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Analytical Computation of the Magnetic Field Distribution in a 

Magnetic Gear 
 

Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug. 
 

Groupe de Recherche en Electrotechnique et Electronique de Nancy, 

University Henri Poincaré, Nancy, FRANCE 

 

 

In this paper, an analytical computation of the magnetic field distribution in a magnetic gear is proposed. The analytical method is 

based on the resolution of Laplace’s and Poisson’s equations (by the separation of variables technique) for each sub-domain, i.e. 

magnets, air-gap and slots. The global solution is obtained using boundary and continuity conditions. The analytical model developed in 

this paper can be used as a tool for design optimization of a magnetic gear. Magnetic field distributions and electromagnetic torque 

computed with the proposed analytical method are compared with those obtained from finite element analyses. 

 
Index Terms— Analytical solution, magnetic gear, magnetic field, electromagnetic torque.  

 

I. INTRODUCTION 

AGNETIC gears offer substantial advantages compared to 

mechanical gears such as reduced maintenance, 

improved reliability, minimum acoustic noise and inherent 

overload protection. Physical and hermetic isolation between 

input and output shafts are also specific to such contactless 

torque transmission devices [1]-[5]. It has been shown that a 

transmitted torque density of 100 kNm/m
3
 can be obtained 

which is comparable with that of mechanical gears. Recently, 

magnetic gear has been integrated into PM motors to obtain 

the so called “pseudo-direct” drives that result in high-torque 

density electrical machines [6].  The later actuators are suitable 

for high torque low speed application like electric vehicles [7] 

or wind power generation [8]. 

An accurate knowledge of the air-gap magnetic field 

distribution is necessary for predicting the performance of the 

magnetic gear. The air-gap magnetic field can be evaluated by 

analytical or semi-analytical methods or by numerical 

techniques like finite elements. Finite elements give accurate 

results considering geometric details and nonlinearity of 

magnetic materials. However, this method is computer time 

consuming and poorly flexible for the first step of design stage 

of a magnetic gear. Analytical methods are useful tools for first 

evaluation of magnetic gear performances and for design 

optimization since continuous derivatives issued from the 

analytical solution are of great importance in most 

optimization methods.  

As shown in Fig. 1, a magnetic gear contains a ring of Q 

ferromagnetic pole-pieces which are difficult to handle (open 

slots on two sides) in the analytical prediction of the air-gap 

magnetic field. Analytical approaches for air-gap magnetic 

field computation in slotted machines can be found in the 

literature [9]-[14]. However, the publications focus essentially 

on the determination of cogging torque in permanent magnet 

motors. 

The aim of this paper is to propose an exact analytical 

solution of the magnetic field distribution in a magnetic gear. 

The Laplace and Poisson’s equations are solved in each sub-

domain (air-gap, magnet and slots) and the solution is obtained 

using boundary and interface conditions. 

The paper is organized as follows. The problem description 

and the assumptions of the model are presented in section II. 

Section III describes the analytical method for magnetic field 

calculation in the air-gap, permanent magnets and in the slot 

sub-domains. The analytical results are then verified with 

finite-element method in section IV and section V. 

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

Schematic representation of the studied magnetic gear is 

shown in Fig. 1. It consists of a pi pole-pairs inner rotor, a po 

pole-pairs outer rotor and Q ferromagnetic pole-pieces.  

Principle of operation of the magnetic gear is the 

modulation of magnetic field created by the pi pole-pairs PMs 

rotor (prime mover) by the Q pole pieces. The obtained field 

interacts with the po pole-pairs PMs rotor to transmit torque to 

the load (outer rotor or pole pieces) at a different speed. The 

combination Q=pi+po results in the highest torque 

transmission capability of the gear. If the pole pieces are kept 

stationary, the resulting gear ratio is po / pi [1]. 

The geometrical parameters are:  

- for the inner rotor, the radius of the yoke R1 and the outer 

radius of the PMs R2; 

- for the ring, the inner and outer radii of the slots R3, R4 

respectively; 

- and for the outer rotor, the inner radius of PMs R5 and the 

inner radius of the yoke R6.  

The slot opening angle is β. The angular position of the i-th 

slot is defined as 

 

0

2

2
θπβθ ++−=

Q

i
i   with  Qi ≤≤1        (1) 

where 0θ is the initial angular position of the pole-pieces ring. 

