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Abstract – Why do experiments detect Cosserat-elastic effects for porous, but not for stiff-
particle-reinforced, materials? Does homogenisation of a heterogeneous Cauchy−elastic 
material lead to micropolar (Cosserat) effects, and if so, is this true for every type of 
heterogeneity? Can homogenisation determine micropolar elastic constants? If so, is the 
homogeneous (effective) Cosserat material determined in this way a more accurate 
representation of composite material response than the usual effective Cauchy material? 
Direct answers to these questions are provided in this paper for both two− and 
three−dimensional deformations, wherein we derive closed-form formulae for Cosserat 
moduli via homogenisation of a dilute suspension of elastic spherical inclusions in 3D (and 
circular cylindrical inclusions in 2D) embedded in an isotropic elastic matrix. It is shown that 
the characteristic length for a homogeneous Cosserat material that best mimics the 
heterogeneous Cauchy material can be derived (resulting in surprisingly simple formulae) 
when the inclusions are less stiff than the matrix, but when these are equal to or stiffer than 
the matrix, Cosserat effects are shown to be excluded.  These analytical results explain 
published experimental findings, correct, resolve and extend prior contradictory theoretical 
(mainly numerical and limited to two−dimensional deformations) investigations, and provide 
both a general methodology and specific results for determination of simple higher-order 
homogeneous effective materials that more accurately represent heterogeneous material 
response under general loading conditions.  In particular, it is shown that no standard 
(Cauchy) homogenized material can accurately represent the response of a heterogeneous 
material subjected to a uniform plus linearly-varying applied traction, while a homogenized 
Cosserat material can do so (when inclusions are less stiff than the matrix). 
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1.  Introduction  

THERE IS A LONG-STANDING DEBATE in the solid mechanics community concerning the 

possibility of predicting micropolar elastic (Cosserat) behaviour from Cauchy−elastic 

materials containing inhomogeneities or microstructures. In fact, although the motivation 

leading to Cosserat effects seems to be very intuitive, theoretical results in the literature are 

often contradictory and no definitive conclusion is available (see Appendix A for details). 

Moreover, experimental results support Cosserat effects for porous materials (like bone or 

foam[1-5]), but find an absence of these effects for reinforced materials [6, 7].  

 In the present paper we provide a general methodology for the determination of the 

moduli for a homogeneous Cosserat-elastic material that best approximates a heterogeneous 

Cauchy−elastic material. We apply this methodology to the specific cases of three-

dimensional deformations of a dilute suspension of (Cauchy, linear and isotropic) elastic 

spherical inclusions, and two-dimensional deformations of circular cylindrical inclusions, in a 

(Cauchy, linear and isotropic) elastic matrix. With reference to a Cosserat (linear and 

isotropic) material, it is shown that: 

(i) Cosserat effects are predicted for spherical or cylindrical inclusions less stiff than 

the matrix, but are excluded for inclusions having stiffness equal to or greater than 

that of the matrix; 

(ii) Simple, closed−form formulae give the Cosserat characteristic length (and the 

other effective Cosserat moduli) as a function of the inclusion radius, volume 

fraction and the elastic contrast of the constituent phases; 

(iii) The characteristic length that results for three-dimensional deformations of a 

matrix with spherical inclusions is significantly smaller than that resulting for two-

dimensional deformations of a matrix with circular cylindrical inclusions. 

Conclusion (i) rigorously explains experimental evidence demonstrating micropolar effects 

for porous material, but displaying an opposite trend, or in the words of Gauthier [7] “an anti-

micropolar phenomenon”, for inclusions stiffer than the matrix. 

 A closely-related issue is that standard homogenisation results for linear elastic materials 

provide overall or effective elastic moduli that relate (uniform) average stress to (uniform) 

average strain.  This means that standard homogenisation results give a homogeneous 

“effective” material that is able to represent well the overall response of the actual 

heterogeneous elastic material when the applied loading is uniform.  However, when the 
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applied loading deviates from uniformity, the homogeneous “effective” material less 

accurately represents the overall response of the actual heterogeneous material.  This fact is 

important, since of course in general composite materials are employed in applications where 

the applied loading is not uniform.   

 We show in this paper, for situations in which the applied loading on a heterogeneous 

material varies sufficiently slowly that it admits a Taylor series expansion, that whereas the 

standard homogenisation results provide a homogeneous “effective” material that can 

accurately represent the actual heterogeneous one only when the leading-order (uniform) term 

in the Taylor series is retained, a homogeneous “effective” Cosserat material can do so when 

two terms in the Taylor series are retained, when the material heterogeneities are less stiff 

than the matrix material. The result is a simple homogeneous material model that more 

accurately represents actual (compliant-inclusion-type) heterogeneous material response 

under slowly-varying applied loading. 

 

 

2.  Review of homogenization results for uniform applied loading 

 Here we briefly summarize well-known results for the effective moduli of a 

homogeneous, isotropic linear elastic matrix containing a dilute suspension of homogeneous, 

isotropic linear elastic inclusions having in general different moduli than the matrix;  the 

inclusions are either cylinders (for plane strain deformations) or spheres (for three-

dimensional deformations).  As noted in the Introduction, one approach for deriving such 

moduli is to require that they relate average (uniform) stress and strain in the same way that 

these quantities are related in the actual heterogeneous material.  An alternative, equivalent 

approach for their derivation is to require that the total elastic energy in the uniform 

“effective” medium equals that in the actual heterogeneous medium under uniform applied 

loading.  We will employ this energy approach in the present work. 

 When the composite is dilute, as considered here, we may employ the solution for an 

infinite body containing a single inclusion and subjected to uniform far-field loading.  From 

this solution, we select a finite region containing the inclusion, and calculate the mean 

stresses acting on it.  The effective moduli may then be calculated by equating, through first 

order in volume fraction, the elastic energy contained in the selected finite region calculated 

from the actual heterogeneous material solution with that calculated from a homogeneous 
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effective body of the same size subjected to the mean stresses calculated from the infinite-

body solution.  We define the effective shear modulus as µ  and bulk modulus as κ  (for 3D, 

whereas κ = 3−4 ν , with ν  denoting in-plane Poisson’s ratio for plane strain 2D).  A sketch 

of this procedure is shown in Fig. 1, for plane strain deformation of an infinite plane with a 

circular hole. 

 

 
Fig. 1. – Procedure of homogenization of a material containing a dilute distribution of circular voids. 
Heterogeneous material (left) is an h×h prism removed from an infinite sheet that is subjected to uniform, 
uniaxial far-field stress; homogeneous material (right) is subjected to the mean stresses calculated from the 
heterogeneous prism. For the plane strain problem, level sets of σ11 are shown; note that the values of σ12, σ21 
and σ22, shown parallel to the edges, are less than 1/10 the maximum value of σ11 at a distance from inclusion 
centre equal to 3 times the radius of the inclusion.   
 

