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A purely analytical extension of the flattened Gaussian beams [Opt. Commun. 107, 335 (1994)]
to any values of the beam order, is here proposed. Due to it, the paraxial propagation problem of
axially symmetric, coherent flat-top beams through arbitrary ABCD optical systems can definitely
be solved in closed form via a particular bivariate confluent hypergeometric function.

I. INTRODUCTION

Flat-top beams continue to attract a considerable at-
tention in optics: during the last five years more than
sixty papers have been published on the subject. In or-
der to model flat-top axially symmetric distributions, two
classes of different scenarios appeared: in the first one,
simple analytical profiles were employed, the most known
of them being the superGaussian (SG) [1, 2], which is for-
mally defined by

SGν(ξ) = exp(−ξ2ν) , (1)

where ν denotes a real parameter which controls the“flat-
ness” of the profile, with the particular case ν = 1 giving
the Gaussian profile. The symbol ξ denotes a normal-
ized radial transverse position. Despite its mathemat-
ical simplicity, it is well known that Eq. (1) does not
allow the wavefield of paraxially propagated superGaus-
sian (i.e., for ν 6= 1) beams to be analytically evaluated,
even within the simplest scenario, namely, free space.

To overcome such difficulty, which two or three decades
ago could represent a considerable computational bot-
tleneck in several practical situations, alternative ap-
proaches were proposed in 1994 and in 2002 by Gori
and Li, respectively, to conceive analytical models able
to solve the free space propagation problem. The former
was called flattened Gaussian (FG henceforth) [3], and,
different from SG, is expressed through an explicit finite
sum of terms, namely

FGN (ξ) = exp(−Nξ2)

N−1∑
m=0

(Nξ2)m

m!
, (2)

where the integer parameter N > 0 will be referred to
as the FG order. Scaling the ξ variable by the factor√
N gives the FG transverse profile a flat-topped shape

which, for N = 1, reduces to a Gaussian distribution,
whereas for N → ∞ tends to the characteristic function
of the unitary disk [4]. The model is computationally
exact, since the initial distribution [Eq. (2)] can be re-
cast in terms of a superposition of N standard Laguerre-
Gauss (sLG henceforth) beams. Accordingly, in order
to evaluate the field propagated in free space, it is suf-
ficient to sum up the N propagated sLG, a job which
can exactly be done, always [5]. In [6], a different super-
position scheme of the profile [Eq. (2)] was proposed, in

which the sLG family was replaced by the so-called ele-
gant Laguerre-Gauss (eLG henceforth) set. In this way,
not only free-space propagation, but also the interaction
of FG beams with any axially symmetric paraxial optical
system can be dealt with in exact terms, always through
finite sums.

In 2002, Yaijun Li proposed an analytical model al-
ternative to the FG one. The idea was to impose a lo-
cal “flatness” condition, which required the first N − 1
even ξ-derivatives of the profile to be null at the origin
ξ = 0 [7]. More precisely, Li conceived the following an-
alytical model:

LiGN (ξ) =

N∑
m=1

(−1)m−1
(
N

m

)
exp(−mξ2) =

=

{
1−

[
1− exp

(
−ξ2

)]N}
N

,

(3)

which, different from FG, is based on the superposition of
N fundamental Gaussian beams having variable widths.
In particular, it is not difficult to prove that [7][

d2k

dξ2k
LiGN (ξ)

]
ξ=0

= 0 , 1 ≤ k < N , (4)

the odd derivatives being identically null, due to the ra-
dial symmetry of the function LiGN (ξ).

Both Gori’s and Li’s models provide exact solutions
to the paraxial propagation problem of coherent, axially
symmetric flat-top beams. From a merely mathemati-
cal perspective, their only own limit is represented by
the fact that, different from SG, only positive integer or-
ders N can be dealt with to describe the initial flat-top
distribution. It is important to mention that, for 1D ge-
ometry (or rectangular 2D geometries), general analyt-
ical solutions were already provided, at least upon free
propagation, by modeling the flat-top profile via an error
function [8]. An attempt to extend the 2D circular FG
model to noninteger orders was also proposed in [9], but
only approximate estimates of the free-space propagated
field were obtained within the asymptotic limit N � 1.

