
From the curves in Figure 2, we can see that a cubic cavity
of 40 mm side length is the most efficient in reducing the
oscillator noise of an active patch antenna with intrinsically
poor noise performance. However, this would increase the
volume and cost of a compact active antenna. Other easy and
simple approaches including using a higher « substrate orr
using a low-noise device; even the use of a low-profile shallow
cavity can also reduce the phase noise level up to 27 dB.

It was found in our experiments that, although the above
noise reduction techniques can be combined together, i.e.,
using a low-noise device, a high « substrate, and a deepr
cavity simultaneously, the phase noise level of the whole
circuit could not be further reduced from curve 3 in Figure 2.
The maximum achievable performance is ultimately decided
by the device, the combined antenna Q-value, and their
interaction.
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Vol. MTT-5, Jan. 1957, pp. 57]62.

Q 1998 John Wiley & Sons, Inc.
CCC 0895-2477r98

ANALYTICAL DERIVATION OF
A CONFORMAL PERFECTLY
MATCHED ABSORBER FOR
ELECTROMAGNETIC WAVES
F. L. Teixeira1 and W. C. Chew1
1 Center for Computational Electromagnetics
Electromagnetics Laboratory
Department of Electrical and Computer Engineering
University of Illinois at Urbana ] Champaign
Urbana, Illinois 61801-2991
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ABSTRACT: We present an analytical derï ation of a 3-D conformal
( )perfectly matched layer PML for mesh termination in general orthogo-

nal cur̈ ilinear coordinates. The derï ation is based on the analytic
continuation to complex space of the normal coordinate to the mesh
termination. The resultant fields in the complex space do not obey
Maxwell’s equations. Howe¨er, it is demonstrated that, through simple
field transformations, a new set of fields can be introduced so that they
obey Maxwell’s equations for an anisotropic medium with properly
chosen constitutï e parameters depending on the local radii of cur̈ ature.
The formulation presented here reco¨ers, as particular cases, the pre¨i-
ously proposed Cartesian, cylindrical, and spherical PMLs. A pre¨iously

( )employed anisotropic quasi- PML for conformal terminations is shown
to be the large radius of cur̈ ature approximation of the anisotropic
conformal PML derï ed herein. Q 1998 John Wiley & Sons, Inc.
Microwave Opt Technol Lett 17: 231]236, 1998.

Key words: absorbing boundary condition; absorbing media;
electromagnetic scattering

1. INTRODUCTION

The simulation of open-region scattering problems using a
Ž .partial differential equation PDE solver usually requires
Ž . w xabsorbing boundary conditions ABCs 1 to properly trun-

cate the computational domain and to maintain the sparsity
of the resultant matrices. In 1994, a new material ABC, the

Ž .perfectly matched layer PML , was introduced in the litera-
w xture 2, 3 , and since then, it has been extensively studied

w x4]14 . Being a material ABC, the PML leads naturally to
sparse systems, is well suited for parallel implementation,
and, consequently, very attractive for computational pur-
poses.

The original PML concept applied only to Cartesian coor-
Ž .dinates planar interfaces . To extend its range of applicabil-

ity, the PML concept was later extended to nonorthogonal
w xFDTD grids with good results 13, 14 . However, an approxi-

mate impedance matching condition was used since the per-
fect matching condition was derived based on the assumption
of the metric coefficients to be independent of the spatial
coordinates.

More recently, true PMLs, in the sense of providing
reflectionless absorption in the continuum limit, were derived

w x w xfor 2-D cylindrical 15]19 , 3-D cylindrical 20 , and 3-D
w xspherical interfaces 17, 18, 20 .

