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Abstract

This paper derives analytical gradients for a broad class of regime-switching models with
Markovian state-transition probabilities. Such models are usually estimated by maximum
likelihood methods, which require the derivatives of the likelihood function with respect
to the parameter vector. These gradients are usually calculated by means of numerical
techniques. The paper shows that analytical gradients considerably speed up maximum-
likelihood estimation with no loss in accuracy. A sample program listing is included.

Résumé

Dans cette étude, les auteurs dérivent des gradients analytiques pour toute une catégorie de
modéles a changement de régime comportant des probabilités de transition a la Markov.
Ces modeles sont généralement estimés a l'aide de méthodes du maximum de
vraisemblance, qui nécessitent que la fonction de vraisemblance soit dérivée par rapport
au vecteur des parameétres du modeéle. Les gradients sont habituellement calculés a l'aide
de technigues numériques. Les auteurs montrent que l'utilisation de gradients analytiques
accélere considérablement les estimations effectuées a l'aide des méthodes du maximum
de vraisemblance, sans toutefois nuire a leur précision. Un imprimé du programme
informatique est fourni a la fin de I'étude.
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1.0 Introduction

This paper derives analytical derivatives for a broad class of regime-switching models
with Markovian state-transition probabilities. Estimation of these models is usually done
by maximum likelihood methods, which require some way of calculating the derivatives

of the likelihood function with respect to the parameter véctbhis vector is also

referred to as thecoreor thegradientvector.) This is usually done using numerical tech-
nigues that approximate the derivative by the change in the likelihood function for small
changes in the parameter vector. This is not especially efficient, however, as such tech-
niques typically requir&l+1 evaluations of the likelihood function to calculate thele-

ments of the score, arld?+ 1  to calculate the Hessian (the matrix of second derivatives).
By using analytical gradients, we show that the number of calculations required to evalu-
ate either of these objects can be greatly reduced. This in turn considerably speeds up
maximume-likelihood estimation of such models with no loss in accuracy.

The general regime-switching model that we consider describes the generation of a single
variabley, byK distinct states. In any given statg, is generated by a linear regression

model

Yy = X [B; + &, & Di.i.d. N(O, 0)) (EQ 1)

wherex; is avector that is exogenous with respeefto . The states are assumed to follow
a first-order Markov process, with transition probabilities that may vary over time accord-
ing to the formula

P(s =i|si_1 = 1) = P(z Oy) (EQ 2)

where®() is the standard normal cumulative distribution function.

This class of models encompasses many useful special cases. First, it should be noted that
any highempth order Markov process witl states can be written as a first-order Markov

process withp [K states, so our assumption that the process is first-order is not restrictive.
Second, the case wheze is a scalar constant gives us the Markov switching regressions

originally proposed by Goldfeld and Quandt (1973) and discussed in Hamilton ?1994).
Third, the case wheng is a scalar constant is explored by Diebold, Lee and Weinbach

1. Alternatives to maximum likelihood estimation include the EM algorithm and simulated annealing. How-
ever, simulated annealing is also inefficient, and the EM algorithm has a lower rate of convergence near the
optimum than does most popular gradient-based maximization methods (such as the Newton algorithm.)
The score is also useful for the calculation of standard errors, and for diagnostic tests (See White (1994).)

2. We assume tha, is also exogenous with respegt to
3. Hamilton (1994) also discusses the case wjjere  may be a vector rather than a scalar.
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(1994). Fourth, Durland and McCurdy (1994) show that such models can usefully approx-
imate a duration-dependent semi-Markov process.

Regime-switching models have become popular for the modelling of business cycles, as

originally proposed by Hamilton (1988)t may therefore seem surprising that there has
been no exposition of how to calculate the derivatives analytically. There are two reasons
for this. First, analytical derivatives are available for a more restrictive class of models
(Hamilton 1992). Second, and perhaps more importantly, analytical derivatives were
thought to be of little practical use in estimation. This is because analytical calculation of
the score requires (as we will see) calculation of the smoothed probabilities of being in
each possible statat each timé. These smoothed probabilities were in turn much more
costly to compute than the likelihood function, which made the alternative of numerical
derivatives attractive. However, Kim (1994) presented a new algorithm for calculation of
these smoothed probabilities that can reduce calculation times by as much as several
orders of magnitude. This in turn raises the possibility that analytical gradients may now
be more efficient than numerical methods for a broad class of regime-switching models.

This paper is organized as follows. Due to its length, the formal derivation of the analytical
derivatives of our model is presented in a mathematical appendix. A second appendix lists
three Gauss procedures that calculate the smoothed probabilities, the likelihood function
and the score vector (respectively) for the case wKePe The remainder of this paper
compares the efficiency of numerical and analytical gradients in maximizing the likeli-
hood function for a variety of models. The first section below considers the accuracy of the
analytical and numerical gradients and the consistency of the parameter estimates. The
section thereafter compares the speed of calculation.

2.0 Accuracy

The accuracy of the gradient calculations was tested on a sample of 100 observations for
arbitrary parameter vectors. We found that the analytical gradients were identical to those
provided by the forward gradient technique and differed only very slightly from the results
of the two other numerical methods. Sample results are provided in Table 1.