The aim of the present paper is to solve exactly the
propagation problem of FG beams of any order (real or
even complex) through typical axially symmetric parax-
ial optical systems. To this end, the right side of Eq. (2)
will first be identified as an incomplete Gamma functions,
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which is known to be defined onto the whole complex
plane, as far as both arguments are concerned. An imme-
diate byproduct of such identification will be the closed
form expression of the M2 factor of FG beams of any
order, an interesting generalization of the result found
in [5]. This is shown in Sec. II of the present paper. The
most important results are presented in Secs. III and IV.
In the former, the free-space propagation problem will be
solved thanks to an important class of integrals recently
evaluated by Yuri Brychkov. Although the more gen-
eral propagation problem will be solved in Sec. IV, the
analysis presented in Sec. III should be viewed as an im-
portant propaedeutical step. There, it will be shown that
a very important, but nevertheless not so much known,
class of special functions, called bivariate hypergeometric
functions, together with the corresponding confluent ver-
sions, forms the mathematical skeleton of the paraxially
diffracted wavefield. Bivariate hypergeometric were first
introduced in 1880 by Paul Appell [10], their confluent
version forty years later by Paul Humbert [11]. The re-
sults we are going to present would also give readers a
partial answer about the lack, for more than thirty years,
of purely analytical solutions to the problem of the parax-
ial propagation of coherent 2D flat-topped beams.

The present work has a clear mathematical character:
for instance, dimensionless quantities will be used wher-
ever possible. Moreover, the number of mathematical ap-
pendices have been mostly limited, because we strongly
believe that following all important mathematical steps
could greatly help readers to fully grasp the essence of
our analysis, as well as the importance of such still mys-
terious special functions, which will lead to analytical,
elegant, and exact solutions.

II. PRELIMINARIES

A. “Analytical continuation” of the FG model

Already in 1996, Sheppard & Saghafi [12] pointed out
that Eq. (2) can be given the following closed form:

FGN (ξ) =
Γ(N, Nξ2)

Γ(N)
, (5)

where Γ(·) and Γ(·, ·) denote gamma and incomplete
gamma functions, respectively [13]. Different from
Eq. (2), Eq. (5) is not limited to integer FG orders, but
rather it can be analytically continued to real and also
complex values of N .

As a preliminary result of the extended definition into
Eq. (5), an analytical check of Li’s “flatness condition”
described in the previous section will now be carried out.
To this end, it is not difficult to prove, on using formu-
las 1.1.1.1 and 1.8.1.17 of [14], together with long but

simple algebra, that

dn

dξn
Γ(N,Nξ2) = −2nn!NN exp(−Nξ2) ξ2N−n

×
[n/2]∑
k=0

(n− k − 1)!

4kk!(n− 2k)!
L
(N−n+k)
n−k−1 (Nξ2) , n ≥ 1 .

(6)
Then, on taking the axial symmetry of the FGN (ξ) dis-
tribution into account, from Eq. (6), it follows, similar to
Eq. (4) for Li’s model, that[

dn

dξn
Γ(N,Nξ2)

]
ξ=0

= 0 ,

{
2 ≤ n < 2 Re{N}

n even

}
(7)

the odd derivatives being also identically null. Equa-
tion (7) implies the real part of N to be chosen greater
than 1. For real values of FG’s order, it is known that
such a limitation guarantees the absence of a cusp at
the origin ξ = 0. If complex values of N were involved,
order’s imaginary part would be responsible for extra os-
cillations of the intensity profile. Just to give a single
visual example, in Fig. 1 the behaviour of the intensity
|FGN (ξ)|2 is plotted for N = 4 exp(iφ), with φ = 0 (a),
φ = π/4 (b), φ = 9π/20 (c), and φ = π/2 (d). Notice
that figures (a) and (d) correspond to the extreme cases
of imaginary part and real part of N null, respectively.

B. Spreading properties: closed form expression of the M2

factor

An interesting byproduct of the Γ-based definition into
Eq. (5) is the extension of the M2 factor evaluation of FG
beams (first established in [5] for N ∈ N) also to nonin-
teger orders. To this end, consider an initial field distri-
bution across the plane z = 0 of a cylindrical reference
frame (r, z), say ψ0(r), given by

ψ0(r) = FGN

( r
a

)
=

Γ

(
N,N

r2

a2

)
Γ(N)

,
(8)

where an overall amplitude constant has been set to one
and the symbol a denotes the “width” of the flat top field
distribution. For simplicity, it will be set a = 1.

