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Shallow quantum wells are widely used in electronic and optoelectronic heterostructure devices. 
However, to determine the effective band edges, one needs numerical techniques unless the barrier 
height is infinite. In this letter the nearly free electron approach used in periodic structures is 
exploited to provide accurate energy level expressions for the electronic ground state in a number 
of important quantum wells with different shapes. These include the square quantum well without 
and with an applied transverse electric field. 

High quality heteroepitaxy of semiconductors has al- 
lowed one to fabricate arbitrary shaped quantum wells from 
semiconductors. If the quantum well has a “square well” 
form and the potential barrier is infinite, the ground state 
energy of the electron is known in a closed form: 

where m* is the effective mass and W the well size. How- 
ever, if the barrier height V, is finite, one has to solve a 
transcendental equation iteratively.’ 

If the quantum well is under the presence of an electric 
field or if the shape of the quantum welt is not a square but 
triangular, for example, the problem must be solved numeri- 
cally. A number of important devices require the study of 
quantum wells under an applied field.2-5 A simple observa- 
tion allows us to provide an analytical result for rather com- 
plicated potential wells. The observation is the following: the 
electronic levels qf a single quantum well are almost the 
same as that of a periodic array of multiqrtann~m wells as 
long as the barrier is large enough. Thus, if instead of solv- 
ing a single quantum well problem one solves a periodic 
multiquantum well problem, the results should not be too 
different. 

By converting a single quantum well problem to a peri- 
odic potential problem we can exploit the much simpler and 
elegant mathematics of Fourier transforms to solve the 
problem.6 In Fig. 1 we show two simple cases of a square 
quantum well of well width W and barrier height V,. An 
equivalent periodic structure of periodicity “a” is also 
shown. In Fig. l(a) the quantum well is shown without an 
external electric field, while in Fig: l(b) a field is applied. 
Other potentials can be similarly represented. The ground 
state of this system will be obtained by simply calculating 
the lowest Fourier coefficients of this periodic potential. 

The periodic potential can be written quite generally as’ 

U(x) = C UGeiGX, 
G 

(2) 

where G represents the reciprocal lattices of the periodic 
potential and Uo are the Fourier transform coefficients 

2n7r 
G=a, (3) 

The electronic states obey the k-space Schrijdinger equation 
(see, for example, Chap. 7 in Ref. 6) 

($ Ik-GjZ-E)C~-G+~ UG,-,--Jk-~r=il, (5) 

where the general solution has the form 

W,(x) = C CkvGeickwG) x. 
G 

As noted earlier, if the barrier width is large, the resulting 
solution represents the uncoupled well problem quite accu- 
rately. We are interested in the lowest energy state that oc- 
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FIG. 1. (a) A square well potential represented as a periodic multiquantum 
well structure; (b) A square quantum well under an appIied field represented 
by a periodic structure; (c) the nearly free electron description of a general 
periodic structure. If the barrier widths are large the miniband widths are 
essentially zero. 
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curs at k- G1 =O. To a good approximation we need to only 
include the coefficients CkeG1, CkmG7 and CkMG3 in the 
Schrijdinger equation where as shown in Fig. l(c), 

G2-G1=$, 

(7) 

The other coefficients are negligible at the zone center point. 
We get three coupled equations from Eq. (5): 

(E-E~-GI)Ck-GI=UG2-G,Ck-G,+ UG3-G1Ck-G3 2 

(E-E~-G,)Ck-Gz=UG1-G,Ck-G,+UG,-G,Ck-G,, (8) 

(E-E;-G3)c,- ti,=UG1-G3Ck-G,f UG,-G,Ck-G2 9 

Here, 

(9) 

To solve for the energy levels, we solve the determinant (at 
k=G1), denoting UZrja by Ul and Ei,, by Ey, and ignor- 
ing U4?r~a. 

E -u1 -uy 

-U1 E-E; 0 ,=O. (10) 
-UT 0 E-ET 

The ground state is found to be, 

E= 
Ey- @%%F - ~=~ 

2 - (11) 

Noting that the electrofi energy is measured from the dc Fou- 
rier coefficient Uo, we get for the ground state or the effec- 
tive band edge: 

El=(I,-;Ey( &=$&l). w 

This expression is accurate if the higher order coefficients 
U,, are small which is true for the potentials shown in Fig. 1 
and most smooth potentials. The component U, is given by 
Bq. (15) below with the field F zero. 