TABLE 1. Accuracy of Analytical versus Numerical Gradients - Example

Computed  Forward Central Richardson
Parameter?  Gradient Gradient Gradient Gradient
[311 0.06495304 0.06495304 0.06495437 0.06495362
812 0.03838056 0.03838056 0.03838199 0.03838091
[313 0.02906685 0.02906685 0.02906791 0.02906681
[314 -0.04750326 -0.04750326 -0.04750253 -0.04750267
821 0.01263473 0.01263473 0.01263476 0.01263431

4. Note that Hamilton’s (1989) two-state model withutoregressive lags may be written in this framework
as a model witte [y states.
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TABLE 1. Accuracy of Analytical versus Numerical Gradients - Example(continued)

Computed  Forward Central Richardson

Parameter®  Gradient Gradient Gradient Gradient

Bso 0.05427607 0.05427607 0.05427597  0.05427675
Bos 0.00416917 0.00416917 0.00416920 0.00416880
Bos -0.00612684 -0.00612684 -0.00612680 -0.00612742
Y11 1 0.04583327 0.04583326 0.04583328  0.04583299
Y111 0.04583327 0.04583327 0.04583331 0.04583299
Y22 1 -0.01941340 -0.01941340 -0.01941342 -0.01941372
Y22 2 -0.01941340 -0.01941340 -0.01941336 -0.01941372
0, -0.32985335 -0.32985335 -0.32984718 -0.32985359
o, -0.14088036 -0.14088036 -0.14087911 -0.14088066

a. Bl ande are the coefficients of the linear regressions for states

1 ancf 2. ka i are the coefficients for the transitions probability for
remaining in state kO)  is the standard deviations of the error term
associated with state k.

Based on these results, we should expect analytical and numerical gradients to produce the
same results when used for parameter estimation. We checked this using a small Monte

Carlo experiment. A two-state switching regression was estimated using both methods
for one hundred samples of a hundred observations each. Table 2 reports the difference
between the two sets of parameter estimates.

TABLE 2. Percentage Differences of Maximum Likelihood Parameter Estimates

Parameter®

MEAN MEDIAN MAX MIN
[311 0.0014182477 0.0000000 0.13184060 -3.0400000e-05
[312 -0.0015846355  1.0105265e-08 0.00012254550 -0.14658111
[313 -0.0089365709  0.0000000 0.0092465532 -0.83602038
[321 0.0018295629 0.0000000 0.16990881 -0.00015096286
[322 -0.0033434991  4.1351604e-08 0.00052705071 -0.31093283
[323 -0.014223531 2.9252218e-08 0.024998039 -0.89744424
Y11, 1 -0.0039566721  0.0000000 8.6297094e-05 -0.23454226
Y111 -0.0068314097  3.3581302e-08 8.6125427e-05 -0.63499616
o -0.00087577934 0.0000000 1.1172225e-05 -0.081447853

a. Notation as per Table 1 except here the standard deviation of the errabterm  is con-
strained to be the same across states. The data was generated and then estimated as
beingy, = By +B,X, 1+ B3Xz + 1.4, , Where(; , and, arei.i.d N(0,1). The probabil-

ity of remaining in regime i isb(z;) The two regimes’ coefficient vectors

[By, By Bg 2] are[0.6 0.7 0.5 1.3 and[0.2-0.50.3 0.§

5. Maxlik’'s default, the central difference method, did the numerical calculation of the gradients.
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First, we note that for each parameter, the median percentage difference in the estimates

using the two kinds of gradients was less thar/ . There were a few larger differences,
however. Upon further examination, we found that most of the large discrepancies came
from a single sample. Removing this data sample (#71) from our experiment then pro-
duced the results shown in Table 3. Mean, minimum and maximum differences between
the two sets of parameter estimates are now much reduced for most parameters. Further-
more, we found that the problem with the 71st sample appeared to be one of two local
maximums. If either set of parameters is supplied as the starting values, both analytical
and numerical gradients will converge to that value.

Based on the above results, we can conclude that the analytical and the numerical gradi-
ents will generally converge to the same estimate. However, the sensitivity of maximum
likelihood estimation to intermediate calculations when there are multiple local maxi-
mums may occasionally cause differences. This does not imply that one method is supe-
rior to another. It simply means that researchers should remember to check for multiple
local maximums.

TABLE 3. Results After Removing the 71st Trial

Parameter MEAN MEDIAN MAX. MIN.

Bll 6.1340217e-07  0.0000000 7.0871000e-05 -3.0400000e-05
[312 -8.5868450e-06 1.6933548e-08 0.00012254550 -0.00054090740
[313 5.3470534e-05 0.0000000 0.0092465532  -0.00099279136
[321 2.6145186e-06  0.0000000 0.00035430604 -0.00015096286
[322 -1.3683861e-07 5.2138270e-08 0.00052705071 -0.00075399754
[323 -0.0096435665  3.2498027e-08 0.024998039 -0.89744424
Yi1 1 -0.0014503071  0.0000000 8.6297094e-05 -0.058690961
Yi1 1 -3.5319578e-06 4.2514594e-08 8.6125427e-05 -0.00034058177
o 4.0692540e-09  0.0000000 1.1172225e-05 -7.7739852e-06

3.0 Speed

To compare the computational efficiency of the two gradient procedures, we again esti-
mated regime-switching models on simulated data, using both procedures on each data
set. This was done 10 times for four different sample sizes. Results are reported in Table 4
and in Figure 1.

TABLE 4. SPEED UP FACTOR:
(Total Elapsed Time with Numerical Gradients) / (Total Elapsed Time with Analytical Gradients)

Standard
# Obs. MEAN MAX. MIN. Deviation
100 3.4840708 3.9978395 2.2788343 0.48204014
250 4.1314662 5.0734526  3.3856693 0.50488882
500 4.2898862 6.0966392 1.0698553 1.4188306
1000 4.4052682 6.5387418 3.3724443 0.98204026
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A minimum of 1.069 signifies that for one draw the analytical gradients were only negligibly faster
than the numerical.