The evaluation of theM2 factor, which is defined as the
product of the normalized second order moments across
the z = 0 and the spatial frequency planes is detailed
in Appendix A, where it is proved the following closed-
form expression:

M2
FG =

√
(N + 1)

Γ(N + 1/2)√
π Γ(N + 1)

[
1 − Γ(N + 3/2)√

π Γ(N + 2)

]
1 − Γ(N + 1/2)√

π Γ(N + 1)

,

(9)
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FIG. 1: Behaviour of the intensity profile |FGN (ξ)|2 for
complex orders N = 4 exp(iφ), with φ = 0 (a), φ = π/4
(b), φ = 9π/20 (c), and φ = π/2 (d). Figures (a) and (b)
correspond to Re{N} > 1, the opposite for figures (c) and
(d).

which generalizes the 1996 analysis of [5] to N /∈ N. It is
worth comparing Eq. (9) with the corresponding expres-
sion of SG beam M2 factor, namely [2]

M2
SG =

√
Γ(2/ν)

Γ(1/ν)/ν
, (10)

deceptively simpler. The mathematical elegance of
Eq. (9) also reveals some practical usefulness. Suppose
to be interested in solving the following problem: given
a SG beam (i.e., given ν), what is the FG beam (i.e., the
value ofN) having identical spreading properties (i.e., the
same M2 factor)? A partial answer to such problem was
already been provided into Ref. [5], where it was proved
that M2

FG can be estimated, within the asymptotic limit

N � 1, by (N/π)1/4, so that

N ∼ π
[
M2

SG(ν)
]4

= π ν4
[

Γ(2/ν)

Γ2(1/ν)

]2
, N, ν � 1 .

(11)
The correspondence between ν and N given into Eq. (10)
can be considerably improved, especially within the value
range close to the unity, by asymptotically expanding the
right side of Eq. (9) as follows:

M2
FG =

(
N

π

)1/4 [
1 +

7π − 8

16π2

π

N
+ O

(
1

N

)]
,

(12)
a result which can be achieved by using, for instance,
the Mathematica command Series. Then, on again
imposing M2

FG = M2
SG and after taking Eq. (12) into

account, it is not difficult to prove that the quantity
X = (N/π)1/4 must satisfy the following fourth-order
algebraic equation:

X4 − M2
SG(ν)X3 +

7π − 8

16π2
= 0 . (13)

It is possible to express X in closed form via Cardano’s
formula. For reader’s convenience, the analytical expres-
sion has been reported into Appendix B. Just to give a
visual idea of the degree of approximation of the asymp-
totics in Eq. (12), in Fig. 2 the behaviour of M2

SG is plot-
ted against ν according to Eq. (10) (solid curve). In the
same figure, also the behaviour of the quality factor of
FG beams given by Eq. (9) is shown when the FG order
N is chosen according to the simplest choice given into
Eq. (11) (dashed curve) as well as that improved through
the algorithm described by Eq. (13) (dotted curve).
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FIG. 2: Behaviour of M2
SG against ν according to Eq. (10)

(solid curve), together with the behaviour of M2
FG given by

Eq. (9) and evaluated for FG orders N chosen according to
Eq. (11) (dashed curve) as well as through the algorithm de-
scribed by Eq. (13) and Appendix B (dotted curve).

In the next two sections, our extension of the FG model
will further reveal its powerfulness and mathematical el-
egance.
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III. FREE-SPACE PARAXIAL PROPAGATION OF FG
BEAMS

A. Preliminaries

Suppose the initial field distribution given by Eq. (8)
is allowed to propagate in free space. The corresponding
field, say ψ(r; z), can be expressed, apart from an overall
phase factor exp(ikz), as follows:

ψ(r; z) = − iU

2π

∫
R2

d2ρψ0(ρ) exp

(
iU

2
|r − ρ|2

)
,

(14)
where the Fresnel number U = ka2/z has been intro-
duced and the beam width a has been used as unit for
measuring all transverse sizes. This means that the quan-
tity r should be meant as the ratio between the trans-
verse position vector of the observation point and a. For
integer FG orders, the free space propagation problem
has already been solved in [3] by expanding the initial
field distribution ψ0 as the linear combination of a finite
number of sLG beams. It is then sufficient to propa-
gate each sLG beam up to the observation plane and to
recombine all of them with the initial expanding coeffi-
cients for the correct value of ψ(r; z) to be retrieved. As
we are going to show in a moment, the Γ-based model
into Eq. (5) allows an exact evaluation of the propagated
wavefield (14) also for N /∈ N. It is worth recalling that,
from a mere practical perspective, the present section
could seem somewhat redundant, as in Sec. IV the more
general propagation problem within ABCD systems will
be solved. Nevertheless, we believe what is contained
in the present section could help nonspecialist readers
to familiarize with the main notations and mathemati-
cal tools which will constitute the basis of the general
results presented into Sec. IV. In other words, it should
be considered as a useful, propaedeutical material.