As with any ABC, it is of interest to investigate the
possibility to further extend the PML concept to a conformal
PML. Along with its natural flexibility, a conformal ABC has
the advantage of promoting, when used in combination with
conformal computational grids, a further reduction in the
amount of buffer space in the computational domain around
the scatterer.

w xA previous attempt 21 to derive a conformal PML was
only partially successful in the sense that a true PML was not
obtained, but only an approximate one. This approximate

Ž .PML quasi-PML gives a perfect matching condition only in
Žthe limit when the local radii of curvature go to infinity then

.it recovers the Cartesian PML . However, even with this
approximation, quite encouraging results were obtained in

Ž . w xfinite-element FEM simulations 21 .
In this work, we present an analytic derivation of the true

3-D conformal PML on a general orthogonal curvilinear
coordinate system. It is demonstrated that the conformal
PML can be expressed in terms of an anisotropic constitutive
tensor depending on the local principal radii of curvatures of
the termination surface. The derivation is based on the

w xcomplex coordinate stretching approach 5, 6 through a
Žcomplex stretching analytic continuation to the upper half

. Žplane of the normal coordinate along the PML or termina-
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.tion surface . The previously derived PMLs in Cartesian,
cylindrical, and spherical coordinates are shown to be special
cases of this conformal PML. The quasi-PML is shown to be
the zeroth-order approximation of the anisotropic conformal
PML for large radii of curvature.

Throughout this work, the convention eyiv t is adopted.

2. CONFORMAL PERFECTLY MATCHED LAYER

ŽWe start by introducing a convex when viewed from the
. Ž .outside , closed surface S around the scatterer s , represent-

ing the interface between free space and the PML region, as
illustrated in Figure 1. For a concave scatterer or for a group
of scatterers, such a surface can always be chosen given by
considering its convex hull. Note that a convex surface S
defines a concave surface PML as seen from inside the
computational domain. The restriction to a concave PML is
an important one, as will be discussed later.

At any given point P on S, a local, right-handed reference
frame can be defined through the orthonormal vectors u , u ,1 2
u . The unit vectors u and u are tangent to S at P along3 1 2
the principal lines of curvature, and u s u = u is the unit3 1 2
vector that is outwardly normal to S at this point. In terms of

Ž . < <local coordinates j , j , j , we write u s  rrj r  rrj ,1 2 3 i i i
i s 1, 2, 3, where r is the position vector. This reference
frame is called a Darboux frame, and the first fundamental
form induced by the coordinates j and j on the surface S1 2

w xis diagonal 22 . As a consequence, the curvilinear coordinate
system j , j , j is orthogonal having a diagonal metric. Any1 2 3
point P9 in this local reference frame is uniquely denoted by
the local coordinates j , j , j . The equation j s 0 repre-1 2 3 3
sents the surface S. The points of constant j corresponds to3
parallel surfaces in distance j to S, and the unit vectors are3

Ž . Ž .functions of j and j , only: u s u j , j , u s u j , j ,1 2 1 1 1 2 2 2 1 2
Ž .u s u j , j . If the principal radii of curvature at the3 3 1 2

Ž . Ž . Žpoint P in S are given by r j , j and r j , j both01 1 2 02 1 2
.positive for S convex , then at a point P9, they will be given

Ž . Ž . Ž .by r j , j , j s r j , j q j and r j , j , j s1 1 2 3 01 1 2 3 2 1 2 3
Ž .r j , j q j .02 1 2 3
It is well known that in any orthogonal system of curvilin-

ear coordinates j , j , j defined by the diagonal metric1 2 3
g s g d with g s h2, i s 1, 2, 3, the Maxwell’s equationsi j ii i j ii i

Figure 1

w xfor an isotropic medium are written as 23

1  
Ž . Ž . Ž .h E y h E y ivmH s 0 1a3 3 2 2 1h h j j2 3 2 3

1  
Ž . Ž . Ž .h E y h E y ivmH s 0 1b1 1 3 3 2h h j j3 1 3 1

1  
Ž . Ž . Ž .h E y h E y ivmH s 0 1c2 2 1 1 3h h j j1 2 1 2

 
Ž . Ž .h h eE q h h eE2 3 1 3 1 2j j1 2


Ž . Ž .q h h eE s h h h r 21 2 3 1 2 3j 3

1  
Ž . Ž . Ž .h H y h H q iveE s J 3a3 3 2 2 1 1h h j j2 3 2 3

1  
Ž . Ž . Ž .h H y h H q iveE s J 3b1 1 3 3 2 2h h j j3 1 3 1

1  
Ž . Ž . Ž .h H y h H q iveE s J 3c2 2 1 1 3 3h h j j1 2 1 2

 
Ž . Ž .h h mH q h h mH2 3 1 3 1 2j j1 2


Ž . Ž .q h h mH s 0. 41 2 3j 3

Using the local coordinate system defined above, we have
h s r rr , h s r rr , and h s 1.1 1 01 2 2 02 3

w xIt has been previously observed 17]20 that the modified
Maxwell’s equations for PML media in Cartesian, cylindrical,
and spherical coordinates reduce to the ordinary Maxwell’s