In general, we see that analytical derivatives can improve calculation efficiency by roughly

a factor of four. The relative speed of the analytical derivatives increases with an increase
in sample size, but the improvement seems to slow as samples become large. Results are
also somewhat variable. For example, in one experiment with 500 observations, analytical
gradients produced almost no time savings relative to the numerical gradients. However,
of the remaining nine cases examined for this sample size, the speed-up factor was never
less than three.

Figure 1

Plotting Speed vs Size

Speed Up Factor

0 200 400 600 800 1000
Sample Size
* - Observed M - Mean

An analysis of the code illustrates why the analytical derivatives are typically faster than
the numerically calculated derivatives. The numerically calculated derivatives make P (the
number of parameters) calls to the likelihood function. Most of the time in the likelihood
function is in turn spent in a loop over the sample size (N). One therefore could approxi-
mate the amount of calculations in the numerical derivatives as P*N.
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The analytical derivatives make one call to the smoother, which in turn calculates the like-
lihood function and then performs an additional loop over the sample size. Hence, the
smoother requires approximately 2*N calculations. Calculating the gradient then requires
aloop over the number of states (S) for a set number of calculations (L). In total, therefore,
this requires approximately 2*N+S*L calculations.

With the above analysis, we can predict that the analytical gradient procedure will be
faster as either the sample size or the number of parameters increases. In the unlikely case
that the number of states increases with the number of parameters held constant, there may
be a relative improvement of the numerical technique. More likely, an increase in the num-
ber of states will cause a substantial increase in the number of parameters.

These conclusions will of course depend on the relative costs (time required) of different
operations. For interpreted languages (like Gauss), loops are particularly inefficient and
operations should be vectorized wherever possible. If our procedure were rewritten in a
compiled language, the relative efficiency of numerical and analytical gradients for a par-
ticular model might change. However, we would still expect that the relative efficiency of
the analytical gradients would increase with the number of parameters.
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4.0 Mathematical Appendix:
Derivation of Analytical Gradients

The general regime-switching model that we consider describes the generation of a single
variabley, byK distinct states. In any given state, is generated by a linear regression

model
Yi = X [B; + €, €, Oi.i.d. N(O, ;) (EQ 3)

wherex; is avector that is exogenous with respeetto . The states are assumed to follow

a first-order Markov process, with transition probabilities that may vary over time accord-
ing to the formul&

P(s =i|s—1= 1) = @(z Oyy) (EQ 4)
where® is the standard normal cumulative distribution.

4.1 Notation

Let @ and® denote the standard normal probability density function and cumulative dis-
tribution function.

LetY+, X+, Z1, S; respectively denote a matrix of values from tite T of y;, X;, z, S;.

Let the sum of (S;) over all possible realizationsSef  (which in generakhas permu-

tations) define the expressignf(sr)

Let the parameters of the model be gathered into a vecter [e p]’ , Where captures

all the parameters entering into the state-transition probabilities (EQ 3), and is all the
other model parameters. We denotejthelement ofA by\j .

The likelihood function of this model |i1(YT|)\, X1, Z1) , which for simplicity we will
write asp(YT|)\) .

6. We assume th&@ is also exogenous with respegt to
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4.2 Basic Results

We are trying to fin%%log p(YT|)\) . Obviously,
j

0 _ 1 0 :
Elog p(YTP\) = m D{))\_jp(YTP\‘ (EQ5)

Note that we can rewrite the likelihood function as

(YD) = 3 pOYr[Sr ) ERLSEY) = 3 oYy |Sr. 8) e (EQ®)

where the first equality follows from Bayes Theorem and the second from the properties
of the switching model.

This means fo?\j oe ,

) _ 0 _ 0 _ 0
Ep(YTP\) = a—ejp(YTP\) = a_e]; P(Y7|Sr. 8) Lp(Sp|p) = Zp(sﬂp) Da@jp(YﬂST,f

(EQ7)
Using (EQ 5) then gives
% 10gp(Y1[A) = =15 p(Sy|p) L p(¥y|Sy, 0
6 p(YT|)\) D; 9;
9  P(Y1[Sr, 8) CR(Sr|P)T 10 :
T80V = ¥ o E%ﬁj")g p(Yr|Sr. O);
0 _ 0
T35, 09V ) = ;p(srm A) %@jlog p(Y+|Sr. O); (EQ 8)

Since

.
P(Y1|Sr. 6) = [ P(y[se 6).
t=1

)
p(Sr| Y7 A) = [ P§|Yr. ) (EQ9)
t=1
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it follows that

£|ogp(YT|A) = ZDH p(s| Y A)DEE— Z log p(y;| st 9)%
J =1

T

0
7.2 logp(Y; [N = 5 O] s Y A)BEE ;o8
Tae,o0PCT N = g 1 MY 0 g

J
2 P(Y:|Se ©)

0

5 (EQ10)
1 U
U

Similarly, (EQ 5) and (EQ 6) imply that fwj Op ,we obtain

) _
)\—Iogp(YTM) = Iogp(YT|A) (Y ™ Da—; P(Y7|Sr. 8) Do(Sr|r

Ja—pjlog p(Yr|A) = D(YT| N DZ P(Y|Sr. ©) Da?jp(5r|p

) _ P(Y, Sr|A) P(S| YT, A) 5
'aT>,-'°gp‘YT|”‘Zp(YT|A>Ep(Sr|p>Da_(Sf|) 2o op, "l

0 _ 0 ,
ja_pjmg P(Yr|A) = Z P(Sr|Yr. A) D(Elog p(Sr|P.