We start on substituting from Eqs. (8) into Eq. (14),
which after simple algebra gives

ψ(r; z) = − iU

Γ(N)
exp

(
iU r2

2

)

×
∫ ∞
0

dρ ρ exp

(
iU

2
ρ2
)

Γ
(
N,N ρ2

)
J0(Ur ρ) ,

(15)

where J0 denotes the 0th-order Bessel function of the first
kind. It is worth recasting the incomplete Γ function as

Γ(N,Nξ)

Γ(N)
= 1 − γ(N,Nξ)

Γ(N)
, (16)

where γ(·, ·) denotes the “lower” incomplete gamma func-

tion. Then Eq. (15) takes on the form

ψ(r; z) =

= −iU exp

(
iU r2

2

) ∫ ∞
0

dρ ρ exp

(
−U

2i
ρ2
)
J0(Ur ρ)

+

iU exp

(
iU r2

2

)
Γ(N)

×
∫ ∞
0

dρ ρ exp

(
−U

2i
ρ2
)
γ
(
N,Nρ2

)
J0(Ur ρ) .

(17)
The first term is identically equal to one (it is nothing
but a unitary plane wave propagating along the z-axis).
As far as the second is concerned, the following notable
formula has recently been published by Brychkov [15,
formula 9.2.20]:∫ ∞

0

dxxα−1 exp(−a x2) γ(µ, bx2) Jν(c x) =

=

2−ν−1bµcνΓ

(
µ+

α+ ν

2

)
µaµ+(α+ν)/2Γ(ν + 1)

Ψ1

(
µ+

α+ ν

2
, µ

µ+ 1, ν + 1

∣∣∣∣∣− b

a
,− c

2

4a

)
.

(18)
Then, on using Eqs. (17) and (18), long but straightfor-
ward algebra gives

ψ(r; z) = 1 − exp

(
iU r2

2

) (
2iN

U

)N

×Ψ1

(
N + 1, N
N + 1, 1

∣∣∣∣− 2iN

U
,− iU r2

2

)
.

(19)

B. Short Tour on Bivariate Hypergeometric Functions

The symbol Ψ1 into Eq. (19) denotes a special func-
tion called bivariate confluent hypergeometric. It is worth
briefly describing the principal definitions and properties
which are important for our scopes. Function Ψ1 is for-
mally defined through the following double series power
expansion:

Ψ1

(
a, b
c, c′

∣∣∣∣ z, w) =

∞∑
k=0

∞∑
`=0

(a)k+` (b)k
(c)k(c′)`

zk

k!

w`

`!
, (20)

valid for |z| ≤ 1. The symbol (·)n denotes Pochham-
mer’s symbol. Another bivariate confluent hypergeomet-
ric function which will be met in the present paper is the
function Φ1, defined by

Φ1

(
a, b
c

∣∣∣∣ z, w) =

∞∑
k=0

∞∑
`=0

(a)k+` (b)k
(c)k+`

zk

k!

w`

`!
, (21)
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valid for |z| ≤ 1. Functions Ψ1 and Φ1 are members
of a family of functions that generalize Kummer’s con-
fluent hypergeometric function 1F1. In particular, Φ1 is
obtained from the so-called Appell function F1, defined
by

F1

(
a, b1, b2

c

∣∣∣∣ z, w) =

∞∑
k=0

∞∑
`=0

(a)k+` (b1)k (b2)`
(c)k+`

zk

k!

w`

`!
,

(22)
(again valid for |z| ≤ 1), through the following limiting
definition:

Φ1

(
a, b
c

∣∣∣∣ z, w) = lim
ε→0

F1

(
a, b,

1

ε
c

∣∣∣∣∣ z, εw
)
, (23)

which can be proved on first substituting the identity

lim
ε→0

(
1

ε

)
`

ε` = 1 , (24)

directly into Eq. (23), then on interchanging the limit
with the double series.