M 
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Fig. 1.  Geometry of the studied magnetic gear (Q = 5, θ0 = 0, pi = 2, po = 3).  

 

The following assumptions are adopted: 

 

•  End effects are neglected. 

•  The permeability of the iron is infinite (the magnetic field 

in the iron vanishes). 

•  The relative recoil permeability of the magnets is 1=µr . 

 

As shown in Fig.1, the whole domain is divided into five 

sub-domains: the inner and outer air-gap sub-domains (regions 

II and III), the inner and outer PMs sub-domains (regions I and 

IV) and the Q slots sub-domains (regions i). The i-th slot sub-

domain shape is shown in Fig. 2. The sub-domains I, II, III and 

IV have annular shapes.  

A magnetic vector potential formulation is used in 2D polar 

coordinates to describe the problem. According to the adopted 

assumptions, the magnetic vector potential has only one 

component along the z-direction and only depends on the r and 

θ  coordinates. The notations used in the paper are  

 

 zI eA ⋅= ),( θrAI   for the inner PMs sub-domain   

 zII eA ⋅= ),( θrAII   for the inner air-gap sub-domain  

 zi eA ⋅= ),( θrAi    for the i-th slot sub-domain    

 zIII eA ⋅= ),( θrAIII  for the outer air-gap sub-domain 

 zIV eA ⋅= ),( θrAIV  for the outer PMs sub-domain   

III. ANALYTICAL MODEL 

The solution of any partial differential equation (PDE) 

depends on the domain in which the solution is to be valid as 

well as the boundary conditions that the solution must satisfy. 

By using separation of variables, we now consider the solution 

of Laplace’s equation for the slots and the air-gap sub-domains 

and the Poisson’s equation for the PMs sub-domains. For the 

sake of clarity and simplicity of the general solutions in the 

different sub-domains, we adopt the following notations 
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A. General Solution of Laplace’s equation in the i-th slot 

sub-domain (region i) 

The i-th slot sub-domain and the associated boundary 

conditions are shown in Fig. 2. We have to solve the Laplace’s 

equation in a domain of inner radius R3 and outer radius R4 

delimited by the angles θi and θi+β 
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The boundary conditions for the i-th slot domain are (the 

tangential component of the magnetic field at the sides of the 

slot are null) 

 

0=
∂
∂

= i

iA

θθθ
  and   0=

∂
∂

+= βθθθ
i

iA
      (5) 

    

The continuity of the normal component of the flux density 

between the i-th slot and the air-gap sub-domains leads to 

 

),(),( 33 θθ RARA IIi =                (6) 

),(),( 44 θθ RARA IIIi =               (7) 

 

The general solution of (4) can be found by using the 

method of the separation of variables, the solution can be 

written as [14] 

 

 
 

Fig. 2.  i-th slot sub-domain with its boundary conditions 
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where i
A0 , i

B0 , i
kA  and i

kB  are arbitrary constants 

Considering the continuity conditions (6) and (7), the 

general solution of the magnetic vector potential in the i-th slot 

domain is rewritten as 
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Where k is a positive integer, ),( 4/ Rrk βπΕ  is defined by (3).  

The constants iA0 , iB0 , i
kA  and i

kB  are determined using a 

Fourier series expansion of the inner and outer air-gap 

magnetic vector potentials ),( 3 θRAII and ),( 4 θRAIII  over the 

slot interval [θi, θi+β ]. 
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The expressions for the coefficients iA0 , iB0 , i
kA  and i

kB  

are given in the appendix.  

 

B. General solution of Laplace’s equation in the air-gap 

sub-domains 

 

1) Inner air-gap sub-domain (region II) 

 

The inner air-gap sub-domain and the associated boundary 

conditions are shown in Fig. 3. The problem to solve is 
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Fig. 3.  Inner air-gap sub-domain (region II) with its boundary conditions. 