;
9 9, = :

J-—logp(Yy|\) = Y1, A) | 0 1
% ogp(Yr[A) ZD(SA T )D()Fjog%p(%w) tl:llp(s[|st 1 P),

.
9 o u [
J—I Y+|A) = Yo, A do + lo e

7, ogp(Yr|A) ;p(Sr| T )D(ED gp(s|P) t; IP(s[S-1P),

0
T35 109R(Y[N) = g P M Ty oap(s e

Zp(8r|YT N) EDZ Iogp(st|8[ 1 p)D

Da%log p(Y7|A) = 5 P(sp| Y. A) E—Ia%log P(so| )+
J So J

0T, 0 (EQ 11)
A —| ,
ZP(SﬂYT’ ) EEJ;"F’J' 0gp(s|S;-1 p)%
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The derivation of the analytical derivatives now requires only two major steps: collapsing
theg expression and then simplifying the remaining terms in (EQ 10) and (EQ 11).

4.3 Collapsing the Summation

To understand how we collapse the summation, consider first the simpler problem of col-
lapsing the summation in the following expression:

O
ZD; p(yt S 6)

07 gg P 0

K K
o EQ 12
Z stzlg p POS©) =

I:IDEII:I
I o

(EQ 12) shows the expansion for the general cas&ddtate switching model. Note that
the T independent summations kifstates each will produce #IT  possible permutations
of the vector of realizationS,; . However, the right-hand term in parentheses is a function

of only s, , which implies that of thKT terms in the summation over all posSible , we
have at most onl¥ distinct terms. In other words, taking together all Thel summations

in (EQ 12), we hav&T [0  terms, of which at mKsiT are distinct. This means that
(EQ 12) can be rewritten as

O
D K 69 p(yt|5t 0)

KT- lDZ Z
t=1

0
0

EQ 13

p(yt|8t 8 (FQ13)
U

=1

(EQ 10) differs from (EQ 12) only in that each term in the summation 8¢er  is weighted
by the “smoothed” probability of its occurrence. However, since these probabilities are
themselves functions &  only rather than alBpf , we can rewrite (EQ 10) as

2,

0 (L]

im o T oK Daejp(Yt|5t 0) sl )\)ED €010
75,000 = 303 Fes e AT
O N

ForA; U p, we will first rewrite the order of summation

7. This can be shown on inductionton
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Dﬁlog p(Yr[A) = 5 P(sp] Y7, ) ma—log p(so| P+
. (EQ 15)
> Zp(3r|YT’ A %'09 P(&[S;-1 P)
=1 J

Sincey (S| ¥r. M) Top-loas|s. 1 #) =

Mx

K
9
o Y P(Sy s ST Y A) D(.,—pjlogp(%ﬁ_l, p) =

1 s =1

._\
1

K

K K K K K
2 2 2 2 2 ) Peast|Yr M%—Iogp(sqst 1, P)

3=18 1=15=1 8§ ,=15,;=1 s=1

and this last expression can be rewritten as

K K P K K K K

> D ap 09P§|s 1p)D]Z Y Y S Py sy Yo )\)D—
5=18.,=1 E:L-O—l S_,=18,,=1 s=1

K K P

> > —Iogp(s¢|s[ v P) OP(s, S| Y1, M),

=15 ;=1

(EQ 15) can be rewritten as

9 _ 9
Elog p(Yr[A) = Zp(SO|YT7 A) %log P(s|P) +

K

S S Y pssa|Yn Ao 3p (0ap(s]5 1 o)

t=1s=1s_,=1

Thenp(s,, s, 1|YT A) can be broken down to dive

P88 PIP(S oM YOPS| Y N0 )
p(s % Y op, SIS v P

T K K
2.2 2 3
tlstlslll

8. For a proof, see Hamilton (1994), p. 701.
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This is further simplified by taking the derivative of the log, which gives

0 _ 0 O
30,0911 = 5p(50|YT1 N D55 logp(s| )+

Elo(sT 1| A Y p(§| Yy, A)D ) (EQ 16)

T K K
533 ) eslsa )

t=1s =1s_,4

d
4.4 EIog p(YT|)\)

We already know how to calculate several of the elements in (EQ 14). Once we condition
onthe states, (and, implicitly, the independent varialdesy, ), has a normal distribution,

SO

Yi— % B
p(Y;|s:, 8) = U=———) o5t (EQ17)
S
Since
o= (EQ 18)
J2m
it follows that
d e—X2/2
5000 = = —x) = —x X (EQ 19)
This means that
) P g c —% BBig X
PO =1 8) = T EQ20)
and
D
o Ps =1 0) = o oy ZM 0 (EQ2y

Furthermore, it should be clear that wHen i

20 of 32



a%mmm k8 =0 (EQ22)

0
36 PUils =k ) = 0 (EQ 23)

Finally, p(st|YT, A) is simply the smoothed probability of having obsersied

If we now substitute some of these back into (EQ 14), we obtain

T ops = 1.) 0
ij .
aB”log p(YT|)\) zlm p(y |S[ — | e) Ep(st - ||YT1 )\)E (EQ 24)
0
0 _ (B _
g, 29PN = 2 A crit = JtDEp(Sf Y7, 2) (EQ25)
; 1-&—mm%—lm -
0
T )2 =i|Ye, A
Dailog PN = 3 M EM (EQ 27)
=10 ' !