Multivariate hypergeometric and confluent hypergeo-
metric functions play a role of considerable importance
in theoretical physics and applied math. In optics, the
role of bivariate confluent hypergeometric functions in de-
scribing a large class of paraxial optical disturbances has
recently been pointed out [16, 17]. Moreover, it is worth
stressing that, from a practical viewpoint, Appell’s func-
tion F1 is nowadays part of the symbolic platform Math-
ematica, where it is computable with arbitrarily high ac-
curacies. Also the whole family of Appell functions, in-
cluding F1 as well as its three sisters F2, F3, and F4, are
currently implemented in the latest release of Maple. It
is then highly desirable that in a near future also the set
of bivariate confluent hypergeometric functions, includ-
ing Ψ1 and Φ1, could become part of such a family of
“evaluable” special functions. In the meanwhile, someone
might rightly object to the practical usefulness of func-
tions that are defined through double infinite series like
those into Eqs. (20) - (22). To overcome such difficulties,
some tricks will be implemented in the rest of the paper,
tricks aimed at extending the validity domain of Ψ1 and
Φ1 beyond the series definitions, and then to improve the
practical usefulness of our analytical results.

Function Ψ1 can be continued by using the following
transformation [18, formula 2.54]:

Ψ1

(
α, β
γ1, γ2

∣∣∣∣ z, w) =

=
1

(1− z)α
Ψ1

(
α, γ1 − β
γ1, γ2

∣∣∣∣ z

z − 1
,

w

1− z

)
,

(25)

which, once substituted into Eq. (19), gives a new, closed-

form, expression of the paraxial propagated field

ψ(r; z) = 1 −
exp

(
iU r2

2

)
1 +

2iN

U

 1

1 +
U

2iN


N

×Ψ1

 N + 1, 1
N + 1, 1

∣∣∣∣ 1

1 +
U

2iN

,−

iU r2

2

1 +
2iN

U

 ,

(26)

indubitably one of the main results of the present paper.
Waiting for Mathematica or Maple to develop their own

built-in version of Ψ1, it is worth working on the expres-
sion into Eq. (26) by using a notable integral represen-
tation found again in [18]. For the sake of clarity, all
mathematical steps are confined into Appendix C, where
it is proved that

Ψ1

(
N + 1, 1
N + 1, 1

∣∣∣∣x, y) =

= N

∫ 1

0

dξ
(1− ξ)N−1

(1− xξ)N+1 1F1

(
N + 1; 1;

y

1− xξ

)
.

(27)
Equation (27) appears to be somewhat intriguing: the

wavefield of a free-space paraxially propagated FG beam
of any order can be represented via a 1D integral defined
over a finite interval. This could seem a somewhat pecu-
liar situation, due to the fact that the initial field distri-
bution [Eq. (8)] has infinite support, namely the whole
plane z = 0. But what is, in our opinion, even more
important is that the integral representation [Eq. (27)]
would hardly be reachable starting from Fresnel’s inte-
gral [Eq. (14)], without passing through the Ψ1 function
and its transformation rules. In the next section, a simi-
lar scenario will also be found as far as the more general
problem is concerned.

IV. PARAXIAL PROPAGATION THROUGH ABCD
SYSTEMS

A. Preliminaries

The free-space paraxial propagation formula derived in
the previous section will now be extended to the general
case of the paraxial propagation of FG beams of any or-
der through typical paraxial optical systems with axial
symmetry, characterized by the so-called ABCD optical
matrices. For FG beams of integer order, it was found
in [6] that the propagation problem can be dealt with
in exact terms by expanding the initial field distribution
given into Eqs. (8) and (2) as a finite superposition eLG
beams as follows:

ψ0(r) =

N−1∑
n=0

(−)n
(

N

n+ 1

)
eLGn

(
ikr2

2qN

)
, (28)
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where the symbol eLGn(x) = exp(x)Ln(−x) will be re-
ferred to as the elegant Laguerre function of order n and

the complex radius of curvature qN =
ka2

2iN
has also been

introduced. The initial distribution ψ0 is then recast as
follows:

ψ0(r) = exp

(
ikr2

2qN

)
GN
(

1, − ikr2

2qN

)
, (29)

where the function GN (·, ·) is defined, for integer N , as

GN (t, s) =

N−1∑
n=0

(−t)n
(

N

n+ 1

)
Ln(s) , (30)

In [6] it was proved that, if the initial field distribution
given by Eq. (29) feeds an axially symmetric paraxial
optical system described by the optical matrix M

M =

 A B

C D

 , (31)

then the wavefield at the output plane of the system, say
ψ1(r), takes on the following form:

ψ1(r) =

=

exp

(
ikr2

2QN

)
A

1

1 +
B

AqN

GN

 1

1 +
B

AqN

,

kr2

2iA2 qN

1 +
B

AqN

 ,

(32)
where an overall phase factor exp(ik`) (with ` being the
optical lenght) will be tacitly assumed and QN denotes
the complex quantity

QN =
AqN + B

C qN + D
. (33)

The problem of extending the function GN (t, s) toN /∈ N
will now be addressed.