 

The continuity of the tangential component of the magnetic 

field at 2Rr =  leads to:  

 

22 Rr

I
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               (15) 

 

The boundary condition at the radius 3Rr =  is more 

difficult to handle because of the existence of the slots as 

shown in Fig. 1. Considering the continuity of the tangential 

magnetic field at the interface between the slots and the air-gap 

and considering that the tangential magnetic field is equal to 

zero elsewhere (infinite permeability of the ferromagnetic 

pieces), the boundary condition at 3Rr =  can be written as  
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where ),( θrAi  is the magnetic vector potential in the i-th slot 

given by (9). The distribution of )(θf  along the air-gap 

domain interval [0, 2π] is schematically shown in Fig. 4. 

The general solution of (14) is well known [15] (periodic 

Sturm-Liouville problem in an annulus). By taking into 

account the boundary conditions (15) and (16), the general 

solution of the magnetic vector potential in the inner air-gap 

can be written as  
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where n is a positive integer, ),( 3RrnΡ  and ),( 32 RRnΕ  are 

defined by (2) and (3). The coefficients II
nA , II

nB , II
nC  and II

nD  

are determined using a Fourier series expansions of  

2R

I

r

A

∂
∂

and )(θf  over the air-gap interval [0, 2π]  
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The expressions for the coefficients II
nA , II

nB , II
nC  and II

nD  

are given in the appendix.  

The Neumann problem (14), (15) and (16) can have a 

solution only if [15] : 
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The treatment of (23) yields to the following relations 

between the coefficient iB0  defined in (10) and (11) 
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The flux density distribution in the inner air-gap can be 

deduced from the magnetic vector potential by 
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Fig. 4.  Schematic representation of f(θ) along the inner air-gap at r = R3.  

 

The radial and the tangential components of the magnetic flux 

in the inner air-gap are then 
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2) Outer air-gap sub-domain (region III) 

 

The outer air-gap sub-domain and the associated boundary 

conditions are shown in Fig. 5. The problem to solve is 
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The boundary condition for the outer air-gap domain at 

5Rr =  is  
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The boundary condition at the radius 4Rr =  can be written 

as  
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Fig. 5.  Outer air-gap sub-domain (region III) with its boundary conditions. 
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By taking into account the boundary conditions (30) and 

(31), the general solution of the magnetic vector potential in 

the outer air-gap sub-domain can be written as  

 

( )

( )∑

∑
∞

=

∞

=

++

++

=

1 54

45

54

54

1 45

45

54

54

0

sin)
),(

),(

),(

),(
(

cos)
),(

),(

),(

),(
(

),(

n n

nIII
n

n

nIII
n

n n

nIII
n

n

nIII
n

III
III

n
RR

Rr

n

R
D

RR

Rr

n

R
C

n
RR

Rr

n

R
B

RR

Rr

n

R
A

ArA

θ
Ε
Ρ

Ε
Ρ

θ
Ε
Ρ

Ε
Ρ

θ

   

                       (33) 

 

where n is a positive integer, ),( 5RrnΡ  and ),( 54 RRnΕ  are 

defined by (2) and (3). The coefficients III
nA , III

nB , III
nC  and 

III
nD  are determined using a Fourier series expansions of  
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θθθ
π

π

dngAIII
n ⋅⋅= ∫ )cos()(

2

2
2

0

           (34) 

θθ
π

π

dn
r

A
B

Rr

IVIII
n ⋅⋅

∂
∂

=
=

∫ )cos(
2

2

5

2

0

         (35) 

θθθ
π

π

dngC III
n ⋅⋅= ∫ )sin()(

2

2
2

0

           (36) 

θθ
π

π

dn
r

A
D

R

IVIII
n ⋅⋅

∂
∂

= ∫ )sin(
2

2

5

2

0

          (37)  

 

The expressions for the coefficients III
nA , III

nB , III
nC  and 

III
nD  are given in the appendix.  

 

C. General solution of Poisson’s equation in the PMs sub- 

domains (regions I and IV) 

 

1) Inner rotor PMs sub-domain (region I) 

 

The inner rotor PMs sub-domain and the associated 

boundary conditions are shown in Fig. 6. The problem to solve 

is 
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where µ0 is the permeability of the vacuum and Mr is the radial 

magnetization of the magnets. 

The boundary conditions at 1Rr =  and 2Rr =  are 

respectively  
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),(),( 22 θθ RARA III =               (40) 

 

 
 
Fig. 6.  Inner PMs sub-domain (region I) with its boundary conditions. 
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The radial magnetization distribution Mr is plotted in Fig. 7, 

where Br is the remanence of the magnets and ϕi is the initial 

phase angle of the inner rotor. The radial magnetization can be 

expressed in Fourier’s series and replaced in (38). 

