or in the laboratory on 
materials have been extensively investigated, and therefore, 
many techniques are already available for this reason. The 
methods of analysis provide qualitative measurements, while 
surface chemical techniques provide the quantitative mate-
rial and composition changes caused by biofilm and MIC 
processes.

Fluorescence microscopy has opened the ability to visual-
ise microbial cells on material surfaces. Once the appropri-
ate dyes to stain the microbes are used, not only are all the 
microbes visible, but we also obtain information about the 
life cycle of the cell (e.g. live/dead). Supported by SEM, 
SEM can provide a quasi-3D image of single cells or colo-
nies of cells as well as the EPS of the biofilm (although 
due to the preparatory process of SEM, this is typically 
dehydrated).

EDX can provide data on the change of composition 
caused by the presence of MIC. We have detailed many 
examples of this method for MIC determination, while the 
use of spectroscopic methods (FTIR and XPS) can explain 
why and how these methods support the understanding of 
MIC.

This review details many analytical techniques and 
explains the importance and relevance of parallel and com-
binatory analytical techniques to obtain the information 
about MIC.
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