B. Extension of the function GN (t, s) to N /∈ N

The starting point is the following Laplace transform
representation of GN (t, s) established in [9]:

GN (t, s) = exp(s)

∫ ∞
0

dξ exp(−ξ) J0
(

2
√
s ξ
)
L
(1)
N−1(ξ t) .

(34)

For N ∈ N, the Laguerre polynomials L
(1)
N−1 can be writ-

ten as

L
(1)
N−1(ξ t) =

N−1∑
n=0

Ln(ξ t) , (35)

so that, on substituting from Eq. (35) into Eq. (34), it is
found

GN (t, s) =

= exp(s)

N−1∑
n=0

∫ ∞
0

dξ exp(−ξ) J0
(

2
√
s ξ
)
Ln(ξ t) =

=

N−1∑
n=0

(1 − t)n Ln

(
st

t− 1

)
,

(36)
where in the last passage, [19, formula 3.24.6.2] has been
used. Equation (36) is a valid alternative, for N ∈ N, to
the definition given into Eq. (30). For the scopes of the
present paper, its importance stems from the fact that
the quantity GN can also be thought of as function of
two new variables, namely

1 − t =
1

1 +
AqN
B

,

st

t− 1
=

ikr2

2AB

1

1 +
B

AqN

,

(37)

and this will reveal of a certain importance in the rest of
our analysis.

In order to extend the integral into Eq. (34) to N /∈
N, the following notable formula, again established by
Brychkov [15], will be employed:∫ ∞

0

xα−1 exp(−ax) Jν(b
√
x)L(λ)

n (cx) dx =

=

(
b

2

)ν Γ
(
α+

ν

2

)
(λ+ 1)n

n! aα+ν/2Γ(ν + 1)
Ψ1

(
α+

ν

2
,−n

λ+ 1, ν + 1

∣∣∣∣∣ ca ,− b24a

)
.

(38)
In particular, on letting α = 1, a = 1, ν = 0, b = 2

√
s,

t = c, n = N − 1, and λ = 1, Laplace’s transform into
Eq. (34) takes on the form

GN (t, s) = N exp(s) Ψ1

(
1, 1−N
2, 1

∣∣∣∣ t,−s) . (39)

Again, it can be appreciated how the confluent hyperge-
ometric function Ψ1 constitutes the mathematical skele-
ton of the propagated field. But there is more. In Ap-
pendix D, the following relationship has been established:

Ψ1

(
1, 1−N
2, 1

∣∣∣∣ t,−s) =

=
exp(−s)

(1− t)1−N
Φ1

(
1−N, 1

2

∣∣∣∣ t

t− 1
,
st

t− 1

)
,

(40)

where Φ1 is the confluent hypergeometric function de-
fined by Eq. (21). On substituting from Eq. (40) into
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Eq. (39), we have

GN (t, s) = N (1− t)N−1 Φ1

(
1−N, 1

2

∣∣∣∣ t

t− 1
,
st

t− 1

)
(41)

so that Eq. (32) eventually becomes

ψ1(r) = exp

(
ikr2

2QN

)
qNN

B

 1

1 +
AqN
B


N

×Φ1

 1−N, 1
2

∣∣∣∣− AqN
B

,
ikr2

2AB

1

1 +
B

AqN

 .

(42)

Equation (42) summarizes the main result of the present
paper: the general FG beam paraxial propagation prob-
lem is reduced to the evaluation of the bivariate confluent
hypergeometric Φ1.

Again, it is possible to give Eq. (42) a different dress on
using the following integral representation of Φ1, estab-
lished in 2012 by Brychkov and Saad [20, formula 3.4]:

Φ1

(
a, 1
2

∣∣∣∣w, z) =

= (1− w)1−a
∫ 1

0

dξ (1− w ξ)a−2 1F1(a; 1; zξ) ,

(43)

which eventually leads to

ψ1(r) = exp

(
ikr2

2QN

)
qNN

B

 1

1 +
AqN
B


N

×
∫ 1

0

dξ(
1 +

AqN
B

ξ

)N+1 1F1

1−N ; 1;
ikr2

2AB

ξ

1 +
B

AqN

 .

(44)
Similarly as it was found for the free-space propagation
into Eq. (27), also the integral representation of ψ1 given
by Eq. (44) turns out to be defined onto a finite interval
[0, 1], despite the infinite support of both the initial field
distribution ψ0, as well as its Fourier transform. In the
present case, however, at least a qualitative explanation
of such a mathematical counterintuitive behavior can be
grasped by estimating the right side of Eq. (44) within the
asymptotic limit N → ∞, which corresponds to replace
the initial FG beam distribution ψ0 by that emerging
from a circular hole of radius a.

