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Abstract Double-cantilever beams (DCBs) arewidely
used to study mode-I fracture behavior and to measure
mode-I fracture toughness under quasi-static loads.
Recently, the authors have developed analytical solu-
tions for DCBs under dynamic loads with considera-
tionof structural vibration andwavepropagation.There
are two methods of beam-theory-based data reduc-
tion to determine the energy release rate: (i) using an
effective built-in boundary condition at the crack tip,
and (ii) employing an elastic foundation to model the
uncracked interface of the DCB. In this letter, analyti-
cal corrections for a crack-tip rotation of DCBs under
quasi-static and dynamic loads are presented, afforded
by combining both these data-reduction methods and
the authors’ recent analytical solutions for each. Con-
venient and easy-to-use analytical corrections for DCB
tests are obtained, which avoid the complexity and dif-
ficulty of the elastic foundation approach, and the need
for multiple experimental measurements of DCB com-
pliance and crack length. The corrections are, to the best
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of the authors’ knowledge, completely new. Verifica-
tion cases based on numerical simulation are presented
to demonstrate the utility of the corrections.
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foundation · Crack-tip rotation · Double-cantilever
beam test

1 Introduction

Double cantilever beams (DCBs) (Fig. 1a) are widely
used to study mode-I fracture behavior and to measure
mode-I fracture toughness. Several standard test meth-
odswere developed for the quasi-static testing ofDCBs
and subsequent post-processing of experimental data,
to measure mode-I fracture toughness. These include
ASTM D5528 (2014) for interlaminar fracture tough-
ness of carbon-fiber-reinforced plastics and ISO 25217
(2009) for fracture toughness of adhesives.

The beam-theory-based data-reduction method in
these standards assumes an effective boundary condi-
tion to calculate the energy release rate (ERR),whereby
each DCB arm is perfectly built-in at the crack tip (Fig.
1b). Clearly, however, the beam is not perfectly built-
in, and rotation may occur at the crack tip. So, the
assumption leads to overestimation of the ERR. One
correction that can be introduced to overcome this is to
replace the crack length awith an effective crack length
aeff = a + Δ, where Δ is an additional crack length
(Hashemi et al. 1989). When the cube root of the com-
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pliance C1/3 is plotted versus aeff, linear regression
should give an intercept of zero, thus providing one
means to determine Δ. This is sometimes called the
modified beam theory (MBT) method (ASTM D5528
2014).

Another data-reduction method is to introduce an
elastic foundation to model the uncracked region of
the DCB (Fig. 1c) (Kanninen 1973). This analytical
method of introducing an elastic foundation to model
DCBs was also used in various other research works,
for example, Kondo (1995), Abbaszadeh et al. (2017),
Škec et al. (2019). The advantage of using an elastic
foundation over an effective boundary condition is that
it automatically allows rotation at the crack tip, and no
correction is needed. One issue with the elastic foun-
dation, however, is its significant complexity and diffi-
culty of use in comparison to the effective-boundary-
condition method.

The authors have recently developed analytical solu-
tions for DCBs under dynamic loads with considera-
tion of structural vibration and wave propagation using
both above methods, namely, with an effective bound-
ary condition (Chen et al. 2020a) and with an elastic
foundation (Chen et al. 2020b). Analytical corrections
for quasi-static and dynamic DCB tests, afforded by
combining both these methods, are presented in this
letter. To the best of the authors’ knowledge, these cor-
rections are completely new. A convenient and easy-
to-use relationship between the additional crack length
for crack-tip rotationΔ and the elastic foundation stiff-
ness k is obtained. Therefore, with knowledge of the
foundation stiffness k, which is often known with rea-
sonable accuracy, the appropriate Δ required for post-
processing the experimental data can be determined
immediately without the need for multiple measure-
ments of a and the subsequent linear regression ofC1/3

as a function of a.
For instance, for adhesively bonded DCBs under

plane-stress conditions, the foundation stiffness k is
simply twice the Young’s modulus of the adhesive
Eadhesive (Chen et al. 2020b). For mono-material or co-
cured fiber-reinforced-polymer (FRP) DCBs, there is
no unanimous agreement on the appropriate foundation
stiffness. Kanninen (1973) claimed that the selection of
foundation stiffness was ‘arbitrary’ and required exper-
imental confirmation. Nevertheless, for these types of
DCB, the foundation stiffness is usually reckoned as
being of the same order as the DCBmaterial’s Young’s
modulus (Wang et al. 2013). For DCBs made of one

isotropic material, Kanninen (1973) used k = 2Eb/h
(where E is the Young’s modulus, b is the DCB width,
and h is the thickness of each DCB arm). For co-cured
FRP DCBs, Turon et al. (2007) argued by mechanical
considerations that the foundation stiffness is k = bEnn

where Enn = αE3/h0 is the interface stiffness, and E3

is the transverse modulus, h0 is the thickness of the
adjacent sub-laminate, and α is a parameter that may
be taken as 50.