 

 Eshelby [8] and independently Hashin [9] have obtained the following effective elastic 

moduli for the three-dimensional problem of a matrix containing spherical inclusions (here 

retaining terms through first order in the volume fraction  ƒ  of the inclusion phase): 

 

µ  =  µm + f  
)43()43)((2

)43)((5
immmmmi

mmmim

µ+κµ+µ+κµ+µ
µ+κµ−µµ ,  

κ  =  κm + f (κi − κm) 
mi

mm

µ+κ
µ+κ

43
43

,  
(1)

 

where subscripts m and i denote matrix and inclusion, respectively.  

 In two-dimensional (plane strain) elasticity, the spheres are replaced by parallel infinite 

circular cylinders and the effective-modulus formulae through O( f ) are [10] 

µ  =  µm + f (1+ κm) µm 
mim

mi

µ+µκ
µ−µ

,   
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where now κ = 3−4ν, with ν denoting (in-plane) Poisson’s ratio. 

 

 

3.  Homogenization under Non-Uniform Applied Loading 

3.1 Taylor series representation of slowly-varying applied loading 

 Let us consider an infinite body of composite material with a dilute distribution of 

inclusions, subjected to arbitrary but slowly-varying far-field (“boundary”) conditions. The 

far-field displacement field u(x) can then be expanded in a Taylor series about the location of 

the centre of an inclusion (chosen as the origin of coordinates).  Through second-order, the 

most general representation for this is 

ui = αij xj + βijk xj xk,    (3) 

where αij and βijk are constant coefficients, the latter having the obvious symmetry βijk= βikj 

(since xj and xk play the same role), indices range between 1 and 3 (1 and 2 for plane strain), 

and the usual summation convention for repeated indices is employed here and throughout the 

paper except where noted. Although coefficients αij are unrestricted, the quadratic part of the 

displacement field must satisfy the Navier equations of equilibrium without body forces, 

resulting in the following three (two for plane strain) restrictions 

βkki = – (1−2νm) βikk .    (4)  

 

 As is well−known, the homogeneous effective Cauchy−elastic material (1)-(2) accurately 

mimics the response of a heterogeneous Cauchy material when this is subjected to a linearly-

varying displacement (uniform applied loading). However, in most practical situations, a 

composite material is subjected to a spatially−varying applied loading. How well does the 

homogeneous effective Cauchy material mimic the actual heterogeneous one in this case, and 

can a homogeneous Cosserat material do better? Let us consider plane strain and three-

dimensional deformations separately. 

 

3.2 Plane strain 

Employing the constraint (4) and explicitly exhibiting  the plane-strain bending contributions, 
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the quadratic terms in the remote displacement field (3) become 

u1 = 2
1

23)1(2
~ x
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where coefficients 13β
~ , 23β

~  (index 3 denotes the out-of-plane direction and the others the non-

null displacement component directions) and bending curvatures R13 and R23 (index 3 again 

denotes the out-of-plane direction, while the other indices denote the directions of the normal 

components of bending stress) are arbitrary. Displacements (5) a-priori satisfy the Navier 

equations and thus represent the most general equilibrium plane-strain quadratic displacement 

field.  

 The problem of an infinite sheet containing a circular hole and subjected to far-field 

bending was solved by Muskhelishvili [11], and by Sendeckyj [12] in the general case of a 

circular elastic inclusion. The elastic fields produced by the far-field loading modes 

associated with 13β
~  and 23β

~  in an infinite sheet containing a circular elastic inclusion are 

determined in Appendix B (where the bending solution is also included for completeness). 

The important point with respect to our upcoming accurate modeling of effective material 

response is that these solutions show that the displacement field (5), valid exactly for a 

homogeneous material, is perturbed by the inclusion, in the material outside the inclusion, 

only by terms of O(f 
2). 

 

3.3 Three-dimensional deformations 

The most general quadratic equilibrium remote displacement field can be written as, using (3) 

with (4) (summation not implied for repeated indices) 
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                              + (Θj − Θk)xj xk + )~~(
21

2)~~( 222
kijjik

m

m
iijik xxx β+β

ν−
ν−1

−β+β , (6)    

where indices i, j, k are cyclic permutations of 1, 2, 3 (i.e. 1,2,3; 2,3,1; 3,1,2), illustrating the 

fact that the kinematics are the sum of six plane strain modes [defined by bending curvatures 

Rij and additional free coefficients ijβ
~  (where i denotes the direction of the bending stress or 
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non-null displacement component and j the out-of-plane direction)] and three torsional angles 

of twist/length Θi (i = 1, 2, 3). Therefore, the plane strain displacement field (5) can be 

obtained from Eq. (6) by taking 1/R12 = 1/R21 = 1/R32 = 1/R31 = 12
~
β = 21

~
β = 32

~
β = 31

~
β = Θ1 = 

Θ2 = Θ3 = 0. 

 The problem of an infinite elastic matrix containing a spherical void and subjected to 

remote bending loading [a particular case of (6) in which all ijβ
~  and Θi are zero] has been 

solved by Sen [13], and by Das [14] for the general case of a spherical elastic inclusion. These 

solutions show that the bending displacement field, valid exactly for a homogeneous material, 

is perturbed by the inclusion in the region outside the inclusion by terms of O(f 
5/3). The fact 

that the perturbation remains at O(f 
5/3) for the general quadratic displacement field (6) is 

shown in Appendix C, where the solution for a spherical elastic inclusion in an infinite elastic 

matrix, subject to the remote displacement field (6) is obtained. Appendix C also shows that 

the Das [14] solution is incomplete, and that it can be expressed purely in terms of simple 

functions. 

 

3.4 Conclusion 

The quadratic part of the displacement field (3), together with equilibrium requirements (4), 

which is valid exactly for a homogeneous material, is perturbed by a cylindrical or spherical 

inclusion in the region outside the inclusion by terms of:  

 O(f 
2)  for two-dimensional elasticity and 

 O(f 
5/3)  for three-dimensional elasticity. 

 

In other words, in an asymptotic expansion in inclusion volume fraction f of the displacement 

field solution outside the inclusion, through order ƒ the inclusion is neutral under remote 

quadratic displacement conditions. Therefore, the effective moduli determined under the 

remote quadratic displacement conditions are identical (to first order in f) with the moduli of 

the matrix material.  
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4.  Standard homogenized material is in error for quadratic applied displacements 

Now we are in a position to face the main problem, namely: 

under an applied linear remote displacement field (uniform applied remote 

stress) the perturbation induced by the inclusion in the displacement field 

solution in the surrounding matrix material is O(f ), while under an applied 

quadratic remote displacement field (applied linear remote stress field) the 

perturbation in the displacement field solution in the matrix becomes O(f 
5/3) 

for 3D and O(f 
2) for 2D elasticity. 