In particular, the asymptotics can be carried out in an
elementary way, by first noting that QN → B/D and
that

lim
N→∞

1(
1 +

AqN
B

ξ

)N+1
= exp

(
i
Aka2

2B
ξ

)
.

(45)

As far as Kummer’s function inside the integral is
concerned, the following asymptotics holds [13, for-
mula 13.8.13]:

1F1(1−N ; 1; z) ∼ exp(z/2) J0

(
2
√
N z

)
, N � 1 ,

(46)
which, once substituted into Eq. (44) together with
Eq. (45), leads to

ψ1(r) ∼ U

2i
exp

[
i
UD

2

( r
a

)2]

×
∫ 1

0

dξ exp

(
i
AU

2
ξ

)
J0

(
U
r

a

√
ξ
)
, N � 1 ,

(47)
where now U = ka2/B.

Finally, it is not difficult to convince that Eq. (47)
is nothing but von Lommel’s integral [21], namely, the
result of Collins’ integral for an incident wavefield ψ0 =
circ(r/a), as it should be expected.

V. CONCLUSIONS

Even today, the term“superGaussian beam” is synony-
mous with flat-top beam, despite the indisputable lim-
its, both practical and theoretical, of the SG model and
the availability of more efficient analytical approaches.
For rectangular geometries, Sedukhin’s work should have
contributed to identify flat-top profiles with an error
function. For two-dimensional, axially symmetric geome-
tries, Gori’s and Li’s models, despite allowing to solve ex-
actly the paraxial propagation problem, to date continue
struggling to supplant the obsolete SG model.

In the present paper, the FG model has been general-
ized to any values, no longer necessarily integer, of the or-
derN . In doing this, use has been made of the suggestion,
dating back more than twenty-five years ago, by Shep-
pard & Saghafi to mathematically identify the model FG
through an incomplete Gamma function. From a merely
technical viewpoint, our work rests on some beautiful re-
sults recently established by Brychkov and co-workers. In
this way, it has been possibile to analytically express the
optical wave field generated by the propagation of such
flat-top “Γ-beams” of any order through arbitrary axially
symmetric paraxial optical system (free space included)
in terms of a single bivariate confluent hypergeometric
function.

As a hint for possible future works, it would be worth
wondering if our results could further be generalizable
to deal with the propagation of Γ-beams through non-
symmetric ABCD optical systems, as well as through
turbulent media. Although at present we have not yet
delineated a possible development strategy, some recent
extensions of the eLG superposition scheme, like for in-
stance those in [22, 23], could be possible good inspiration
sources.
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The present model is purely analytical and provided
purely analytical closed expressions of the paraxially
propagated wave field. It is a rare situation in physics
in general and in optics in particular. The ubiquitous
presence of less and less known special functions, such
as bivariate hypergeometric ones certainly are, also con-
stitutes in our opinion an added value of the present
work. We strongly encourage our readers to go through
an interesting paper written more than twenty years ago
by Michael Berry [24], whose content seems nowadays
more than ever more relevant. In particular, the current
availability of powerful computational platforms, such as
Mathematica and Maple, will allow in the future to in-
crease the set of special functions whose evaluation could
be implemented at arbitrarily high accuracies. We hope
bivariate confluent hypergeometric functions, including
of course Ψ1 and Φ1, could soon become part of such a
mathematical arsenal.
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Appendix A: Proof of Eq. (8)

All integrals here presented have been found with
Mathematica. The M2 factor is defined by

M2 = 2π σr σp , (A1)

where σr and σp denote the widths across the plane z = 0
and the plane of spatial frequencies, respectively, both of
them normalized to the beam energy. Due to the axial
symmetry, σr can then be expressed (in units of a) as
follows:

σ2
r =

∫ ∞
0

dr r3 ψ2
0(r)∫ ∞

0

dr r ψ2
0(r)

. (A2)

The denominator turns out to be

∫ ∞
0

dr r ψ2
0(r) = π

1 −
Γ

(
N +

1

2

)
√
π Γ(N + 1)

 , (A3)

while the numerator is

∫ ∞
0

dr r3 ψ2
0(r)

π

2

1 +
1

N
− (2N + 1)

N

Γ

(
N +

1

2

)
√
π Γ(N + 1)

 .
(A4)

The spectral width σp can also be expressed in terms
of quantities defined across the plane z = 0, being (in
units of 1/a)

σ2
p =

1

2π

∫ ∞
0

dr r

(
∂ψ0

∂r

)2

∫ ∞
0

dr r ψ2
0(r)

, (A5)

where the numerator turns out to be

∫ ∞
0

dr r

(
∂ψ0

∂r

)2

= 21−2N Γ(2N) , (A6)

so that, on using again Eq. (6),

σ2
p =

1

π2 22N Γ(N)2

√
π Γ(N + 2) Γ(2N)

√
π Γ(N + 1) − Γ

(
N +

1

2

) .