Ž .equations on a complex space, where the x, y, z Cartesian ,
Ž . Ž .r, z cylindrical , and r spherical coordinates are analyti-

cally continued to a complex space to achieve a reflectionless
absorption on the corresponding directions.

In strict analogy to the Cartesian, cylindrical, and spheri-
cal PMLs, the conformal PML can be obtained through a

Žcomplex stretching analytic continuation to the upper-half
.complex plane on the normal coordinate j :3

Ž .s zj j3 3˜ Ž . Ž .j ªj s s z dz s a z q i dzH H3 3 ž /v0 0

Ž .D j 3Ž . Ž .s b j q i 53 v

where a G 1 and s G 0
The effect of this stretching on a vector propagating wave

can be seen, e.g., by locally expanding the wave in terms of a
w xgeneralized Wilcox expansion 24, 25 in terms of the coordi-

nates j , j , j :1 2 3

ik j q`0 3 Ž .e E j , jn 1 2Ž . Ž .E j , j , j s 6Ý1 2 3 1r2 nr2Ž . Ž .4p r r r rns01 2 1 2
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Ž w x.where k s vrc. Note that as observed in 24 the lowest0
Ž .order term in 6 corresponds to the geometrical optics

spreading factor for a doubly curved wavefront. By applying
Ž . Ž .the mapping 5 in 6 , we arrive at

ycy 1DŽ j . i k bŽ j . q`3 0 3 Ž .e e E j , jn 1 2˜Ž . Ž .E j , j , j s 7Ý1 2 3 1r2 nr2Ž . Ž .4p r r r r˜ ˜ ˜ ˜ns01 2 1 2

˜ ˜where r s r q j , r s r q j , and the induced exponen-˜ ˜1 01 3 2 02 3
tial decay along the normal coordinate for s G 0 is evident.
Also, if a G 1, additional attenuation can be achieved for
evanescent waves, if they exist. This is in analogy to the
Cartesian PML. Note also that the complex stretching on the
normal coordinate preserves the transverse boundary condi-

Ž .tions over the PML interface. However, the field in 7 does
Ž .not obey Maxwell’s equations: instead, the substitution of 5

Ž . Ž .in 1 ] 4 leads to the following set of equations inside the
conformal PML:

1  1 
˜Ž . Ž . Ž .E y h E y ivmH s 0 8a3 2 2 1˜ j s jh 2 32

1 1  
˜Ž . Ž . Ž .h E y E y ivmH s 0 8b1 1 3 2˜ s j jh 3 11

1  
˜ ˜Ž . Ž . Ž .h E y h E y ivmH s 0 8c2 2 1 1 3j j˜ ˜h h 1 21 2

  1 
˜ ˜ ˜ ˜Ž . Ž . Ž .h eE q h eE q h h eE s 0 9Ž .2 1 1 2 1 2 3j j s j1 2 3

1  1 
˜Ž . Ž . Ž .H y h H q iveE s 0 10a3 2 2 1˜ j s jh 2 32

1 1  
˜Ž . Ž . Ž .h H y H q iveE s 0 10b1 1 3 2˜ s j jh 3 11

1  
˜ ˜Ž . Ž . Ž .h H y h H q iveE s 0 10c2 2 1 1 3j j˜ ˜h h 1 21 2

  1 
˜ ˜ ˜ ˜Ž . Ž .h mH q h mH q h h mH s 0Ž .2 1 1 2 1 2 3j j s j1 2 3

Ž .11

˜ ˜ Žwhere we used h s r rr , h s r rr since these metric˜ ˜1 1 01 2 2 02
coefficients are functions of j and must be changed accord-3

˜. Ž .Ž .ingly , h s 1, and rj s 1rs rj . No sources are3 3 3
assumed inside the PML.