Therefore, the effective material defined by (1)-(2) is stiffer (more compliant) for linearly-

varying applied loading than the actual heterogeneous material for inclusions stiffer (more 

compliant) than the matrix. That is, if the heterogeneous material (matrix with inclusion) is 

represented in the usual way in composite materials theory − by a homogeneous material with 

effective moduli given by (1) or (2) − this representation works well for uniform applied  

loading, but for linearly-varying applied stress, it is in error by terms of O(f). 

 To better elucidate this point, let us consider a cube of edge h, composed of a 

homogeneous effective material having properties (1) or (2) and subject to the quadratic 

displacement field (5) or (6). The total elastic energy in such a cube is obtained by calculating 

the strain energy density from Eq. (5) or (6) and then integrating this over the cube. 

 The total elastic energy in the cube, E , is, for plane strain: 
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while for three-dimensional deformation it is:  
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For two-dimensional deformations the terms ΞR and Ξβ, while for three-dimensional 

deformations the terms (ΞR − |ΞRR|), (2Ξβ − |Ξββ|) and ΞΘ, are all negative for inclusions 

stiffer than the matrix (i.e. when the energy of a composite specimen is higher than that of the 

same specimen comprised of purely matrix material), all zero when they have the same 

stiffness, and all positive for inclusions less stiff than the matrix. This will be in a sense used 

as our definition of “inclusion stiffer than the matrix”. 

 If the elastic energy (9) [or (7)] is compared to that evaluated for an identical prism now 

comprised of matrix material and containing a spherical (cylindrical in 2D) inclusion, ideally 

removed from an infinite body that is subjected to the far-field quadratic displacements (6) [or 

(5)], there is a mismatch of the linear terms in f, so that homogenization yields a material 

stiffer (more compliant) than the heterogeneous solution, for an inclusion stiffer (more 

compliant) than the matrix. 

 

 

5.  Comparison with Cosserat material 

The key point in the above discussion is that the results for the heterogeneous material are 

compared to a homogeneous linear elastic material, providing the effective properties. While 

a homogeneous material with appropriately-chosen effective moduli can successfully mimic 

the composite material when uniform stress fields are applied, we showed that it cannot do so 

when the simplest nonuniform (i.e., uniform plus linearly-varying) stress field is applied.  

What happens now if this comparison is made between a composite material and a 

homogeneous Cosserat or micropolar material? Note that this question has fundamental –as 

opposed to empirical− motivation: the assumption leading to standard Cauchy-elasticity –that 

surface resultant moments/area vanish as the Cauchy tetrahedron becomes vanishing small− is 

a sensible approximation for materials with extremely small-scale microstructure, but is not in 

general otherwise justifiable. Absent this assumption, a Cosserat-type constitutive framework 
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arises. 

 

5.1 Simplest Cosserat constitutive model 

 We begin for simplicity with constrained-rotation micropolar materials (the simplest 

Cosserat constitutive model), for which the constitutive equations are [15] 

σij = 2 µ [ εij  + 
ν−

ν
21

εkk δij],      mij =  4µ 
2l (χji + ηχij), (11) 

where σij is the symmetric part of the force-stress tensor, εij is the infinitesimal strain tensor, 

mij is the deviator of the couple-stress tensor and χij is the torsion-flexure tensor. The 

kinematical quantities are defined in terms of the displacement field ui as 

εij = ( )ijji uu ,,2
1

+ ,          χij = ωi,j = 
2
1
eihk uk,hj , (12) 

where eihk is the Ricci (permutation) tensor, ωi is the macrorotation axial vector and a 

subscript comma denotes partial differentiation with respect to subsequent indices. The 

material parameters ν and µ appearing in Eq. (11) are the usual (Poisson and shear) elastic 

moduli (subject to the usual restrictions), whereas material parameters l and η define the 

Cosserat behaviour; in particular, the former is a characteristic length of the material and the 

latter is dimensionless and subject to the restriction –1 < η < 1 for positive-definiteness of the 

strain energy. 

 

 Let us consider now two ideal material elements: a cube of edges h of Cauchy-elastic 

material containing an inclusion, ideally removed from an infinite body that is subjected to 

far-field loading, and the same cube instead composed of a homogeneous, constrained-

rotation Cosserat material, Eqs. (11). We wish to determine the values of the effective 

Cosserat moduli µ , ν , l , and η so that the homogeneous Cosserat material best mimics the 

heterogeneous Cauchy material under general slowly-varying applied loading (Fig. 2, 

illustrating for simplicity a bending stress distribution). 
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Fig. 2. – Procedure of homogenization of a material containing a dilute distribution of circular voids and subject 
to a far-field bending stress distribution. Heterogeneous material (left) is an h×h prism removed from an infinite 
sheet that is subjected to uniaxial, linearly-varying far-field stress; homogeneous Cosserat-elastic material (right) 
subject to the same mean moment (produced by 13m  and 11σ ) calculated from the heterogeneous prism. For the 
plane strain problem (where η does not appear), level sets of σ11 are shown; note that the values of σ12, σ21 and 
σ22, shown parallel to the edges, are less than 1/100 of the maximum value of σ11 at a distance from inclusion 
centre equal to 3 times the radius of the inclusion (contrast this with the order of the effect in Fig. 1). 
 

5.2 Matching with the uniform stress field  

 For uniform applied stress (and zero applied couple stress) the effective modulus values 

(1)-(2), identical to those obtained for Cauchy-elastic material, are found for the Cosserat 

material. The reason for this is simply that for a uniform applied stress on the Cosserat 

material, a homogeneous deformation with null deformation-curvature tensor is produced, so 

that the Cosserat effects disappear (i.e., the moduli l  and η do not enter the solution). 

 

5.3 Matching with linearly-varying remote stress field 

 For a linearly−varying remote applied stress on the Cosserat material, Cosserat effects are 

present and, as will be shown, for inclusions less stiff than the matrix, they permit 

minimization, and for certain deformations elimination, of the mismatch in the strain energy 

between the actual composite material and the homogeneous effective Cosserat material.  

 Boundary conditions for a Cosserat solid and a Cauchy−elastic solid are not equivalent. 

For instance, in a purely kinematic approach, for a Cosserat material we can prescribe 

displacements (6) [or (5)] along a side of the prism, but the two tangential components of the 

rotation must also be specified, the latter not being necessary in a Cauchy solid. Following the 

kinematic approach, we assume displacements (6) [or (5)], and the rotations deduced from 

these displacements, to be prescribed along all sides of the prism for the Cosserat material. 

(For the Cauchy material, only the displacements (6) [or (5)] are prescribed on the boundary, 
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but the resulting solution has rotations there identical to those prescribed for the Cosserat 

material, so the Cosserat and Cauchy material solutions correspond to exactly the same 

problem.) The solution to this boundary value problem for pure bending of the Cosserat 

material was given by Koiter ([15], his Sections 6.2 and 6.3).  