According to the superposition law, the general solution of 

(38) is the sum of the general solution of the corresponding 

Laplace’s equation and a particular solution [15]. Taking into 

account the boundary conditions (39) and (40), the general 

solution of the magnetic vector potential in the inner PMs sub-

domain can be written as 

 

( ) ( )

( ) ( )∑

∑
∞

=

∞

=

++

++

=

1 12

1

1 12

1

sin)sin)(
),(

),(
(

cos)cos)(
),(

),(
(

),(

n

in

n

nI
n

n

in
n

nI
n

I

nnrX
RR

Rr
C

nnrX
RR

Rr
A

rA

θϕ
Ρ
Ρ

θϕ
Ρ
Ρ

θ

    (41) 

 

where 

)(
1

1
),(

),(

)(
1

1)(

2

1

2

1

12

1

1

1

Rf
R

R

nRR

Rr
-                            

       rf
r

R

n
rX

n

n

n

n

n

n

n

⋅






















+

⋅




















+=

+

+

Ρ
Ρ

(42) 

and 

 

   

otherwise                

pn  if   rr
2.B

....   j      withjpn  if    
n

prB

rf i
r

i
ir

n















==

==
−

=

0

1ln

,5,3,1
)1(

...4

)(

2

π

π

 (43) 

where n is a positive integer, pi is the number of pole-pairs of 

the inner rotor and ),( 1RrnΡ  is defined by (2).  

The coefficients I
nA  and I

nC  are determined using a Fourier 

series expansion of ),( 2 θRAII  over the interval [0, 2π] 

 

 
Fig. 7.  Magnetization distribution along θ-direction (inner PMs) 
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The expressions for the coefficients I
nA  and I

nC  are given 

in the appendix. 

 

2) Outer PMs sub-domain (region IV) 

 

The outer PMs sub-domain and the associated boundary 

conditions are shown in Fig. 8. The problem to solve is 
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The boundary conditions at 5Rr =  and 6Rr =  are 

respectively  

 

),(),( 55 θθ RARA IIIIV =               (47) 

 

0

6

=
∂

∂

=Rr

IV

r

A
                  (48) 

 

By taking into account the boundary conditions (47) and 

(48), the general solution of the magnetic vector potential in 

the outer PMs sub-domain can be written as 
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Fig. 8.  Outer PMs sub-domain (region IV) with its boundary conditions. 

 

where n is a positive integer, po is the number of pole-pairs of 

the outer rotor , ϕo is the initial phase angle of the outer rotor 

and ),( 6RrnΡ  is defined by (2). The coefficients IV
nA  and 

IV
nC  are determined using a Fourier series expansion of 

),( 5 θRAIII  over the interval [0, 2π] 
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The expressions for the coefficients IV
nA  and IV

nC  are given 

in the appendix. 

 

D. Electromagnetic torque 

The electromagnetic torque is obtained using the Maxwell 

stress tensor. A circle of radius Re in the inner air-gap sub-

domain is taken as the integration path so the electromagnetic 

torque is expressed as follows 

 

∫ ⋅⋅=
π

θ θθθ
µ

2

0
0

2

),(),( dRBRB
LR

T eIIeIIr
e

e         (54) 

 

where L is the axial length of the magnetic gear. According to 

(27) and (28), the analytical expression for the electromagnetic 

torque becomes 
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A similar expression can be obtained for the 

electromagnetic torque computation in the outer air-gap. 

IV. APPLICATION EXAMPLE 1  

In order to validate the proposed model, the analytical 

results have been compared with 2D finite element simulations 

obtained using FEMM software [16]. In the finite-element 

analysis, the surfaces of the inner and outer rotors yokes as 

well as those of the ferromagnetic pole-pieces have been 

modeled by homogeneous Neumann boundary conditions as in 

the analytical study. The mesh in the air-gap and in the slot 

regions has been refined until convergent results are obtained. 

The geometrical parameters given in Table I are considered 

in the simulation studies. The analytical solutions in the air-

gap, in the PMs and in the slots domains have been computed 

with a finite number of harmonic terms N and K as indicated in 

Table I. 