A system of differential equations first order in time can
Ž . Ž .be derived from 8 and 10 with the aid of auxiliary fields, in

w xa manner very similar to 18 . A time-stepping scheme can
then be easily implemented. The most salient feature of
Ž . Ž . Ž .8 ] 11 in addition to its complicated appearance! is that
the fields E , H inside the PML do not satisfy the originali i
Maxwell’s equations.

We can summarize some basic properties of this new
system of partial differential equations, in the case of a
concave PML, as follows.

Ž .1. In the physical region i.e., where s s 1 , it reduces to
the usual Maxwell’s equations.

2. Any closed-form field solution of the Maxwell’s equa-
tions in this general orthogonal curvilinear system can
be mapped to solutions of this new system through a
simple analytic continuation on the normal variable:

˜ Ž . Ž .j ª j , as done in the passage from Eq. 6 to Eq. 7 .3 3
No reflected field is induced due to this analytic contin-

Ž .uation in the continuum .
3. This analytic continuation preserves the analyticity of

the solutions on the upper-half complex v-plane, as
long as we limit ourselves to positive radii of curvature
Ž . Ž .r ) 0 and r ) 0 concave or planar PML . This01 02
means that, in this case, the resultant frequency-domain
solutions are still causal in terms of a real-axis Fourier
inversion contour or, equivalently, that the solutions

Žare dynamically stable. Otherwise nonconcave, nonpla-
.nar PML , the solutions will contain singularities in the

upper-half plane, implying time-domain solutions that
may grow unbounded. This will be discussed in more
detail later.

The fact that this system of equations is not the original
Maxwell’s equations is a drawback for some applications. In
the next section, we show how to build a conformal PML

Ž . Ž .formulation from 8 ] 11 which satisfies Maxwell’s equations
with an anisotropic medium.

3. ANISOTROPIC CONFORMAL PERFECTLY
MATCHED ABSORBER

In this section, we describe how to develop a conformal
anisotropic PML absorber for the Maxwell’s equations from
the previous complex-space formulation. This is particularly
useful for applying the conformal PML to methods such as
the FEM.

˜ ˜We start by introducing a new set of fields E , H obtainedi i
by using the following transformations on the E , H fields ofi i

˜ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž . Ž .8 ] 11 : E s h rh E , E s h rh E , E s sE , H s1 1 1 1 2 2 2 2 3 3 1
˜ ˜ ˜ ˜Ž . Ž .h rh H , H s h rh H , H s sH .1 1 1 2 2 2 2 3 3

˜Ž .We note that, since the factors h rh are continuousi i
˜Žalong the free-space]PML interface both r and j arei 3

.continuous , the original tangential fields E , H , E , H and1 1 2 2
˜ ˜ ˜ ˜the transformed tangential fields E , H , E , H obey the1 1 2 2

same set of boundary conditions at the free-space]PML
interface. Therefore, since E , H , E , H are perfectly1 1 2 2

˜ ˜ ˜ ˜matched at this interface, E , H , E , H are also perfectly1 1 2 2
matched.

Furthermore, by substituting the transformed fields into
Ž . Ž .8 ] 11 , we arrive at the equations

˜1   sh h1 2˜ ˜ ˜Ž .E y h E y ivm H s 03 2 2 1˜ž /h j j h h2 2 3 1 2

Ž .12a

˜1   sh h1 2˜ ˜ ˜Ž .h E y E y ivm H s 01 1 3 2˜ž /h j j h h1 3 1 1 2

Ž .12b

˜ ˜1   h h1 2˜ ˜ ˜Ž . Ž .h E y h E y ivm H s 02 2 1 1 3ž /h h j j sh h1 2 1 2 1 2

Ž .12c
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˜ ˜ sh h  sh h1 2 1 2˜ ˜h e E q h e E2 1 1 2˜ ˜ž / ž /j jh h h h1 21 2 1 2