As stated above, for adhesively bonded DCBs under
plane-stress conditions, the relationship between the
Young’s modulus of the adhesive Eadhesive and the
foundation stiffness k is Eadhesive = 0.5k, which
can be readily explained as follows: With refer-
ence to Fig. 1a, the force applied to the DCB is
Eadhesive

∫ L
0 2w(x, t) dx , where 2w(x, t) is the rela-

tive displacement between the two DCB arms. (The
force would be Eadhesiveb

∫ L
0 2w(x, t) dx/h0, but as

per Diehl (2008), the adhesive thickness h0 is taken as
a unity constitutive thickness, ensuring that the strain
equals the relative separation displacement; and b is
also unity under plane-stress conditions.) By compar-
ison, with reference to Fig. 1c, the force required to
produce the same deflection w(x, t) in the half DCB
model is k

∫ L
0 w(x, t) dx . The cases are equivalent, and

so the relationship Eadhesive = 0.5k is a result of equat-
ing the two force expressions, with the coefficient’s
value of 0.5 being due to the symmetric deformation of
theDCBand its interface. Cabello et al. (2016) reported
a general analytical model for the relationship between
the Young’s modulus of the adhesive Eadhesive and the
foundation stiffness k under plane-strain conditions.

It is worth noting the difference between the foun-
dation modulus k0 (with SI units of Nm−3) seen in
some works, and the foundation stiffness k (with SI
units of Nm−2) used by Kanninen (1973) and in this
letter. Since k = 2Eadhesive under plane-stress condi-
tions with unity DCB width, k, in general, depends on
the DCB width and is not purely a material property.
The foundation modulus k0, however, is defined as k/b
and so can be considered a material parameter.

The format of this letter is as follows: The theory is
presented in Sect. 1. Verification cases are presented in
Sect. 3. Conclusions are given in Sect. 4.
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Fig. 1 a DCB schematic; b
DCB arm with effective
boundary condition; c DCB
arm with uncracked region
resting on elastic foundation
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2 Theory

Consider theDCBconfiguration shown in Fig. 1,where
a is the crack length, L is the uncracked length, 2h is
the thickness of the DCB, with h being the thickness of
eachDCB arm, and vt is the opening displacement sud-
denly applied at time t = 0 with v being the constant-
opening rate. Thewidth of theDCB is b, and so for each
arm the cross-sectional area is A = bh and its second
moment is I = bh3/12. The Young’s modulus of the
DCBmaterial is E and its density is ρ. As discussed in
the introduction, there are two methods of data reduc-
tion using the beam theory, namely, by employing an
effective boundary condition with each DCB arm per-
fectly built-in at the crack tip, as shown in Fig. 1b; or,
by using an elastic foundation to model the uncracked
region, as shown in Fig. 1c.

2.1 Dynamic ERR using effective boundary condition

The dynamic ERR of the DCB shown in Fig. 1a, based
on the effective boundary condition shown in Fig. 1b,
is (Chen et al. 2020a)

G = 9E Iv2t2

ba4
+ 12

√
ρAE Iv2t

ba2

∞∑

i=1

Λi

λi
sin (ωi t) ,

(1)

whereωi = λ2i a
−2√E I/(ρA) is the angular frequency

of the ith vibration mode, and λi is the ith solution of
the frequency equation tan(λi ) − tanh(λi ) = 0, and
Λi ≈ (−1)i

√
2. The first term in Eq. (1) is the ERR

due to the strain energy of quasi-static motion, and the
second term is theERRdue to the kinetic energy of cou-

pling between quasi-static motion and local vibration.
To account for rotation at the crack tip, the crack length
a should be replaced with the effective crack length aeff
by including the additional crack lengthΔ, determined
below. This may or may not be implemented by direct
substitution of aeff for a in Eq. (1), as discussed as fol-
lows.