 Generalizing the Koiter solution, for the displacement field (6) [or (5)], with νm replaced 

by ν , the non-null kinematical quantities become 

εii = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

ν−
ν

−+
kjjk

i
ij

k

ik

j

RR
x

R
x

R
x 11

1
+2xi ( ikij β+β

~~ ),   (indices not summed; i, j, k cyclic)    

εij = − 2
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ν−1
21

 (xj ikβ
~

+ xi jkβ
~ ) −  eijk xk

2
ji Θ−Θ

,     (indices not summed and all different), 

χij =  
2
1

δij ⎟
⎠

⎞
⎜
⎝

⎛ Θ−Θ ∑
=

3

1

3
k

ki + ejik ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ν−
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β+
1

21
1~2 ki

jiR
,    (indices not summed). (13) 

 

The total strain energy in the cube is thus 

 E  = ECauchy + 2 h3 2lµ [χijχij + η χjiχij],  (14) 

where 

χijχij = 
⎟
⎟
⎟
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and 

χjiχij = 
⎟
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, (16) 

which, for plane-strain deformations in the x1, x2 plane become 

χijχij = 
2

13
23 21

1~2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ν−

ν−
β+

1
R

+ 
2

23
13 21

1~2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ν−

ν−
β+

1
R

,     χjiχij = 0. (17) 

 

5.4 Result (i) 

 The non-polar (i.e., standard effective Cauchy) case is obtained from the strain energy 

(14) by setting the internal length equal to zero, l = 0; therefore, since l  enters Eq. (14) only 

as 2l , and since its coefficient cannot be negative for allowable modulus values, the strain 
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energy for the effective Cosserat material is never less than the strain energy for the effective 

Cauchy material. This means that the introduction of Cosserat effects can only increase the 

strain energy of the effective material and therefore can only be useful when coefficients ΞR 

and Ξβ are positive in plane strain [in Eqs. (7)] or when ΞR − |ΞRR| > 0, 2Ξβ − |Ξββ| > 0, and 

ΞΘ > 0, in 3D [in Eqs. (9)], i.e. for inclusions less stiff than the matrix. In the case of an 

inclusion stiffer than the matrix, Cosserat effects make the homogenized material even stiffer 

than the already overly-stiff effective Cauchy material resulting from homogenization for 

uniform stress. For these situations the simple Cosserat effective material cannot provide an 

improvement to the standard Cauchy effective material. 

 

 

5.5 Result (ii) for 2D deformations 

 Let us begin with the two-dimensional (plane strain) formulation, where there is only one 

remaining undetermined parameter, the internal characteristic length l , in the elastic energy, 

Eq. (14) [parameter η only enters the elastic energy in the three-dimensional case]. We seek 

the l  value that permits minimization of the elastic energy difference through O( f ), for 

arbitrary equilibrium quadratic displacement remote boundary conditions, between the 

heterogeneous Cauchy material [whose energy has no O( f ) term] and the homogeneous 

effective Cosserat material: 

ECauchy(µm , νm) − [ECauchy( νµ, )+ 2 h3 2lµ χijχij], (18) 

which is (having divided by h5): 
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. 

We wish to use l  to increase the elastic energy of the effective Cosserat material in such a 

way that this becomes closer to the correct value ECauchy(µ, ν), but without exceeding this 

value for any value of the free parameters defining the deformation modes: 1/R13, 1/ R23, 13
~
β , 
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and 23
~
β . Therefore, employing Eq. (7), Eq. (19) can be written as, retaining only terms 

through O( f ) 

 ⎟⎟
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≥ 0 , (20) 

and the problem is to find an 2l /h2 such that Eq. (20) is satisfied for all 1/R13, 1/ R23, 13
~
β , and 

23
~
β , coming as close to equality as possible. Note that, since the term multiplying 2l  is 

always negative, inequality (20) can be satisfied only for inclusions less stiff than the matrix, 

i.e. when RΞ  and βΞ are both positive. 

 Now, problem (20) can be transformed into the form xAx ≥ 0, with vector {x}={1/R13, 

23
~
β , 1/R23, 13

~
β }, so that it becomes equivalent to the requirement of positive semi-

definiteness of the 4×4 matrix A (which is composed of two identical 2×2 blocks, while all 

other entries are null). This matrix has two distinct eigenvalues with double multiplicity; 

requiring that the smaller eigenvalue be zero yields 

2

2

h
l  = 

Rm

m

f

Ξ
+

Ξ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ν−

ν−

β

28
21

1
2 ,   (21) 

valid only for both RΞ  and βΞ  positive. 

Obviously, the meaning of negative values of 2l  is merely that the inclusion is stiffer than the 

matrix and no (real) value exists for the characteristic length that will permit the elastic 

energies to match. In such cases, l = 0 gives the smallest difference between the energies. 

Using f = πa2/h2, Eq. (21) becomes  

l  = 

Rm

m

a

Ξ
+

Ξ)ν−
)ν−

π

β
2

2 2
21(
1(8

,   (22) 

valid only for both RΞ  and βΞ  positive. Note from Eq. (22) that l = 0 when a = 0, but that 

l /a  is independent of f [under our assumption of small f].  Note that in the limit of an 

incompressible matrix, νm = ½, Eq. (22) reduces to 
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 l  = 
2

Ra Ξπ ,   (23) 

showing that the corresponding applied deformation mode is a pure bending. In this case, in 

other words, the characteristic length (23) provides an exact match between the energies of 

the actual heterogeneous solid and the homogenized one under arbitrary uniform plus pure 

bending applied loading. 

 

 In the extreme case when the inclusion is a void, Eq. (22) becomes 

l  = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ν−ν−ν−

ν−
+ν−

π

)]23(813[27
21

3
1)1(24

mmm

m
m

a , (24) 

where the radical in Eq. (24) is always positive.  

 The characteristic length divided by the radius of the inclusion, a/l , is plotted in Fig. 3 

versus the contrast in the inclusion/matrix shear moduli, µi/µm. A null contrast corresponds to 

a void, Eq. (24). The different curves in the Figure refer to different values of Poisson’s 

ratios. The values of the curves at µi/µm = 0 depend only on νm; curves are plotted for νm and 

νi each having values 0.49 and 0. Note also that for νm = νi, l = 0 results for µi = µm, as it 

should. 

 For a sufficiently compliant inclusion, a positive characteristic length for an effective 

Cosserat material is always found, which decreases to zero at sufficiently high inclusion 

stiffness. 
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Fig 3. – Characteristic length divided by circular cylindrical inclusion radius for a homogeneous Cosserat 
material deduced from homogeneization of a matrix containing a dilute distribution of parallel, infinite circular 
cylindrical inclusions [plane strain, Eq. (22)]. 
 