We conclude this section with some observations on computational efficiency. First, since
all of these derivatives require both the regime-dependent resigyals; [B;) and the

smoother probabilities, it makes sense to calculate these common elements before calcu-
lating the individual derivatives. Second, (EQ 25) implies that the derivative of two slope

coefficients in the same state differ only by a fac:toqttz(ijt , suggesting a shortcut that

could be used after calculating the derivative with respe8t;to

d
45 55 PSP

From (EQ 16), we see that we have four terms to contend W@PYT’ A)

0 0 , :
a_pjp(3‘|st—1’ P), a—p_log p(SO|p), andp(so|YT, A) . Of thesep(st|YT, A) is calculated via
j
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the full-sample smoother. The terpfg|s[_1, p) isdefined in (EQ 3) and its derivative is
simply

a%_p(st|st_l, P) = ¥z D/S[S[_l) [, if P; O Yss._, and 0 otherwise. (EQ 28)
i

In applying this formula, it is important to keep in mind that e@]ch entgrs in for at
least two different values ofgiven any value dk. This simply reflects the fact that

K

> Pg =i =k =1 (EQ 29)

i=1

Therefore, if changes i|nj affep(s, = i|st_1 =k) ,they must also affect some

p(s = I|st_1 =Kk) forsomel O0[1, K] and#i in order for the sum of probabilities

across alK states to be equal to 1. Applying (EQ 28) therefore requires us to specify how
we ensure that our parameterization obeys (EQ 29). We will assume that there is some

other parametep, £ that will be adjusted to satisfy (EQ 29). We will return to this point
below.

The derivative ofog p(so|p) is not straightforward, since it will depend on how we

choose to initialize the filter. While there are a variety of ways to do so, we need worry
about only three cases.

In the first case, we simply assign a set of initial state probabilities, so

P(so|P) = P(s)

0 _
Da—pklog p(sp|P) = 0. (EQ 30)

In the second case, we treat the initial state probabilities as part of the optimization prob-
lem, so we add an extkal parameters (call them ) such that

P(s|P) = Pls[) = @(1)

D%Iog p(so|p) = @(1)/®() if p, 01 and O otherwise. (EQ 31)
k

Again, note that in this case we will need to be careful to respect (EQ 29).
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The third case is the trickiest. Here, we initialize the filter using the unconditional state
probabilities, so

p(sp|P) = P(sP) (EQ 32)

Note that we have valid formulas for these probabilities only in the constant transition
probability cas€.When we allow for time variation in the transition probabilities, we

approximate by replacing the constant transition probability mRtrix ~ with the mean tran-
sition probabilities

_ ol Do
P = az P%}/T (EQ 33)

where thejth element of the square matax is
Pt = @(z Dry) (EQ 34)

Hamilton (1994) shows that these unconditional probabilitiesp) may be found as the
elements of the eigenvector Bf  with the eigenvalue 1. This requires us to find the deriva-

tive of a particular eigenvector with respect to elements in the mBRtrix , which is difficult
and might be easier to approximate using numerical methods.

In the two-state case, however, simpler solutions are obtainable. In particular,

1-py, 1-P1
p(lip) = 5——""——.0P22|p) = ——" (EQ 35)
| 2—P11— P2 | 2-Pgy

Note that because these two expressions sum to one, it follows that

d
T5PIP) = —o=P(2IP). g5-PIR) = ——p(2Ip)

It is straightforward to show that

T T
Z Wz 10 Z Wz L) [

= +=4 9 = +2d EQ 36
—p(1|p) = TH2-P=Pr)’ ay22IO( p) = TH2= PPy (EQ 36)

0
9y, Y11

9. See Hamilton (1994), Chap 22.2. He refers to these “unconditional” probabilities egtuecprobabil-
ities.
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Finally, we need to caIcuIaMso|YT, A) . It follows from Hamilton’s (1994) presentation
of Kim’s smoother that

p(sy| Y7 )

Pso|Yr D) = P[0 N3 PSS o 775

_ P(s| Y7, A)
= p(so|A)SZl P(S1]So) o5 [Y2 M) (EQ 37)

The termsp(sl|YT, A) anqb(sl|Y1, A) are available from the calculation of Kim’'s
smoother. AsY, provides no information on future values of Y, we can substitute

P(sp|A) for p(sp| Yo A) -

Having found the expressions for these various components, we now need only combine

them in (EQ 16), keeping in mind how the filter is initialized and the restriction imposed
by (EQ 29). The simplest way to impose such a restriction is to assume that

K-1

P& =K[s 1= =1- 5 p§=i|ss_1= ) (EQ 38)

i=1
We can now consider the three different ways of initializing the filter.

(A) If we simply fix the probabilities of being in statat time 0 and treat them as given,
then

T p(s_1|A Y)p(s|Yr. A)
t=1
{sus_1|PjOVss - (EQ 39)

(B) If instead we treat them #&s1 additional parameter§l) over which we must opti-

mize, therb%p(YTP\) is given by (EQ 39) fprj Ot ,and by
j

0

O
: P& =Y P& =K[Yn g
Wlogp(YT|A) =0 o) + T ntep;. forpj O (EQ 40)

J
= 1- Y o) H
i=1
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(C) We might instead restrict the time 0 densities to be equal to the mean densities over the
periodt0[1, T] . To date, we only have a solution for the analytical derivatives in the
K = 2 case. Foy,, , itis greater than that in (EQ 39) by the amount

p(so = 1[Yr ) E%%ﬂlog pls= 1P+ (1-p(s = 1[¥7. 1) Cipr—logp(s= 21

_ (s =1|Y7, ) LIPS =Y AN g _

_ P& A ps=1jp) (9Pu, 1P = 1V A op(s = 1p) (PPu
p(s=1|p) 2-Py—Py OYqy p(s=2|p) ~ P11— Py