Focusing on the potential of Fig. l(b), if F is the applied 
electric field, the potential may be written as (using say 
a =2W for simplicity where W is the well size), 

V(x)=hE+(eFa/2)-eFx O=sx=sa/4 , 

V(x) = (eFa/2) - eFx a/4<x<3a/4 , 
V[x)=AE+(eFa/2)-eFx 3a/4<x<a, (13) 

where AE is the potential barrier height. We need to find the 
dc and the first Fourier coefficient of this potential. These are 
simply found to be 

U,= AEl2, (14) 

AE ieFa (-J2?r,a=U1=--- 
n- 297 . (15) 

Thus we have 

IU1j2=(AEl~)2+ (eFai2rr)2. (16) 

The band edge positions are now given by: zero field square 
well potential: 

AE r&’ 
jy,=-- 

-4 2 4m’W. 
1+ 

square well under an applied transverse electric field F: 

El, E- 2 &((l+32[(~)2 

+( ~)z]!pJ’2-l). (18) 

Note that these rules are derived using the case a =2 W, 
which is a good choice since for the square well U,,,=O 
and our approximation which ignores higher harmonies is 
good. 

Let us now consider how accurate the expressions de- 
rived above are. We apply the results to two important cases: 
(i) the well size dependence of the effective band edge in a 
GaAs/A10.3Ga0.,As Tanturn well; (ii) quantum confined 
Stark effect in a 100 A GaAs/AlO.,GaO,,As quantum well. We 
use a 65:35 rule for the conduction band to valence band 
discontinuity ratio, so that AE,=244 meV and AE,=131 
meV. The conduction and valence band mass values used are 
O.O67m, and 0.45m,. 

In Fig. 2, we show the comparison of the approximate 
analytical result of Eq. (12) with the exact results for the 
GaAsiAlGaAs quantum well. Also shown is the result for an 
infinite barrier case. The agreement between the exact results 
and the results from Eq. (12) are quite good over the range of 
well sizes from 30 to 150 A. Below 30 A, our assumption 
a = 2 W leads to minibands so that one simply needs to reIax 
this to say a = 5 W which requires one to evaluate the Fourier 
coefficients U, and U, for the new potential. Beyond 150 A 
well size, there is a small discrepancy which arises from 
ignoring the higher Fourier coefficients U4m,a in the central 
coupled equation solution. However, since 30-150 A wells 
represent a range normally used for most device applications, 
Eq. (12) provides an accurate and useful result. 

In Fig. 3, we show that shift in the effective band edges 
of a 100 A GaAs/AlO,,GaO.+s quantum well as a function of 
applied field. This shift is primarily responsible for quantum 
confined Stark effect. We show a comparison between our 
analytical results. The exact results are obtained by solving 
the Schrijdinger equation in the quantum well profile by fi- 
nite difference method. Once again very good agreement is 
seen between the simple results presented in this letter and 
the exact results. Also shown in Fig. 3 is a result from a 
perturbative calculation using an infinite barrier.7 The infinite 
barrier calculation is seen to show a smaller shift since the 
electron and hole states are not able to penetrate the barrier 
regions. 

As a final case, we consider a very shallow conduction 
band well corresponding to a GaAs/Al,,,GaO.&s structure. 
The conduction band discontinuity is taken to be 75 meV for 
the structure. This structure allows us to further test the va- 
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FIG. 2 Acomparison of the well size dependence of the effective band edge 
in GaAs/Ab,Gaa,As. Results are shown for an exact calculation, analytical 
results based on this letter and an infinite well calculation. 

lidity of our results and to make a simple improvement. In 
Fig. 4 we show the exact results for the conduction band 
confinement energy as a function of well size. Also shown 
are results based on Eq. (12). Once again we see good agree- 
ment at larger well sizes and a smaller value than the exact 
results at smaller well size. To avoid the miniband formation 
we artificially change the barrier potential as shown in the 
inset of Fig. 4. With this choice we have 

3 
Uo=& AE, 

uf= 
5AE2 
2d * 

(19) 

(20) 

The value of Ey remains the same. By artificially doubling 
the barrier away from the well region, we suppress the mini- 
band formation. With a choice of the surrounding potential 
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FIG. 4. The confinement energy of a GaAs/Al,,Gaa&s well as a function 
of well size. The exact calculation is shown along with results of Eqs. (12) 
and (21). The inset shows the potential profile used to obtain Eq. (21). The 
artificial barrier suppresses miniband formation and gives very good agree- 
ments for narrow shallow wells. The periodicity distance a =ZW. 

given by the insert of Fig. 4, the results can be extended to 
shallow and narrow wells. The new choice of the potential 
gives 

1+ 

In Fig. 4 we show the exact results for a 75 meV barrier for 
GaAs quantum wells and the results obtained from Eq. (21). 
The results are found to be in very good agreement. Thus, 
Eq. (21) is an improvement over Eq. (12) for the effective 
band edge and has a greater applicability. 

In summary, we have provided analytical closed form 
results for the effective band gap of shallow quantum wells. 
The analytical closed form results are quite accurate for shal- 
low wells where the infinite barrier solution is invalid. The 
results are not so accurate for wide wells where the infinite 
well solution is quite reasonable. However, the accuracy of 
this method can be improved by including higher order Fou- 
rier terms. 
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