(A7)
Finally, on substituting from Eqs. (A2) and (A7) into
Eq. (A1), Eq. (9) follows.

Appendix B: Solving Eq. (12)

Consider the following fourth order algebraic equation:

X4 − BX3 + A = 0 , (B1)

with A and B real positive parameters. On using the
Mathematica implementation of Cardano’s formula, it is
not difficult to prove that the real root we are interested
in can be expressed through the following algorithm:

X =
B

4

1 +

√
1 +

4Ξ

B2
+

√√√√√√√2

1 +
1√

1 +
4Ξ

B2

 − 4Ξ

B2

 ,
(B2)

where

Ξ =

4A

(
2

3

)1/3

∆
+

∆

181/3
,

(B3)

and

∆ =

[
9AB2 +

(
1 +

√
1 − 256

27

A

B4

)]1/3
. (B4)
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Appendix C: Proof of Eq. (23)

Due to the 2011 paper by Choi and Hasanov [18], the
following integral representation of Ψ1 can be established:

Ψ1

(
N + 1, 1
N + 1, 1

∣∣∣∣x, y) =
Γ(ε)

Γ(N)Γ(ε−N − 1)
×

∫ 1

0

∫ 1

0

dξ dη
ηN (1− ξ)N−1(1− η)ε−N−2

(1− xξ)N+1

× exp

(
− yη

xξ − 1

)
1F1

(
1− ε; 1;

yη

xξ − 1

)
(C1)

where ε denotes an arbitrary complex parameters which
must only satisfy the condition Re{ε} > Re{N} + 1. In
particular, on letting ε = N + 2, Eq. (C1) yields

Ψ1

(
N + 1, 1
N + 1, 1

∣∣∣∣x, y) =
Γ(N + 2)

Γ(N)Γ(1)
×

∫ 1

0

dξ
(1− ξ)N−1

(1− xξ)N+1

×
∫ 1

0

dη ηN exp

(
− yη

xξ − 1

)
1F1

(
−N − 1; 1;

yη

xξ − 1

)
=

=
Γ(N + 2)

Γ(N)

×
∫ 1

0

dξ
(1− ξ)N−1

(1− xξ)N+1

∫ 1

0

dη ηN 1F1

(
N + 2; 1;

yη

1− xξ

)
,

(C2)
where, in the last step, Kummer’s transformation has
been employed. The inner η integral can be evaluated by
using [25, formula 2.21.1.4], which yields∫ 1

0

dη ηN 1F1

(
N + 2; 1;

yη

1− xξ

)
=

=
1

N + 1
1F1

(
N + 1; 1;

y

1− xξ

)
.

(C3)

Finally, on substituting from Eq. (C3) into Eq. (C2), after
simple algebra Eq. (27) follows.

Appendix D: Proof of Eq. (36)

From the very definition into Eq. (20) we have

Ψ1

(
1, β
2, 1

∣∣∣∣ t,−s) =

∞∑
k=0

∞∑
`=0

(1)k+` (β)k
(2)k(1)`

tk

k!

(−s)l

`!
=

=

∞∑
k=0

(1)k (β)k
(2)k

tk

k!

∞∑
`=0

(1 + k)`
(1)`

(−s)l

`!
=

=

∞∑
k=0

(1)k (β)k
(2)k

tk

k!
1F1(1 + k; 1;−s) =

= exp(−s)
∞∑
k=0

(β)k
(2)k

tkLk(s) .

(D1)
Last series can be expressed in closed form via [26,
5.11.2.7], i.e.,

∞∑
k=0

(a)k t
k

(α+ β)k
Lαk (x) = (1− t)−aΦ1

(
a, β − 1
α+ β

∣∣∣∣ t

t− 1
,
tx

t− 1

)
,

(D2)
from which, on letting a = β, α = 0, β = 2, and x = s,
after straightforward algebra Eq. (40) follows.
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