EP 1|YT’ A) _(1_ p(sp = 1|YT’ )\))ED p(s=1|p) O 0pP11
~ U p(s=1jp) p(s=2|p) D —pyy— Pl 0yyg

I
N
&

:1|YT1)\) p(s= 1|p)EI]p(S 1|p)D6pll
p(s=1|p)p(s=2|p) [IR—p;;—pyH Dayll

o P&=1Yr ) -ps=1]p) 2. & O O
) E(Z_F_)ll—r)zz)(l—|0(s= 1|p))D T

Z 0z 0y19) [
_ (p= 1Y) b= i 2 o
O (1-Pqy) T

By similar reasoning we can find that fpy, , itis greater than that in (EQ 39) by the
amount

Z Wz Oy, L
(o= 2Yr. N =P = 20 2 o)
O (1-pyy) T

Note that both (EQ 41) and (EQ 42) require that we evaluate an expression of the form
p(so|YT, M), whose formula is found in (EQ 37). To recap, this means that in case (C) the
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derivative of the likelihood function with respectytp,  and differs from (EQ 39) by
the amount shown in (EQ 41) and (EQ 42).

5.0 Program Appendix

The procedure ANGRAD.G is written for use with the matrix programming language
Gauss. The procedure conforms with the requirements of Gauss’s maximum likelihood
estimation routines Maxlik. (In particular, the procedure returns the matrix of the deriva-
tive evaluated at each observation rather than the sum as presented in the paper.)

ANGRAD.G requires the global variablestat vei, ix, iy, terms.The variablenstatis the

number of states. At presemgtatmust be equal to two. The varialiei is annstaf by 1
vector. The firshstatentries specify the number of variables in the corresponding level
equation. The nexistat (nstat-1ppecify the number of variables in the corresponding
transition equation. The varialbecontrols whether variances differ across states or are
equal. The variablg sets the starting condition for the probability of being in the differ-
ent states at time 0. TABLE 5. gives the possible settings &ordiy.

TABLE 5. Settings for iX and iy

Value IX iy
0 Variances Equal rho=—1=4
Across States 2-p-q
1 Variances Differ rho is a parameter
Across States
2 rho =0
rho=1

Each row oterms,annstat by two matrix, specifies what data is used by a particular
equation. The firgtstatrows are for the level equations. The rest are for the transition
equations. The first column térmsspecifies the first column of data used in an equation.
The second specifies the last. The dependent variable is assumed to occupy the first col-
umn of the data matrix. The elementsgermsmay be specified such that the same vari-
ables are used in more than one equation.

The analytical gradients and likelihood function currently can be used only for a two-state
system. The code has been written such that the change to an n-state system, while non-
trivial, is certainly feasible. The code for the derivatives of (EQ 1) is already capable of
handling n-states. The global variables, termsandnstatshould facilitate the transition

to the n-state system.

5.1 Angrad.g

@Analytical Gradients for Two-State Markov process@

proc (1)=angrad(beta,y);
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local pxa,pxp,p,pp,qq,d, pkim,rho,pcr,ppcr,gcr,qqcr,begz,
endz,numvar,sigma,errz,angrd, i,nobs,ultp,ultq,pkimso1,
pkimso2,pstart,gstart,pfin,gfin,s1s1,s2s2;

nobs=rows(y);

endz=0;

i=0;

numvar=sumc(vei);

errz=zeros(nobs,nstat);

angrd=zeros(nobs,rows(beta));

{pkim,pxa,pxp}=kimsmth(beta,y);

pkim=pkim~(1-pkim);

@The above was done so it could be handled in a loop. With the n-state smoother
it will not be needed.@

do while i<nstat;
i=i+1;

begz =1+endz;
endz=begz+ vei[i,1]-1;

if ix==1;
sigma=beta[numvar+i,1];
else;

sigma= beta[numvar+1,1];
endif;

errz[.,i]=y[.,1]-(y[.,termsJi,1]:termsJi,2]]*beta[begz:endz,1]);
errz[.,i]=errz|[.,iJ/(sigma);
angrd[.,begz:endz]=(errz[.,i].*y[.,terms][i,1]:terms]i,2]]).*pkim[.,i]/sigma;

@Sigma gradients when they differ across states@
ifix==1;

angrd[.,numvar+i]=(errz|[.,i]*2-1).*pkim[.,i] /sigma;
endif;

endo;

@Calculate the sigma gradients if ix = 0@

ifix==0;
angrd[.,numvar+1]=sumc(((errz[.,.]*2-ones(rows(errz),nstat)).*pkim[.,.])’ /
sigma);

endif;

@Calculate the prob gradients. The modification to n-states should be possible. @

pstart = sumc(vei[l:nstat,1])+1;
pfin = pstart +vei[nstat+1,1]-1;

gstart = pfin+1;

gfin = gstart + vei[nstat+2,1]-1;

s1sl = cdfn(y[.,terms[nstat+1,1]:terms[nstat+1,2]]*beta[pstart:pfin,1]);
s2s2= cdfn(y[.,terms[nstat+2,1]:terms[nstat+2,2][*beta[qstart:qfin,1]);
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p =(pkim[2:nobs,1].*pxp[1:nobs-1,1])./pxa[2:nobs,1];

pp = (pkim[2:nobs,2].*pxp[1:nobs-1,1])./(1-pxa[2:nobs,1]);

g = (pkim[2:nobs,2].*(1-pxp[1:nobs-1,1]))./(1-pxa[2:nobs,1]);
qq = (pkim[2:nobs,1].*(1-pxp[1:nobs-1,1]))./(pxa[2:nobs,1]);
P=p-pp;