One way to determine the additional crack length Δ

under quasi-static loading is by using the standardized
MBTmethod (ASTMD5528 2014). The complianceC
of theDCB is the ratio of the load-point displacement to
the applied load.When the cube root of the compliance
C1/3 is plotted as a function of the crack length a, the
negative intercept with the a axis of the line of best fit
is the additional crack length Δ.

The MBT method cannot, however, be directly
applied to dynamic loading cases due to strong oscil-
lation of the external load, as observed in many exper-
iments, for example, those by Blackman et al. (1995).
This leads to oscillating compliance, and so no linear
relationship between C1/3 and a can be obtained. Note
that under dynamic loads without correction for the
additional crack length Δ, the frequency of the ERR
may not be accurately predicted, and this is confirmed
by the first verification case study in Sect. 3.

The oscillating compliance based on the effective
boundary condition is (Chen et al. 2020a, c)

C = a3

3E I − a5
t

√
ρAE I

∑∞
i=1

Λi
λ3i

φ3
i (a) sin (ωi t)

, (2)

where φi (x) is the mode shape of the ith vibration
mode, which can found in Chen et al. (2020a, c), but
which is not critical for this discussion. Although the
compliance oscillates with respect to time, it oscil-
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lates around the mean value of its quasi-static com-
pliance, a3/(3E I ). This suggests that the additional
crack lengthΔ for the dynamic casemay be the same as
that determined with the MBT method for quasi-static
loads. This is confirmed by the second verification case
study in Sect. 3.

Under quasi-static loads, there are two equivalent
ways to implement the effective crack length aeff = a+
Δ, as laid out inASTMD5528 (2014) (1) by direct sub-
stitution of aeff for crack length a in the expression for
ERR; or (2) by direct substitution of an effective flexu-
ral modulus Eeff for E , where Eeff = a3E/(a + Δ)3.
Under dynamic loads, however, these two implemen-
tations of the effective crack length aeff are not equiva-
lent in terms of the natural frequency. Substituting the
effective crack length aeff gives the natural frequencies
asωi = λ2i (a+Δ)−2√E I/(ρA), whereas substituting
the effective flexural modulus Eeff gives the natural fre-
quencies as ωi = λ2i (a + Δ)−2√E I (a + Δ)/(ρAa).
These two expressions for the natural frequencies are
clearly not equal. The second verification case study in
Sect. 3 shows that substituting the effective crack length
provides the more accurate dynamic ERR in terms of
natural frequency, and so

G = 9E Iv2t2

ba4eff

+12
√

ρAE Iv2t

ba2eff

∞∑

i=1

Λi

λi
sin

(
λ2i

a2eff

√
E I

ρA
t

)

. (3)

2.2 Dynamic ERR using elastic foundation

The dynamic ERR of the DCB shown in Fig. 1c, based
on the use of an elastic foundation to model uncracked
region, is (Chen et al. 2020b)

G = 9E Iv2t2 f Ust
ba4

− v2t

b

∞∑

i=1

√
ω1

ωi
Hi

dωi

da
sin (ωi t),

(4)

where Hi , which is defined in Chen et al. (2020b), rep-
resents the coupling of free vibration and the applied
quasi-static motion, an inherent property of the DCB
configuration, and

f Ust = 4a4γ 4(aγ + 1)2

(2a3γ 3 + 6a2γ 2 + 6aγ + 3)2
, (5)

where γ = 4
√
k/(4E I ). Equation (5) applies under the

assumption that γ L ≥ 3, and f Ust is the reduction factor

of the quasi-static motion component of the ERR GU
st

due to the elastic foundation.When the foundation stiff-
ness becomes very large, so that k and γ approach infin-
ity, then f Ust = 1 and GU

st = 9E Iv2t2/(ba4), which is
the same as the first term in Eq. (1). An infinite founda-
tion stiffness or rigid interface is therefore equivalent
to the effective boundary condition.