˜ ˜ h h1 2 ˜ Ž .q h h e E s 0 131 2 3ž /j sh h3 1 2

˜1   sh h1 2˜ ˜ ˜Ž .H y h H q ive E s 03 2 2 1˜ž /h j j h h2 2 3 1 2

Ž .14a

˜1   sh h1 2˜ ˜ ˜Ž .h H y H q ive E s 01 1 3 2˜ž /h j j h h1 3 1 1 2

Ž .14b

˜ ˜1   h h1 2˜ ˜ ˜Ž . Ž .h H y h H q ive E s 02 2 1 1 3ž /h h j j sh h1 2 1 2 1 2

Ž .14c

˜ ˜ sh h  sh h1 2 1 2˜ ˜h m H q h m H2 1 1 2˜ ˜ž / ž /j jh h h h1 21 2 1 2

˜ ˜ h h1 2 ˜ Ž .q h h m H s 0. 151 2 3ž /j sh h3 1 2

Ž . Ž .A careful look at Eqs. 12 ] 15 reveals that they are just the
Maxwell’s equations on the original orthogonal curvilinear

Ž . Ž . Ž .coordinates system of 1 ] 4 characterized by the real
metric g s g d with g s h2, i s 1, 2, 3, and h s 1, buti j ii i j ii i 3
now for an anisotropic medium, whose constitutive parame-
ters are given by m s mL and e s eL, with

˜ ˜ ˜ ˜sh h sh h h h1 2 1 2 1 2 Ž .L s u u q u u q u u . 161 1 2 2 3 3˜ ˜ ž /ž / ž / sh hh h h h 1 21 2 1 2

The significance of this result is that it is possible to achieve
reflectionless absorption of electromagnetic waves incident
on a smooth, concave surface having anisotropic constitutive

Ž .tensors given by 16 , depending on the local principal radii
Ž .of curvatures. Note that since 16 is a formula of a constitu-

tive parameter, it is independent of any coordinate system.
This simply means that, given a concave surface termination
Ž .as viewed from inside , we can apply this anisotropic confor-
mal PML in any coordinate system by expressing the local
radii of curvature and the stretching as functions of the new

Ž .coordinates, so that L s L r is a function of r only.
An interesting point to observe is the local interplay

between the physics of the medium and the geometry, as the
Ž . Ž .local constitutive parameters depend on the local geome-
try of the termination.

Note also that the computational realization of such an
absorber in the FEM does not pose a great challenge and can

w xbe done, e.g., via an isoparametric mapping 21 .

4. SOME SPECIAL CASES

w x4.1. Cartesian Case. The previously derived Cartesian 7 ,
w x w xcylindrical 15, 20 , and spherical 20 anisotropic PML are

Ž .just special cases of 16 . The Cartesian PML is obtained by
˜ ˜setting r s r s `, so that h s h s 1. Furthermore, if01 02 1 2

Ž .u s u , u s u , u s u , and s s s z for attenuation in1 x 2 y 3 z z

Ž .the z-direction, then 16 becomes

1
Ž . Ž .L z s u u s q u u s q u u , 17z x x z y y z z z sz

w x Ž .as first derived in 7 . Since L z is a function of z only, wez
can combine it with simultaneous stretching in the x- and

Ž .y-directions orthogonal everywhere also:

Ž . Ž . Ž . Ž .L x , y , z s L x ? L y ? L zx , y , z x y z

s s s ss sy z x yz x Ž .s u u q u u q u u , 18x x y y z zs s sx y z

which is the most general expression for the Cartesian PML
and corresponds to a corner region.

4.2. Cylindrical Case. The cylindrical PML is obtained by
˜ ˜setting r s `, r s r, so that h s 1 and h s rrr. Fur-˜01 02 1 2

Ž .thermore, u s u , u s u , u s u , and s s s r for at-1 f 2 z 3 r r

Ž .tenuation in the r-direction, so that 16 becomes

r s r s r˜ ˜r rŽ . Ž .L r s u u q u u q u u , 19r , f f f z z r rr r r s˜ r

w xas first derived using a graphical method in 15 .
Ž .Since L r is a function of r only, we can combine itr

Ž .with a simultaneous stretching Cartesian on the z-direction
Ž .orthogonal to r everywhere also:

Ž . Ž . Ž .L r , z s L r ? L zr , f , z r z

r s s r s r s˜ ˜z r r z Ž .s u u q u u q u u , 20f f z z r rr r s r s˜ z r

which is the most general expression for the 3-D cylindrical
w xPML, as derived in 20 .