A. Flux density distribution 

Figure 9 shows the magnetic flux lines for the magnetic gear 

excited by both permanent magnet rotors. The phase angles ϕi 

and ϕo of the rotors PMs are fixed to zero. The corresponding 

flux density distributions (radial and tangential components) in 

the middle of the inner air-gap (r = 5.1 cm) and in the middle 

of the outer air-gap (r = 6.3 cm) are plotted respectively in 

Fig. 10 and Fig. 11. One can observe a very good agreement 

between the analytical and finite element predictions for both 

radial and tangential components. 

 
TABLE I 

PARAMETERS OF THE MODEL 

Symbol Quantity value 

R1 Radius of the inner rotor yoke 4 cm 

R2 Outer radius of the inner rotor PMs 5 cm 

R3 Inner radius of the slots 5.2 cm 

R4 Outer radius of the slots 6.2 cm 

R5 Inner radius of the outer rotor PMs 6.4 cm 

R6 Inner radius of the outer rotor yoke 7.4 cm 

L Axial length  10 cm 

β Slot opening  π/5 rad 

Br Remanence of the magnets 1.2 T 

pi Pole-pairs inner rotor 2 

po Pole-pairs outer rotor 3 

Q Number of ferromagnetic pole-pieces 5 

N Number of harmonics used for  magnetic field 

calculation in the air-gap and PMs domains 

50 

K Number of harmonics used for  magnetic field 

calculation in the slot domains 

50 
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Fig. 9.  Magnetic flux line distribution for the studied magnetic gear excited 

by both PMs rotors (ϕi = 0°, ϕo= 0° and θ0 = 0°). 

 

 

 
(a) 

 
(b) 

 

Fig. 10.  Flux density distribution in the middle of the inner air-gap (r = 5.1 

cm): (a) radial component (b) tangential component.  

 

B. Torque 

Figure 12 shows the variation of the torque which is exerted 

on the inner rotor while keeping the pole-pieces ring and the 

outer rotor fixed. The inner rotor rotates with a phase angle ϕi 

varying from 0° to 90°. The analytical results are in good 

agreement with those obtained by the FEM. Fig. 12 shows that 

a maximum torque of 75 Nm is obtained for a value of ϕi 

around 51°. 

Figures 13(a) and 13(b) show the variation of the 

electromagnetic torque which is exerted respectively on the 

inner and outer rotors. The pole-pieces ring is fixed while the 

inner and outer rotors PMs rotate in opposite direction as 

 

o

i
io

p

p⋅−= ϕϕ                   (57) 

 

The starting point for the phase angle of the inner rotor PMs 

is fixed at ϕi = 40° that corresponds to a torque value exerted 

on the inner rotor of 61 Nm (see Fig. 12). From Figs. 13(a) 

and 13(b), one can observe as expected that the magnetic gear 

amplifies the mean torque value by the gear ratio of 3/2. 

 

 

 
(a) 

 
(b) 

 

Fig. 11.  Flux density distribution in the middle of the outer air-gap (r = 6.3 

cm): (a) radial component (b) tangential component.  
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As shown in Figs. 13, the torque ripples are important in the 

studied example. Indeed, the low order harmonics are present 

in the flux density waveform of both air-gaps. This results in a 

low filtering of the air-gaps which leads to high pulsating 

torques. This effect can obviously be avoided by properly 

choosing po and Q for a given gear ratio [1]. Once again, very 

good agreement is obtained between numerical and analytical 

results. 

 

 
 

Fig. 12.  Torque exerted on the inner rotor with the pole-pieces ring and the 

outer rotor fixed (ϕo = 0 and θ0 = 0).  

 

 

 
(a) 

 
(b) 

 

Fig. 13.  Electromagnetic torque exerted on the inner rotor (a), and on the 

outer rotor (b).  

 

V. APPLICATION EXAMPLE 2 

Another example is considered in this section. The same 

geometrical parameters as in Table I are used except for the 

pole-pair numbers which are now po=3, pi=13, Q=16 which 

leads to a gear ratio equal to 4.33. 

 

The magnetic flux lines distribution for this configuration 

are shown in Fig. 14 (the slot opening is fixed to β = π/16). 