2.3 Relationship between effective boundary
condition and elastic foundation models

The two methods of data reduction using the beam the-
ory described above should be equivalent and produce
the same results once appropriate values of the inter-
face stiffness k and additional crack lengthΔ have been
determined. Equations (3) and (4) should therefore be
equal, and by extension, their quasi-static components
should also be equal, giving

9E Iv2t2

ba4eff
= 9E Iv2t2 f Ust

ba4
. (6)

SolvingEq. (6) togetherwithEq. (5) and substituting
aeff = a+Δ, the additional crack-length correction for
crack-tip rotation Δ is

Δ = aeff − a

= 1

γ

4

√
(2a3γ 3 + 6a2γ 2 + 6aγ + 3)2

4(aγ + 1)2
− a. (7)

Equation (7) provides a convenient relationship
between the additional crack length for crack-tip rota-
tion Δ and the elastic foundation stiffness k. More-
over, it also provides an analytical correction for DCB
tests without using the MBTmethod to measure multi-
ple compliances and crack lengths for regression. The
foundation stiffness for interfaces of adhesive, mono-
material and co-cured FRP can be found in Chen et al.
(2020b), Kanninen (1973), Turon et al. (2007), respec-
tively, as elaborated in Sect. 1.

To the best of the authors’ knowledge, this is the first
time that Eq. (7) has been reported. The relationship is
applicable to both stationary and propagating cracks
under quasi-static loads, and to stationary cracks under
dynamic loads. It cannot, however, be used for prop-
agating cracks under dynamic loads since in this case
Δ is rate-dependent due to the influence of ‘stick-slip’
crack propagation, as shownby experimental investiga-
tions (Blackman et al. 1996). In contrast, the foundation
stiffness is a material property and is rate-independent.
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Fig. 2 Geometry of DCB for verification

3 Verification

Verification case studies were conducted using finite-
element-method (FEM) simulation of the DCB shown
in Fig. 2 (its width is 1 mm). An isotropic elastic mate-
rial was used, with the Young’s modulus of 10 GPa, the
Poisson’s ratio of 0.3, and the density of 103 kg m−3.

A 2D FEM model was built using plane-stress ele-
ments (CPS4R) in Abaqus/Explicit, which include the
inertia effects. All viscous parameters were set to zero
to avoid unnecessary damping. The virtual crack clo-
sure technique was used to determine the dynamic
ERR. The nodes of the two DCB arms were shared
along the uncracked interface, and no contact wasmod-
elled. A uniform mesh size of 0.1 mm was used.

3.1 Effective boundary condition without correction
for crack-tip rotation

Results from Eq. (1) for ERR based on the effective
boundary condition without any correction for crack-
tip rotation are shown in Fig. 3 alongside FEM simu-
lation results. Eq. (1) agrees with the FEM except for
being out of phase. This indicates that the frequency
is not accurately predicted by this approach without
correction for crack-tip rotation. Moreover, the analyt-
ical model is stiffer than the FEM model. Comparison
between Fig. 3a, b also demonstrates that by including
more vibration modes, the analytical results become
closer to the FEM simulation results.

3.2 Effective boundary condition with correction for
crack-tip rotation

Following the MBT method for quasi-static loading,
the additional crack length Δ is determined by calcu-
lating the compliance C for various crack lengths a

(a)

(b)

Fig. 3 Comparison of ERR results from FEM (gray line) and
from analytical theory without compensating for crack-tip rota-
tion: a first vibration mode; b first five vibration modes

and performing linear regression of C1/3 with respect
to a to find the negative intercept with the a axis.
Abaqus/Standard, which does not include the inertia
effects, was used to conduct quasi-static FEM simula-
tions of the DCB in Fig. 2 with several different crack
lengths to find the respective external force and dis-
placement at the load point. Linear regression as per
the MBT method is shown in Fig. 4, and the additional
crack length was determined as Δ = 1.34 mm.

The additional crack length of Δ = 1.34 mm was
then implemented in Eq. (1) by the two methods dis-
cussed in Sect. 2.1, namely, by (1) direct substitution
of effective crack length aeff = a + Δ for crack length
a, and (2) direct substitution of effective flexural mod-
ulus Eeff = a3E/(a+Δ)3 for the Young’s modulus E .
Note that the former corresponds to Eq. (3). The ana-
lytical ERR results from these two methods are pre-
sented in Fig. 5a, b, respectively (black lines) along-
side the FEM simulation results (gray lines). Appar-
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Fig. 4 Cube-root compliance regression with respect to crack
length by results from quasi-static FEM simulation

ently, although both methods agree with the FEM, the
method of directly substituting aeff for a in Eq. (1) is
more accurate for predicting the frequency of the ERR.