4.3. Spherical Case. The spherical PML is obtained by setting
˜ ˜r s r s r, so that h s h s rrr. Furthermore, u s u ,˜01 02 1 2 1 u

Ž .u s u , u s u , and s s s r for attenuation in the r-2 f 3 r r
Ž .direction, so that 16 becomes

2r 1˜
Ž . Ž .L r s u u q u u s q u u s , 21r , f , u r r f f r u u rž /r sr

w xas derived in 20 .

4.4. Large Radius of Cur̈ ature Approximation. If r , r 4 l,01 02
Ž .then we have, as a zeroth-order approximation for 16 :

1
Ž .L s u u s q u u s q u u , 221 1 2 2 3 3 s

which is just the planar PML with stretching in the normal
w xdirection, as considered in 21 . This approximation should be

w xmore properly called ‘‘quasi-PML’’ 26 . As demonstrated in
w x21 , very good results can be obtained with this approxima-
tion, as long as large radius of curvature is considered, which
is the case for large scatterers.

Care must be taken to derive higher order approximations
Ž .to 16 . For instance, it is easy to show that the first-order

approximation using a Taylor expansion in lrr , lrr to01 02
Ž .16 gives rise to constitutive tensors having poles on the
upper-half v-plane for any r / r . This implies an active-01 02
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medium behavior, and the resultant time-domain equations
may turn out to by dynamically unstable, as discussed in the
next section.

5. CAUSALITY AND STABILITY ISSUES FOR THE
CONFORMAL PML

w xAs discussed in more detail elsewhere 27 , a condition that
should be investigated for the frequency-dependent matrix L

y1Ž .and also its inverse L is whether it violates causality in
the sense of the real axis Fourier inversion contour. This is
equivalent to having the upper-half complex v-plane free of

Ž .singularities and zeros .
Ž .Using the stretching defined by 5 , it can be easily shown

Žthat, for a concave or planar surface PML more precisely,
.r ) 0 and r ) 0 , all poles and zeros of L are on the01 02

lower-half plane, so that causality is not violated. However,
Žfor a nonconcave, nonplanar surface PML i.e., r - 0 or01

.r - 0 , there will be poles and zeros on the upper-half02
plane.

In the latter case, causality in the sense of real-axis
integration is violated. In time-domain explicit methods, such
as the FDTD, the causality will necessarily be enforced,
which is equivalent to taking the Fourier inversion contour to

w xbe above all singularities 1 . In this case, the PML will
behave as an active medium, and the resultant time-domain
equations may turn out to be dynamically unstable, as, for
instance, was found to be the case for simulations employing

Ž . w xcylindrical and spherical convex PMLs inner boundary 27 .
An alternative to ensure a dynamically stable ABC when

Ž .r - 0 or r - 0 although not perfectly matched anymore01 02
is to use the ‘‘quasi-PML’’ described in the previous section.

This violation of causality can also be directly checked by
an investigation of the singularities in the resultant analytic

Ž .solutions, such as 7 . For a concave PML, the denominator
Ž .factors in 7 produce branch points andror poles only in the

Ž Ž .lower-half plane the singularities present on 6 are trans-
.lated downward in the complex v-plane . For a noncave,

nonplanar PML, however, these singularities are present on
Ž Ž .the upper-half plane the singularities present on 6 are

.translated upward in the v complex plane .
It is important to note that these conclusions are valid by

Ž .considering the stretching defined by 5 , which is universally
Žused in the literature. For other kinds of stretching which

.would imply more involved time-domain equations , they are
not necessarily valid.

6. CONCLUSIONS

An analytic derivation of a conformal PML for concave grid
terminations is presented. The derivation is based on the
complex stretching of the normal direction on a generalized
orthogonal curvilinear coordinate system conformal to a ter-
mination surface.