 

5.6 Result (ii) for 3D deformations 

 Let us now consider three-dimensional deformations. By introducing the symbol 
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the three-dimensional version of non-negativity of the energy difference (18) becomes: 
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Equation (26) depends on the arbitrary deformation modes. These are coupled in groups of 

four (each group entering in exactly the same way), plus T; for example, 1/R13, 1/R31, 21β
~ , 23β

~  

are coupled. Thus it is sufficient to consider these four parameters together with T, and take 

all others equal to zero. Doing this, Eq. (26) becomes, retaining only leading-order terms in f 
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Eq. (27) involves a quadratic form, so that it can be represented in matrix form as 

 [ΞΘ  − 3 2

2

hf
l (1 + η)] 2T + xAx ≥ 0,   (28) 

where vector {x} = {1/R13, 1/R31, 21β
~ , 23β

~ }. Matrix A is a 4×4 block and the condition (26), 

viewed as the condition of positive semi-definiteness of A (since the coefficient of 2T must be 

≥ 0), yields non-negativeness of four eigenvalues, plus non-negativity of the coefficient of 
2T . Two of these conditions can be shown to be contained within the other two, from which 

two values of Cosserat length l  can be obtained to ensure positive semi-definiteness of A. 

The minimum among these two lengths, plus that obtained considering T, yields the Cosserat 

length for Condition (26) to be satisfied: 

l (η) = a
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in which all terms are always non-negative for inclusions less stiff than the matrix. 

Equation (29) applies for given values of  µi, µm, νi, νm and η.  

 In Eq. (30), the minimum among the three functions (call them gi) is taken. These 

functions have the typical dependence on η shown in Fig. 4, drawn for µi /µm = 0 (so that the 

inclusion is a void) and νm = 0.49 (a case that will also be considered later). In this figure, one 

of the gi’s corresponds to the torsion mode, while the other two modes involve both bending 
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and the modes described by the ijβ
~ . 

 

 
Fig. 4 – The three functions gi appearing in Eq. (30), among which the minimum is selected for  
given values of η. 
 

Since η is a constitutive parameter which can be chosen so that the effective Cosserat material 

best mimics the actual heterogeneous material’s response, it is optimal to choose it so that the 

Cosserat effective material matches the actual heterogeneous one for two modes of 

deformation, which corresponds to the intersection of the two lower curves in Fig. 4, that is, 

to the largest of the minima (i.e., the supremum) of the three  gi’s (corresponding to ηmax in 

the figure). Therefore  

l  = a
3
1

6
1

3
4

⎟
⎠
⎞

⎜
⎝
⎛ πf

)1,1(
sup

−∈η
g(µi, µm, νi, νm, η).  (31) 

 

 The case of an incompressible matrix (νm → 1/2) is worth noting. In this case, Eq. (30) 

becomes 

g(µi, µm, νi, νm, η) = 
⎪⎩

⎪
⎨

⎧

η)+
ΞΘ

1(3
min , 

η)+
Ξ−Ξ

1(2
RRR , 

2
1

1(2 ⎪
⎭

⎪
⎬

⎫

η)−
Ξ+Ξ RRR , (32) 

showing that bending and torsion are the only modes entering the formula. In this case, in 

other words, the characteristic length l  and parameter η found from Eq. (31), in which Eq. 

(32) is used for function g, provide an exact match between the energies of the actual 

heterogeneous solid and the homogenized Cosserat one under arbitrary uniform plus bending 

and torsion applied loading. 
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 The limit µi → 0 of Eq. (31) yields the case of a spherical void 
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In the case of matrix incompressibility, νm→1/2, Eq. (33) becomes 

l  = 6
1

fa  
6

43 π/3
6
41 ,       η = −

41
31 ,  (34) 

in which case both the bending and the torsion modes are simultaneously matched. 

 We emphasize with respect to all the above cases that when the far-field applied loading 

is such that our “optimal” choice of the Cosserat parameter does not provide an exact match 

between the effective Cosserat material’s energy and that of the actual heterogeneous 

material, our optimal effective Cosserat material will still be an improvement over the 

standard effective Cauchy material for all equilibrium uniform plus linear far-field applied 

loadings (for compliant-inclusion-type composites). 

 

 The characteristic length divided by the radius of the inclusion multiplied now by the 

volume fraction to the power –1/6, i.e. 6/1−f a/l , is plotted in Fig. 5 versus the contrast in the 

inclusion/matrix shear moduli, µi/µm, so that a null contrast corresponds to a void, Eq. (33). 

The different curves in the figures refer to different values of Poisson ratios, the same 

investigated for plane strain (νm and νi each having values 0.49 and 0). The values of the 

curves at µi/µm = 0 depend only on νm.  
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Fig 5. – Characteristic length divided by spherical inclusion radius and multiplied by f −1/6 (upper figure) and 
parameter η (lower figure) for a homogeneous Cosserat material deduced from homogeneization of a matrix 
containing a dilute distribution of spherical inclusions [Eq. (31)]. 
 

 

 The figures show that the qualitative behaviour is the same for the two-dimensional and 

three-dimensional cases: for a sufficiently compliant inclusion, a positive characteristic length 

for an effective Cosserat material is always found, which decreases to zero at sufficiently high 

inclusion stiffness. However, there are also important differences between the 2D and the 3D 

cases: 

1) For all values of the Poisson’s ratios of the matrix and inclusion, ΞΘ vanishes when µi 

= µm and then becomes negative for µi > µm. Therefore, due to the effect of the torsion 

mode and in contrast to the 2D-case, it is always impossible to produce a positive 

characteristic length l  for µi > µm, regardless of the values of the Poisson’s ratios, so 

that l = 0 always results for µi ≥ µm (and not only for the special case νm = νi). 

2) The curve for l  for the case νi = 0 and νm = 0.49 for 3D displays a jump to zero (not 
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found for 2D deformations) at µi = µm. This behaviour, occurring when νm > νi, is 

related to torsion and to the fact that η simultaneously tends to the limit –1. This 

means that the quantity )1(2 η+l , related to the characteristic length in torsion, is not 

discontinuous and correctly approaches zero when µi/µm tends to 1. 

3) Result (iii)  

The characteristic length is substantially smaller in three dimensions than in two. This 

is partially due to the fact that l∝ a 6/1f in three-dimensions, whereas l∝ a in two-

dimensions.  The figures show that the largest characteristic length (strongest Cosserat 

effect) occurs for an incompressible matrix containing voids (νm = 0.5, µi = 0), in 

which case   

6
1

702.0 fa≈l ,            aa 886.0≈
2
π

=l ,  (35) 

for 3D and 2D, respectively. For example, if f = 0.1, Eqs. (35) show l /a in 3D to be 

54% of that in 2D. 