3.3 Effective crack length versus foundation stiffness

The DCB can also be analytically modelled by resting
the uncracked region of one DCB arm on an elastic
foundation, as described in Sect. 2.2. The foundation
stiffness is required (just as the effective crack length is
required for the effective-boundary-condition model).
It is reported in Chen et al. (2020b) that a foundation
stiffness of k = 0.35E gives an excellent agreement
with FEM simulation. Results for ERR from Eq. (4)
with k = 0.35E are shown in Fig. 6 (black line) along-
side FEM simulation results (gray line). As expected,
there is a very close agreement between the theory
and the FEM as the elastic foundation automatically
accounts for the crack-tip region.

According to Eq. (7), the additional crack-length
correction for crack-tip rotation Δ that corresponds to
a foundation stiffness k = 0.35E is Δ = 1.66 mm,
which is very close to the value of Δ = 1.34 mm,
determined with the MBT method.

Now the ERR is calculated using Eq. (3), based on
the effective boundary condition, but using the addi-
tional crack length of Δ = 1.66 mm. The results are
plotted in Fig. 7b (black line). For convenient side-
by-side comparison, Fig. 5a, based on the additional
crack length of Δ = 1.34 mm, is repeated in Fig. 7a
(black line). The difference between the values of Δ

are not significant, but Δ = 1.66 mm (derived with

(a)

(b)

Fig. 5 Implementation of additional crack lengthΔ by the effec-
tive crack length aeff (a) and the effective flexural modulus Eeff
(b)

Fig. 6 Comparison of ERR results from FEM (gray line) and
from analytical theory with elastic foundation (black line)

the elastic-foundation model) gives a marginally more
accurate result in terms of the frequency thanΔ = 1.34
mm (obtained with the MBT method).

123



Analytical corrections for double-cantilever beam tests 275

(a)

(b)

Fig. 7 Comparison of ERR results from FEM (gray line) and
from analytical theory with effective boundary condition (black
line). Effective crack-length determined with MBT method (a)
and relating to elastic foundation (b)

4 Conclusion

Analytical corrections for the crack-tip rotation of
DCBs under quasi-static and dynamic loads were sug-
gested. They can be readily applied in beam-theory-
based data reduction of DCB test results to determine
the ERR. The corrections are, to the best of the authors’
knowledge, completely new. When using an effective
boundary condition, whereby each DCB arm is per-
fectly built-in at the crack tip, a correction for rotation
at the crack tip should be introduced. The frequency of
the oscillating dynamic ERR and the compliance of the
DCB are not accurate without correcting for crack-tip
rotation.

The standardizedMBTmethod for quasi-static load-
ing uses experimental measurements of compliance
and crack length to determine the additional crack
length required to correct for crack-tip rotation. It was

shown that the MBT method can also be applied to
dynamic caseswith stationary cracks by direct substitu-
tion of the effective crack length for the crack length in
the analytical theory. Furthermore, although the com-
pliance oscillates with respect to time in dynamic load-
ing cases, it oscillates around the mean value of its
quasi-static compliance, and so the additional crack
length for dynamic loads is the sameas that under quasi-
static loads. TheMBTmethod cannot, however, be used
for cases of propagating cracks under dynamic loads
since the additional crack length is then rate-dependent
due to the influence of ‘stick-slip’ crack propagation.

Although the MBT method can be applied to the
results of quasi-static experiments or FEM simulations
to determine the required additional crack length, this
letter presents a convenient and easy-to-use analyti-
cal correction that gives the additional crack length
in terms of the interface stiffness. The correction was
obtained by relating the dynamic ERR of a DCB with
the effective boundary condition to the dynamic ERR
of a DCB with its uncracked interface, represented by
an elastic foundation. The elastic foundation allows the
crack tip to rotate automatically, and no further correc-
tion is needed. Therefore, with knowledge of the inter-
face stiffness, which is often known with reasonable
accuracy, the additional crack length required for post-
processing experimental data can be determined imme-
diately without the need for multiple measurements of
DCB compliance and crack length.

Verification studies were conducted using the FEM.
It was shown that the two beam-theory-based data-
reduction methods, namely, using an effective built-
in boundary condition at the crack tip, and employing
an elastic foundation to model the uncracked interface
of the DCB, are equivalent if their respective addi-
tional crack length or interface stiffness are related by
the reported analytical relationship. This conclusion is
valid for both quasi-static and dynamic loading cases,
provided there is no ‘stick-slip’ crack propagation.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
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statutory regulation or exceeds the permitted use, you will need
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a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.
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