0=9-9q;

p=p.*y[2:nobs,terms[nstat+1,1]:terms[nstat+1,2]].*pdfn(y[2:nobs,terms[nstat+1,1]
‘terms[nstat+1,2]]*beta[pstart:pfin,1]);

g=g.*y[2:nobs,terms[nstat+2,1]:terms[nstat+2,2]].*pdfn(y[2:nobs,terms[nstat+2,1]
‘terms[nstat+2,2]*beta[gstart:gfin,1]);

pcr=0;
gcr=0;
ultp=0;
ultg=0;

if iy == 0; rho = (1-meanc(s2s2))/(2-meanc(slsl)-meanc(s2s2));

pkimsol=rho*(s1s1[1,1]*pkim[1,1}/pxa[1,1]+(1-s1s1[1,1])*(1-pkim[1,1])/(1-
pxa[1,1]));
pkimso2= 1- pkimsol;

ultp=(pkimsol-rho)/(1-rho);
ultp=ultp/(nobs*(2-meanc(slsl)-meanc(s2s2)));

ultp=ultp*sumc(
pdfn(y[1:nobs,terms[nstat+1,1]:terms[nstat+1,2]]*beta[pstart:pfin,1])
*y[1:nobs,terms[nstat+1,1]:terms[nstat+1,2]));

ultg=(pkimso2-(1-rho))/(rho);
ultg=ultg/(nobs*(2-meanc(slsl)-meanc(s2s2)));

ultg=ultg*sumc(
pdfn(y[1:nobs,terms[nstat+2,1]:terms[nstat+2,2]]*beta[gstart:gfin,1])
*y[1:nobs,terms[nstat+2,1]:terms[nstat+2,2]]);

elseif iy == 1; rho=cdfn(beta[numvar+2+ix*(nstat-1),1]);

pkimsol = rho*(s1s1[1,1]*pkim[1,1])/pxa[1,1]+(1-s1s1[1,1])*(1-pkim[1,1])/(1-
pxa[1,1]));
pkimso2 = 1-pkimsol;

angrd[numvar+2+ix*(nstat-1),1]=pkimso1*pdfn(beta[numvar+2+ix*(nstat-1),1])/
(cdfn(beta[numvar+2+ix*(nstat-1),1])*(1-cdfn(beta[numvar+2+ix*(nstat-1),1])));
angrd[numvar+2+ix*(nstat-1),1]= angrd[numvar+2+ix*(nstat-1),1]-
pdfn(beta[numvar+2+ix*(nstat-1),1])/(1-cdfn(beta[numvar+2+ix*(nstat-1),1]));

@For the next two cases the derivative with respect to intial conditions is zero@
elseif iy == 2; rho = 1.0;
elseif iy == 3; rho = 0;

endif;

ifiy /= 3;

28 of 32



pcr=(pkim[1,1]*rho)./pxa[1,1];
ppcr=(pkim[1,2]*rho)./(1-pxa[1,1]);
pcr=pcr-ppcr;

pcr=pcr.*y[1,terms[nstat+1,1]:terms[nstat+1,2]].*pdfn(y[1,terms[nstat+1,1]:terms
[nstat+1,2]]*beta[pstart:pfin,1]);

endif;

ifiy /= 2;

gcr= (pkim[1,2]*(1-rho))./(1-pxa[1,1]);
qqcr= (pkim[1,1]*(1-rho) )./pxa[1,1];
gcr=qcr-qqcr;

gcr=qgcr.*y[1,terms[nstat+2,1]:terms[nstat+2,2]].*pdfn(y[1,terms[nstat+2,1]:terms
[nstat+2,2]]*beta[gstart:qfin,1]);

endif;

p=pcr|p;

g=qcrla;

p[.,11=p[., 1]+ultp’;
ql.,1]=q[.,1]+ultq’;

angrd[.,pstart:pfin]=p;
angrd[.,gstart:qfin]=q;

retp(angrd’);
endp;

5.2 The Likelihood Function

proc(1) =swmkv(th,y);

local alphal,alpha2,p,q,sig2,sigl,rho,pxp2,pxp1,
pxal,pxpkim,fit,it,qql,q92,If,pth,qth,x,z,nrows;

@ Establish values of parameters @
alphal = th[1:vei[1,1],1];
alpha2 = th[1+vei[1,1]:vei[1,1]+Vvei[2,1],1];
pth = th[1+sumc(vei[1l:nstat,1]):sumc(vei[l:nstat,1])+vei[3,1],1];
gth = th[1+sumc(vei[l:nstat+1,1]):sumc(vei[1l:nstat+1,1])+vei[4,1],1];
sigl = abs(th[sumc(vei)+1,1]);
if ix ==0;
sig2 = sigl;
else;
sig2 = abs(th[sumc(vei)+2,1]);
endif;
nrows=rows(y);
If = zeros(nrows,1);

@ Set the p and q for each period @

p = cdfn(y[.,terms[nstat+1,1]:terms[nstat+1,2]]*pth);
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g = cdfn(y[.,terms[nstat+2,1]:terms[nstat+2,2]]*qth); /**/