 

 

6.  Unconstrained Cosserat materials do not change Results (i), (ii) and (iii) 

At this point we are in a position to address the following question: can Result (i), stating that 

Cosserat effects only arise for inclusions less stiff than the matrix, be changed by making 

recourse to a more general theory of micropolar behaviour than the constrained-rotation 

theory of Eq. (11)? Moreover, does Result (ii), providing a closed-form formula for the 

characteristic length l , and consequent Result (iii), change if a general theory of micropolar 

behaviour is assumed? The answers to these questions turn out to be negative, but they 

require a digression.  

 A general isotropic, linear micropolar material is characterized by the following 

constitutive equations [16, 2] 

 Σij = λ εkk δij + 2 µ εij + γ eijk(ωk − φk),       µij = α φk,k δij + 4µ 2l (φj,i + ηφi,j),  (36) 

where Σij and µij are the asymmetric force-stress and couple-stress tensors, respectively, and 

ωk and φi are the macro and micro axial rotation vectors, respectively. Constants λ and µ play 

the role of the usual Lamé moduli of Cauchy-elasticity, and α, η, γ and l  are new material 

constants.  
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 The important point is to note that Eqs. (11) are obtained from Eqs. (36) by taking  φk = 

ωk; then Σij and µij reduce to σij (the symmetric part of the stress tensor) and  mij (the deviator 

of the couple-stress tensor), respectively, and the terms containing α and γ in Eqs. (36) 

become identically zero.  

 Now we note that in the unconstrained theory, kinematical boundary conditions must 

involve prescription of displacements, macro-rotations and micro-rotations. If we make the 

sensible choice that the microrotations are identical to the macrorotations on the boundary 

and these are those arising from displacements (6), then a (unique) solution to the full 

unconstrained theory produces the same energy (14). The same results for l , Eqs. (22) and 

(31), are obtained. Now, however, parameters α and γ remain undetermined. Thus we find no 

advantage to use of the more complex unconstrained Cosserat model in the homogenization 

problem, and indeed we find the constrained-rotation model employed by Koiter [15] to have 

the great advantages of simplicity and physical transparency. 

 

7.  Experiments and applications 

We have already reported that our results explain and confirm the Gauthier [7] 

experimentally-based claim that “an anti-micropolar phenomenon” is found for inclusions 

stiffer than the matrix. For inclusions less stiff than the matrix, our theory provides Cosserat 

parameters l  and η (only l  for plane strain) for the effective material which exactly match 

two quadratic deformation modes (one in plane strain), so that these parameters would be 

found in an ideal experiment performed on a specimen, when the boundary conditions 

corresponding to those modes are imposed. With the exception of an incompressible matrix 

material, the quadratic modes correspond to a combination of bending, torsion and other 

modes, which are usually not experimentally investigated. 

 

7.1 Bending and torsion experiments, and applications involving pure bending and torsion 
loading 

Common experiments involve bending (usually bending of a plate deformed in plane strain) 

and torsion (usually of a bar with circular cross section). Performing such experiments will 

not in general (again, with the exception of plane strain bending of a composite with an 

incompressible matrix material) yield our Cosserat parameters. This is because we have 

selected these to give the greatest possible improvement over the effective Cauchy material 
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for all possible imposed linear plus quadratic displacement fields, such that the effective 

Cosserat material is never stiffer than the actual heterogeneous one. If, however, the applied 

loading of interest is known to consist of uniform plus pure bending loading in 2D, or uniform 

plus pure bending and pure torsion loading in 3D, the effective Cosserat parameters can be 

chosen to produce an exact energy match between the effective Cosserat material and the 

actual heterogeneous one.  

 In particular, for plane strain deformations of a slab containing a dilute distribution of 

cylindrical inclusions (with axis parallel to the depth): 

l 2D-bending = 
2

Ra Ξπ ,   (37) 

with RΞ  given by Eq. (8)1, provides an exact match for a plane strain bending experiment. 

 For plane strain deformations of a slab containing a dilute distribution of spherical 

inclusions (note that, due to the plane strain constraint, parameter η does not enter) 

l 3D-plane strain bending = a
3
1

6
1

3
4

⎟
⎠
⎞

⎜
⎝
⎛ πf

2
RΞ ,      (38) 

where RΞ is given by Eq. (10)1, gives an exact match for a plane strain bending experiment. 

 For torsion of a cylindrical specimen (of circular cross section) containing a dilute 

distribution of spherical inclusions 

barlcylindricatorsion

1 ⎥
⎦

⎤
⎢
⎣

⎡
η+l  = a

3
1

6
1

3
4

⎟
⎠
⎞

⎜
⎝
⎛ πf

3
ΘΞ , (39) 

where ΘΞ is given by Eq. (10)3, gives an exact match. Obviously, l  and η can be chosen to 

satisfy Eqs. (38) and (39) simultaneously. 

 

7.2 A comparison with existing experimental results 

It is interesting now to compare our results with experiments performed on material 

containing compliant inclusions, for instance voids. In particular, our results indicate that the 

most effective experimental setting to display Cosserat effects would be a material containing 

cylindrical voids deformed in plane strain, with a matrix Poisson’s ratio tending to the limit 

value 0.5; for instance, a rubber block with cylindrical holes. Unfortunately, nothing like this 

experimental setup is available in the literature and also nothing pertaining to dilute 

suspensions of spherical voids.  
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 The only results that we were able to find are those by Lakes [2] pertaining to two foams 

with nearly spherical voids. Specifically, one material is a syntactic foam consisting of hollow 

glass microbubbles embedded in an epoxy matrix, for which the mean diameter of voids is 

0.125 mm and the volume fraction is 0.468. The second material is a high-density rigid 

polyurethane closed-cell foam, for which the mean diameter of voids is 0.1 mm and the 

volume fraction is 0.690. Within the general Cosserat framework Eqs. (36), Lakes [2] finds 

l = 0.032 mm for the first material and l  = 0.327 mm for the second. Lakes also determines 

the quantity )1(2 η+l , which he estimates to be 0.065 mm and 0.62 mm, respectively.  

 There are several difficulties in attempting to compare our results with these materials: 

• the void volume fraction is so high that the dilute approximation is almost certainly not 

directly applicable; 

• the mechanical properties of the matrix material are not available1; 

• the voids in the first material are coated by a glass shell of unknown stiffness. 

 Since these factors make a precise comparison impossible, we simply employ our model 

results with νm = 1/2, Eqs. (34), to make an order-of-magnitude comparison. Thus Eqs. (34) 

give l = 0.039 mm and )1(2 η+l  = 0.030 mm for the first material and l = 0.033 mm and 

)1(2 η+l  = 0.025 mm for the second. These results are only in qualitative agreement with 

the experimental findings; however, they are consistent with the fact that our model, based on 

the dilute approximation, underestimates the characteristic length l  for the given high values 

of the pore volume fractions. The fact that the characteristic length is better predicted for the 

first material than for the second is probably a consequence of the presence of the glass shell 

coating the voids, providing a stiffness, which strongly decreases l . 