It is shown that this conformal PML produces an expo-
nential decay of the fields in the normal direction without any
reflections in the continuum limit. In the complex-space
formulation, the resultant fields do not obey Maxwell’s equa-
tions. However, an alternative formulation is presented with
anisotropic medium where the fields obey the Maxwell’s
equations everywhere. In analogy with the Cartesian, cylindri-
cal, and spherical PMLs, in this Maxwellian formulation, the
PML region is represented by an anisotropic artificial
medium. For the conformal PML, the constitutive tensors
depend on the local radii of curvature of the termination
surface.
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ABSTRACT: The free charge carrier effect is used to explain and model
microwä e losses obser̈ ed in tra¨eling-wa¨e electrodes used in electro-

( )optic modulators when the coplanar wa¨eguide CPW electrodes are
fabricated on unintentionally doped heterostructure optical ridge wa¨e-
guides. Microwä e losses were measured between 45 MHz and 40 GHz
as a function of doping o¨er a range of 1 = 10 8 r cm3 - N - 2 =d
10 18 r cm3 using both epitaxially grown and ion implanted semi-

( )insulating SI GaAs substrates. Results show that there is a critical
residual doping limit at N f 1 = 10 14 r cm3, abo¨e which the mi-d

crowa¨e loss increases linearly with doping for 6 mm thick epitaxially
grown materials. Q 1998 John Wiley & Sons, Inc. Microwave Opt
Technol Lett 17: 236]241, 1998.

Key words: microwä e loss; slow-wa¨e electrode; electro-optic
modulator

I. INTRODUCTION

The deployment of OC-48 wavelength-division multiplex net-
works and OC-192 fiber optic communication links foresees
the need to achieve high modulator speeds with lasers and

w xlaser arrays in the near future 1 . The present direct laser
w xmodulation frequency limit is at ;30 GHz 2 . Although

w xlaser dynamic processes are well understood 3 , this upper
limit on frequency modulation has been attributed to the
distributed microwave effects associated with the length of
the laser cavity and the dimensions of the current-injecting

w xelectrode 4, 5 . The distributed circuit approach is not new,
as it has played an important role in the design of EHF

w xMESFETs, HEMTs, and HBTs 6 . An alternate solution to
this high-frequency limitation of direct-modulated lasers is to
implement external modulation techniques.

External laser modulation using millimeter-wave coplanar
w xstructures exploit the electro-optic effect 7 and, due to their

w xdistributed nature 8 , promise to achieve modulation band-
w xwidths in excess of 100 GHz 9 . This is achieved by the use of

traveling-wave electrodes which slow the microwave phase
velocity, matching it to the phase velocity of the optical signal
propagating in the ridge waveguide.

The bulk of the research investigating the design and the
performance of CPW traveling-wave structures has been car-

Ž . wried out on semi-insulating SI material such as GaAs 10,
x Ž . w x11 and references therein and more recently on InP 9 .

The integration of these designs with ridge optical waveguide
heterostructures was successfully carried out and small-signal
modulation demonstrated by a small number of researchers
w x12, 13 . Other workers have met with limited success at low

w xmodulation bandwidths 14]16 . 300 MHz bandwidths were
w x qachieved in 14 for traveling-wave structures defined on n

material. These workers concluded that the thickness of the
nq layer must be reduced to increase the modulator band-
width. Modeling of CPW structures on semiconductor sub-

w xstrates in 15 demonstrated that an inhomogeneous doping
profile in the optical guiding heterostructure would reduce
the microwave losses and increase the bandwidth. The high

w xloss in the response curve of the modulator in 16 was
attributed to the electrode design for structures which were
fabricated on heterostructured optical guides with carrier
concentrations at N s 5 = 1017rcm3. The common factord
which ties together the demonstration of slow-wave modula-

w xtors in 12, 13 and previous work referred to therein is the
fact that the semiconducting heterostructures defining the
optical waveguide were unintentionally doped. It is widely
understood that unintentional doping can mean a residual
carrier concentration N between 1 = 1014rcm3 and 5 =d
1016rcm3, depending on the epitaxial material and growth
technique used.

This work reports on the microwave loss measurements of
a variety of CPW structures defined on epitaxial and ion-
implanted GaAs as a function of substrate doping. The

8 3 Ždoping range under study is between 1 = 10 rcm suggested
. 18 3by the manufacturer and 2 = 10 rcm . The loss measure-

ments can be modeled using the effect of the free-carrier
interaction with the RF electric field present in the semicon-
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