@ Select the correct value of rho (prob of state 1 at time 0) @

ifiy==0; rho = (1-meanc(q))/(2-meanc(p)-meanc(q));
elseif iy == 1; rho = cdfn(th[sumc(vei)+2+ix,1]);

elseif iy == 2; rho = 1.0;

elseif iy == 3; rho =0;

endif;

pxp2 = 1-rho;

pxpl = rho;

@ Set PDF’s of y for each regime @
qql = pdfn((y[.,1]-y[.,terms[1,1]:terms[1,2]]*alphal)/sigl)/sigl;
qg2 = pdfn((y[.,1]-y[.,terms[2,1]:terms[2,2]]*alpha2)/sig2)/sig2;
@ This allows for underflows in the above expression. @
if ndpchk(3); ndpclex; endif;
/*
NOTE: The qg’s in the above expressions differs from those in the Hamilton
likelihood function LIKEPROC. First, the division by sig2 and sigl is
moved up from the lines setting pxp2 and pxp1, below. Second, they are
smaller by a factor of sqrt(2*pi); this is required to make it a true
log-likelihood. To correct; Hamilton’s IIf - lIf swmkv = (n/2)*In(2*pi).
*/

it=1; pxpl=zeros(nrows,l); fit=zeros(nrows,1); pxal=zeros(nrows,1);

do until it > nrows;

if it ==1; @ Step 1 : Ex Ante probability of State 1 @
pxal[it,1] = (1-q[it,1])*(1-rho) + p[it,1]*rho;
else;

pxallit,1] = (1-q[it,1])*(1-pxpl[it-1,1]) + p[it, 1]*pxp1[it-1,1];
endif;
pxpl[it,1] = pxal[it,1]*qql[it,1]; @ Step 2 : Ex Post joint density of
State 1 @
@ Step 3 : Likelihood Function @
fitfit,1] = pxpl[it,1]+(1-pxal[it,1])*qq2[it,1];
@ Step 4 : Ex Post probability of State 1 @
pxpl[it,1] = pxpl[it,1]/it[it,1];
it = it+1;
endo;
retp(In(fit));
endp;

5.3 Kim’s Smoother
proc(3) =kimsmth(th,y);

local alphal,alpha2,p,q,sig2,sigl,rho,pxp2,pxpl,
pxal,pxpkim,fit,it,qql,qq92,If,pth,qth,x,z,nrows;
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@ Establish values of parameters @
alphal = th[1:vei[1,1],1];
alpha2 = th[1+vei[1,1]:vei[1,1]+Vvei[2,1],1];
pth = th[1+sumc(vei[1l:nstat,1]):sumc(vei[l:nstat,1])+vei[3,1],1];
gth = th[1+sumc(vei[l:nstat+1,1]):sumc(vei[1l:nstat+1,1])+vei[4,1],1];
sigl = abs(th[sumc(vei)+1,1]);
if ix ==0;
sig2 = sigl;
else;
sig2 = abs(th[sumc(vei)+2,1]);
endif;
nrows=rows(y);
If = zeros(nrows,1);

@ Set the p and q for each period @

p = cdfn(y[.,terms[nstat+1,1]:terms[nstat+1,2]]*pth);
g = cdfn(y[.,terms[nstat+2,1]:terms[nstat+2,2]]*qth); /**/

@ Select the correct value of rho (prob of state 1 at time 0) @

ifiy==0; rho = (1-meanc(q))/(2-meanc(p)-meanc(q));
elseif iy == 1; rho = cdfn(th[sumc(vei)+2+ix,1]);

elseif iy == 2; rho = 1.0;

elseif iy == 3; rho =0;

endif;

pxp2 = 1-rho;

pxpl = rho;

@ Set PDF’s of y for each regime @
qqgl = pdfn((y[.,1]-y[.,terms[1,1]:terms[1,2]]*alphal)/sigl)/sig1;
g2 = pdfn((y[.,1]-y[.,terms[2,1]:terms[2,2]]*alpha2)/sig2)/sig2;
@ This allows for underflows in the above expression. @
if ndpchk(3); ndpclex; endif;

it=1; pxpl=zeros(nrows,l); fit=zeros(nrows,1); pxal=zeros(nrows,1);

do until it > nrows;

ifit==1; @ Step 1 : Ex Ante probability of State 1 @
pxal[it,1] = (1-q[it,1])*(1-rho) + p[it,1]*rho;
else;
pxallit,1] = (1-q[it,1])*(1-pxpl[it-1,1]) + p[it, 1]*pxp1[it-1,1];
endif;
pxpl[it,1] = pxal[it,1]*qql[it,1]; @Step 2:Ex Post joint density of State 1
@
@ Step 3 : Likelihood Function @
fitfit,1] = pxp1[it,1]+(1-pxal[it,1])*qq2[it,1];
@ Step 4 : Ex Post probability of State 1 @
pxpl[it,1] = pxpl[it,1]/it[it,1];
it = it+1;
endo;
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@Kim's Smoothing Algorithm Kim(1994)@

X = pxpl[1l:nrows-1,.].*(p[2:nrows,.]./pxal[2:nrows,.] - (1-p[2:nrows,.])./(1-
pxal[2:nrows,.]));

X = pxpl[nrows,.]|rev(x);

z = pxpl[1l:nrows-1,.].*(1-p[2:nrows,.])./(1-pxal[2:nrows,.]);

z = zeros(1,1)|rev(2);

pxpkim = rev(recsercp(x,z));

retp(pxpkim,pxal,pxpl);

endp;
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