 

 

8.  Summary of General Methodology 

 Here we summarize the general methodology proposed in this article and employed in the 

specific cases of a matrix containing a dilute suspension of spherical or circular cylindrical 

                                                 
1 Only νm is needed to determine l . However, the knowledge of µm would allow us to determine µ  and κ  
from Eqs. (1), which compared to experimental results by Lakes would permit an assessment of the quality of 
the estimate. 
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inclusions. We emphasize that our general methodology is not restricted to composites 

consisting of a matrix containing a dilute concentration of another phase. To determine the 

effective moduli for a homogeneous Cosserat−elastic material that best approximates a 

heterogeneous Cauchy-elastic material under general applied loadings, one first determines 

the effective Cauchy-elastic moduli in the standard manner (i.e., using the most accurate 

approach available from standard composite materials theory. We emphasize that we regard 

the uniform loading as the primitive case, so that this initial determination will not be affected 

by subsequent calculations). One then needs to compute the elastic energy in the 

heterogeneous material of interest when this is subjected to a general equilibrium linearly-

varying applied traction (or quadratically-varying displacements) on the boundary.  One then 

compares this energy to the energy computed for the homogeneous Cosserat material (whose 

Cauchy moduli have already been determined via the standard homogenization approach) 

subjected to the same quadratically-varying displacements and rotations as in the Cauchy 

solution, and one chooses the Cosserat parameters so that these two energies are in closest 

possible agreement.  In the specific cases analyzed in this paper, the Cosserat length scale is 

nonzero when the heterogeneous material is less stiff than its predominant phase, and zero 

otherwise. 

 

9.  Conclusions 

It has been shown that a dilute dispersion of elastic isotropic spherical inclusions in a 3D 

composite (and infinitely long, parallel circular cylindrical inclusions in a 2D one) produce 

Cosserat effects when the inclusions are less stiff than the matrix. The effects induce a 

characteristic length in three dimensions: 

l∝ a 6
1

f , 

and one in two dimensions 

 l∝ a , 

where a is the inclusion radius and f the volume fraction of the inclusion material. The 

maximum characteristic length occurs when the inclusions are cavities, and the matrix 

material is incompressible; this length is substantially larger in 2D vs. 3D for cavities having 

the same radius. Cosserat effects are on the other hand excluded for the opposite situation of 

inclusions having stiffnesses equal to or greater than that of the matrix.  
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 An important practical implication of our findings is that the response of a composite 

material containing inclusions less stiff than the matrix and subjected to non-uniform 

stressing can be more accurately represented by a homogeneous Cosserat material with 

appropriately–chosen moduli than by a standard (Cauchy) effective material. 
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APPENDIX A – THE STATE-OF-THE ART ON COSSERAT EFFECTS AS DEDUCED FROM ELASTIC, 

INHOMOGENEOUS MEDIA 

 
The literature on Cosserat effects arising from heterogeneous media is rife with conflicting 

views. Berglund [17], claiming that previous results [18-20] were inconsistent, provides two 

theoretical arguments to disprove micropolar effects, employing both a discrete structural 

model of a cubic lattice and a framework for homogenization of a heterogeneous continuum. 

These appear to be far from conclusive, since the former invokes reduction of structural 

dimensions to zero (which is inconsistent with the fact that Cosserat effects should be related 

to some non-null characteristic microstructural length) and the latter does indeed predict some 

micropolar effects, which are then argued to be negligible. On the contrary, Cosserat 

behaviour was found by Wang and Stronge [21] for a hexagonal lattice. Moreover, certain 

theoretical arguments in favour of Cosserat behaviour have been provided by Achenbach and 

Hermann [22] and Beran and McCoy [23], but the former holding only in certain 

circumstances involving dynamical effects and the latter apparently finally disproving the 

effects for composites with homogeneous and isotropic statistics of inclusions. Recently, 

Forest [24], Ostoja-Starzewski et al. [25], and Bouyge et al. [26] provided numerical finite 

element investigations supporting Cosserat effects in heterogeneous materials. Forest treats an 

anisotropic composite with an unusual microstructure, and does not directly provide values 

for the Cosserat characteristic length. The latter two papers treat plane problems of a matrix 

containing a dispersion of circular inclusions; they find a nonzero Cosserat length both for 

inclusions stiffer and more compliant than the matrix, a fact contradicted previously by 

experiments [6,7], and now by the analytical results derived in the present article.  
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Fig 6. – Characteristic length divided by the cell size for volume fraction of disperse phase f = 0.18, for a 
Cosserat material deduced from homogeneization of a matrix containing a dilute distribution of parallel, infinite 
circular cylindrical inclusions [plane strain, Eq. (21)]. 
 

When Eq. (21) is plotted using a semi-logarithmic scale, such as that employed in [26] for 

their parameter values of νi = νm = 0.3 and f = 0.18, we obtain the graph shown in Fig. 6. The 

numerical values at high contrast are similar to those found in [26] (their Fig. 8), but our 

results: (i) correctly approach zero when the elastic mismatch disappears (while a nonzero 

characteristic length is found in [25] even for zero mismatch); and (ii) show that Cosserat 

effects are excluded for mismatch greater than 1 (in which case l  would be imaginary). 
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APPENDIX B – PLANE-STRAIN SOLUTION OF AN ELASTIC CIRCULAR INCLUSION IN AN INFINITE 

ELASTIC MATRIX, SUBJECT TO REMOTE DISPLACEMENTS FIELD (5) 

 
We use the Kolosov-Muskhelishvili [11] complex potentials representation of the general 
solution for plane problems in homogeneous isotropic linear elastostatics, which in polar 
coordinates is 
 

ur + i uϑ = 
2µ
1 e−iϑ [ κϕ(z) − z

______

)(ϕ′ z  − 
______

)ψ(z  ], (B.1) 

σrr + σϑϑ = 4 Re[ )(ϕ′ z ],       σϑϑ − σrr + 2i σrϑ = 2e2iϑ [ )(ϕ ′′ zz  + )(ψ′ z  ], (B.2) 

where z = x1 + i x2 = reiϑ, ϕ(z) and ψ(z) are analytic functions, Re[] denotes the real part, and 
κ = 3 − 4ν for plane strain.  
 First, we consider a pure bending far-field applied loading, corresponding to  

σ22 = mx1,  σ11 = σ12 = 0,        for r →∞,  (B.3) 

or, in terms of complex potentials 

ϕ(z) = ψ(z) = 
8
m z2,        for |z| →∞. (B.4) 