The radial and tangential flux densities on a circle of the inner 

and outer air gaps are given in Fig. 15 and Fig. 16. A good 

agreement is noticed between the analytical and the numerical 

computations. 

 

Figure 17 shows the static torque vs. position of the inner 

rotor.  Compared to the configuration given in the first design 

example, the maximum torque is lower. However, the 

transmitted torque on the outer rotor is more important for the 

second example. Indeed, the gear ratio is more important for 

this configuration (4.33 instead of 1.5). 

 

Furthermore, the torque ripples are practically inexistent for 

example 2 as it can be observed in Fig. 18. This confirms the 

influence of the pole-pairs combination on the torque 

pulsations [1]. 

 

To show the influence of the slot opening, Fig. 19 gives the 

variation of the electromagnetic torque exerted on the inner 

rotor against the “slot opening to tooth pitch” ratio. One can 

observe that the maximum torque is obtained for a ratio of 0.5.  

 

Again, we notice a close agreement between the analytical 

and numerical simulations. 

 

 
 

Fig. 14.  Magnetic flux line distribution for the magnetic gear excited by both 

PMs rotors (ϕi = 0°, ϕo= 0° and θ0 = 0°) 
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(a) 

 
(b) 

 

Fig. 15.  Flux density distribution in the middle of the inner air-gap (r = 5.1 

cm): (a) radial component (b) tangential component. 

 

 

 
 
Fig. 17.  Torque exerted on the inner rotor with the pole-pieces ring and the 

outer rotor fixed (ϕo = 0 and θ0 = 0). 

 

 
(a) 

 

(b) 
 

Fig. 16.  Flux density distribution in the middle of the outer air-gap (r = 6.3 

cm): (a) radial component (b) tangential component. 

 

VI. CONCLUSION 

In this paper, an exact 2-dimensional analytical method for 

predicting the magnetic field distribution in a magnetic gear 

has been presented. The Laplace’s and Poisson’s equations in 

polar coordinates have been solved by the technique of 

separation of variables in the slots, air-gap and PMs sub-

domains. The solutions have been obtained using boundary 

and continuity conditions between the sub-domains. Flux 

density and torque computations are in close agreement with 

these of FE predictions. The proposed analytical model 

presents lower computational time than FEM. Hence, it will be 

used in future work as a tool for design optimization of a 

magnetic gear. 
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(a) 

 
 

(b) 

Fig. 18.  Electromagnetic torque exerted on the inner rotor (a), and on the 

outer rotor (b).  

 

 

 

 

 

 
 

Fig. 19.  Maximal torque on the inner rotor vs. “slot opening to tooth pitch” 

ratio.  

 

 

 

 

 

 

 

APPENDIX 

For the determination of the integration coefficients, we 

have to calculate integrals of the form 
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The development of (A.1) and (A.2) gives the following 

functions that will be used in the expressions of the integration 

coefficients 
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The development of (A.3) and (A.4) gives the following 

functions 
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•  Expressions of the coefficients II
nA , II

nB , II
nC  and II

nD  for 

the inner air-gap sub-domain 

The development of (19) and (21) gives 
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The coefficient II
nB  and II

nC  defined in (20) and (22) can 

be written as  
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where Q is the number of rotor slots. The development of 

(A.13) and (A.14) gives  
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•  Expressions of the coefficients III
nA , III

nB , III
nC  and III

nD  

for the outer air-gap sub-domain 

The development of (35) and (37) gives 
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The coefficient III
nB  and III

nC  defined in (34) and (35) can 

be written as  
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where Q is the number of rotor slots. The development of 

(A.19) and (A.20) gives  
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•  Expressions of the coefficients I
nA and I

nC ,  for the inner 

PMs sub-domain (44) and (45) 
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•  Expressions of the coefficients IV
nA and IV

nC ,  for the outer 

PMs sub-domain (52) and (53) 
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•  Expression of the coefficients  i
A0 , i

B0 , i
kA  and i

kB  for the 

i-th slot sub-domain 

The treatment of (12) and (13) yields to the following linear 

relations  
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The treatment of (10) and (11) yields to the following linear 

relations  
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We have to solve a system of linear equations with the same 

number of unknowns. By rewriting the above equations in 

matrix and vectors form, a numerical solution can be found by 

using mathematical software (Matlab or Maple). 
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