The solution for a matrix containing an inclusion of radius a is  

ϕ(z) = 
8
m z2 +

)mim

mi

µ+µ2(κ
µ−µ

2

4

z
am

4
,  (B.5) 

ψ(z) =  
8
m z2 + 

mii

imim

µκ+µ
κµ−µκ

2

4

z
am

8
+ 

mim

mi

µ+µκ
µ−µ

4

6

z
am

4
, (B.6) 

in material outside the inclusion, and 

ϕ(z) = 
mii

im

µκ+µ
1)µ+(κ

8
m z2 − 

)
)1(

miii

mimi

m

i

µκ+(µκ
−κ−κµ+µ

µ
µ

4

2am , (B.7) 

ψ(z) =  
mim

im

µ+µκ
1)µ+(κ

8
m z2,  (B.8) 

in material inside the inclusion. 
 Second, we consider a quadratic far-field applied displacement field, corresponding to  

u1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−κ

1+κ
−β13

2
2

2
1 1

~ xx
m

m ,    u2 = u3 = 0,     for r →∞, (B.9) 

or, in terms of complex potentials 

ϕ(z) =
1

~

−κ
βµ 13

m

m z2,       ψ(z) = −
1

~

−κ
βκµ 13

m

mm z2,     for |z| →∞.   (B.10) 

The solution is  
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ϕ(z) = 
1

~

−κ
βµ 13

m

m z2 + 
mim

im
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µ−µ
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~
2 −(κ

βκµ 13
4
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a , (B.11) 

ψ(z) =  −
1

~

−κ
βκµ 13

m

mm z2 + 
mii

imim
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in material outside the inclusion, and 

ϕ(z) = 
mii

im

µκ+µ
1)µ+(κ

1

~

−κ
βµ 13

m

m z2 – 
)

)1(

miii

mimi

m

i

µκ+(µκ
−κ−κµ+µ

µ
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ψ(z) =  −
mim

im

µ+µκ
1)µ+(κ

1

~

−κ
βκµ 13

m

mm z2,  (B.14) 

in material inside the inclusion. 
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APPENDIX C – THREE-DIMENSIONAL SOLUTION OF A SPHERICAL ELASTIC INCLUSION IN AN 

INFINITE ELASTIC MATRIX, SUBJECT TO REMOTE DISPLACEMENTS FIELD (6) 

 
C.1 – Torsion prescribed at infinity 

First, we consider an applied far-field torsion, consisting of a different (in general) angle of 
twist/length applied about each of the three Cartesian axes. This corresponds to the 
equilibrium displacement field 

u1 = (Θ2 − Θ3)x2 x3,   u2 = (Θ3 − Θ1)x3 x1,  u3 = (Θ1 − Θ2)x1 x2,     for r →∞, (C.1) 

or, in spherical coordinates 

ur = 0,                 uϑ = − (Θ1 − Θ2) 2r sinφ cosφ sinϑ, 

uφ = − 
4

φΘ−Θ+Θ−Θ+Θ 2cos)(2 21321  2r sin2ϑ,     for r →∞. (C.2) 

The solution to this applied far-field, satisfying equilibrium everywhere, and displacement 
and traction continuity across the inclusion-matrix boundary r = a,  is 

ur = 0,   

uϑ = − (Θ1 − Θ2) sinφ cosφ sinϑ ⎟⎟
⎠

⎞
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⎝
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uφ = − 
4
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3
2

im
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r
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in material outside the inclusion, and 
ur = 0,   

uϑ =  − 5 2rmµ
im µ+µ

Θ−Θ
4

21  sinφ cosφ sinϑ,  (C.4) 

uφ = − 5 2rmµ
)4(4

2cos)(2 21321

im µ+µ
φΘ−Θ+Θ−Θ+Θ  sin2ϑ, 

in material inside the inclusion. 
 
C.2 – Bending and the other equilibrium quadratic displacement modes prescribed at infinity 

 Second, we consider the applied far-field equilibrium displacement field 
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u2 = 
23

12

R
xx ,   u3 = 

32

13

R
xx ,      for r →∞,  

from which the general representation (6) can be obtained by using superposition and adding 
torsion. The bending we treat is plane-strain bending, while Sen [13] and Das [14] have 
considered a pure (uniaxial-stress) bending. Their case is recovered by re-defining 
coefficients 1/ R23 and 1/ R32 as follows 

mm

m

E
C

E
A

R
+

ν
−=

23

1  and 
m

m

m E
C

E
A

R
ν

−=
32

1 ,  (C.6) 

where A and C are arbitrary constants and Em is the elastic modulus of the matrix material. 
The case C = 0 is that analyzed in [13, 14], and this is sufficient to solve the general case 
(C.6) via superposition. We note also that the modes defined by coefficients ijβ

~  can be re-
defined in a way similar to (C.6), and again by superposition it is sufficient to solve for the 
case 

 13
~
β = 12

~
β

4ν−3
2ν−1

− . (C.7) 

 In polar coordinates, the far-field representation (C.5) with Eq. (C.6) (taking C = 0 and 
all other coefficients null) has the same structure as Eq. (C.5) with Eq. (C.7) (with all other 
coefficients null). This is: 

ur = B 2r  cosφ sinϑ (c1 + c2 cos2ϑ),   

uϑ = B 2r  cosφ cosϑ (c3 + c2 cos2ϑ),  (C.8) 

uφ = B 2r  sinφ (c4 + c5 cos2ϑ),  

where  

B = 
mE

A
4

,     c1 = c4 = c3 + 4 = 1− νm,     c2 = c5 = 1 + νm, (C.9) 

for bending, while  
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β)ν−2(1
−

mm

m

1

~
12 ,      c1 = c3 = − c4 = 1− νm,     c2 = − c5 = 2 − 3νm, (C.10) 

for the mode defined by coefficients ijβ
~ . 

 The solution to this applied far-field displacement field that satisfies equilibrium 
everywhere, and displacement and traction continuity across the inclusion-matrix boundary r 
= a, is  

ur = B cosφ sinϑ ⎥
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in material outside the inclusion, and 

ur = B 2r cosφ sinϑ ⎥⎦
⎤
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⎡ ϑ++ 2cos212

0 mm
r
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uϑ = B 2r cosφ cosϑ ⎥⎦
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r
c , (C.12)  

uφ = B 2r sinφ ⎥⎦
⎤

⎢⎣
⎡ ϑ++− 2cos542

0 mm
r
c ,  

in material inside the inclusion. (The Sen [14] solution violates displacement continuity 
across r = a since it is missing the c0 terms in (C.12).) All coefficients appearing in the above 
eqs. (C.11) and (C.12) are dimensionless and are defined as: 
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where Em, Ei and νm, νi are the elastic moduli and Poisson’s ratios of the matrix and inclusion 
materials, respectively. 
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