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Abstract

This paper derives analytical gradients for a broad class of regime-switching models
Markovian state-transition probabilities. Such models are usually estimated by maxi
likelihood methods, which require the derivatives of the likelihood function with resp
to the parameter vector. These gradients are usually calculated by means of num
techniques. The paper shows that analytical gradients considerably speed up max
likelihood estimation with no loss in accuracy. A sample program listing is included.

Résumé

Dans cette étude, les auteurs dérivent des gradients analytiques pour toute une catég
modèles à changement de régime comportant des probabilités de transition à la M
Ces modèles sont généralement estimés à l'aide de méthodes du maximu
vraisemblance, qui nécessitent que la fonction de vraisemblance soit dérivée par r
au vecteur des paramètres du modèle. Les gradients sont habituellement calculés
de techniques numériques. Les auteurs montrent que l'utilisation de gradients analy
accélère considérablement les estimations effectuées à l'aide des méthodes du ma
de vraisemblance, sans toutefois nuire à leur précision. Un imprimé du progra
informatique est fourni à la fin de l'étude.
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1.0  Introduction

This paper derives analytical derivatives for a broad class of regime-switching mode
with Markovian state-transition probabilities. Estimation of these models is usually d
by maximum likelihood methods, which require some way of calculating the derivativ

of the likelihood function with respect to the parameter vector.1 (This vector is also
referred to as thescoreor thegradient vector.) This is usually done using numerical tec
niques that approximate the derivative by the change in the likelihood function for sm
changes in the parameter vector. This is not especially efficient, however, as such te
niques typically requireN+1 evaluations of the likelihood function to calculate theN ele-

ments of the score, and to calculate the Hessian (the matrix of second derivati
By using analytical gradients, we show that the number of calculations required to e
ate either of these objects can be greatly reduced. This in turn considerably speeds
maximum-likelihood estimation of such models with no loss in accuracy.

The general regime-switching model that we consider describes the generation of a s
variable  byK distinct states. In any given statei,  is generated by a linear regressio

model

, (EQ 1)

where is a vector that is exogenous with respect to . The states are assumed to f

a first-order Markov process, with transition probabilities that may vary over time acc

ing to the formula2

(EQ 2)

where  is the standard normal cumulative distribution function.

This class of models encompasses many useful special cases. First, it should be not
any higherpth order Markov process withK states can be written as a first-order Marko
process with states, so our assumption that the process is first-order is not restri

Second, the case where  is a scalar constant gives us the Markov switching regre

originally proposed by Goldfeld and Quandt (1973) and discussed in Hamilton (19943

Third, the case where  is a scalar constant is explored by Diebold, Lee and Weinb

1. Alternatives to maximum likelihood estimation include the EM algorithm and simulated annealing. H
ever, simulated annealing is also inefficient, and the EM algorithm has a lower rate of convergence n
optimum than does most popular gradient-based maximization methods (such as the Newton algorit
The score is also useful for the calculation of standard errors, and for diagnostic tests (See White (19

2.  We assume that  is also exogenous with respect to .

3.  Hamilton (1994) also discusses the case where  may be a vector rather than a scalar.

N2 1+

yt yt

yt xt βi⋅ εit+= εit i.i.d. N 0 σi,( )∼

xt εit

zt εi t

P st i= st 1– j=( ) Φ zt γ ij⋅( )=

Φ( )

p K⋅
zt

yt

xt
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(1994). Fourth, Durland and McCurdy (1994) show that such models can usefully app
imate a duration-dependent semi-Markov process.

Regime-switching models have become popular for the modelling of business cycle

originally proposed by Hamilton (1989).4 It may therefore seem surprising that there ha
been no exposition of how to calculate the derivatives analytically. There are two rea
for this. First, analytical derivatives are available for a more restrictive class of mode
(Hamilton 1992). Second, and perhaps more importantly, analytical derivatives were
thought to be of little practical use in estimation. This is because analytical calculatio
the score requires (as we will see) calculation of the smoothed probabilities of being
each possible statei at each timet. These smoothed probabilities were in turn much mo
costly to compute than the likelihood function, which made the alternative of numeric
derivatives attractive. However, Kim (1994) presented a new algorithm for calculatio
these smoothed probabilities that can reduce calculation times by as much as sever
orders of magnitude. This in turn raises the possibility that analytical gradients may 
be more efficient than numerical methods for a broad class of regime-switching mod

This paper is organized as follows. Due to its length, the formal derivation of the analy
derivatives of our model is presented in a mathematical appendix. A second appendix
three Gauss procedures that calculate the smoothed probabilities, the likelihood fun
and the score vector (respectively) for the case whereK=2. The remainder of this paper
compares the efficiency of numerical and analytical gradients in maximizing the likel
hood function for a variety of models. The first section below considers the accuracy o
analytical and numerical gradients and the consistency of the parameter estimates. 
section thereafter compares the speed of calculation.

2.0  Accuracy

The accuracy of the gradient calculations was tested on a sample of 100 observatio
arbitrary parameter vectors. We found that the analytical gradients were identical to t
provided by the forward gradient technique and differed only very slightly from the res
of the two other numerical methods. Sample results are provided in Table 1.

4. Note that Hamilton’s (1989) two-state model withq autoregressive lags may be written in this framewor
as a model with  states.

TABLE 1. Accuracy of Analytical versus Numerical Gradients - Example

Parametera
Computed
Gradient

Forward
Gradient

Central
Gradient

Richardson
Gradient

0.06495304 0.06495304 0.06495437 0.06495362

0.03838056 0.03838056 0.03838199 0.03838091

0.02906685 0.02906685 0.02906791 0.02906681

-0.04750326 -0.04750326 -0.04750253 -0.04750267

0.01263473 0.01263473 0.01263476 0.01263431

2 q⋅

β11
β12
β13
β14
β21
10 of 32
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Based on these results, we should expect analytical and numerical gradients to produ
same results when used for parameter estimation. We checked this using a small M

Carlo experiment. A two-state switching regression was estimated using both metho5

for one hundred samples of a hundred observations each. Table 2 reports the differe
between the two sets of parameter estimates.

0.05427607 0.05427607 0.05427597 0.05427675

0.00416917 0.00416917 0.00416920 0.00416880

-0.00612684 -0.00612684 -0.00612680 -0.00612742

0.04583327 0.04583326 0.04583328 0.04583299

0.04583327 0.04583327 0.04583331 0.04583299

-0.01941340 -0.01941340 -0.01941342 -0.01941372

-0.01941340 -0.01941340 -0.01941336 -0.01941372

-0.32985335 -0.32985335 -0.32984718 -0.32985359

-0.14088036 -0.14088036 -0.14087911 -0.14088066

a. and are the coefficients of the linear regressions for states
1 and 2.  are the coefficients for the transitions probability for
remaining in state k.  is the standard deviations of the error term
associated with state k.

5.  Maxlik’s default, the central difference method, did the numerical calculation of the gradients.

TABLE 2. Percentage Differences of Maximum Likelihood Parameter Estimates

Parametera

a. Notation as per Table 1 except here the standard deviation of the error term is con-
strained to be the same across states. The data was generated and then estimated as
being , where  and  are i.i.d N(0,1). The probabil-
ity of remaining in regime i is  The two regimes’ coefficient vectors

 are  and .

MEAN MEDIAN MAX MIN

0.0014182477 0.0000000 0.13184060 -3.0400000e-05

-0.0015846355 1.0105265e-08 0.00012254550 -0.14658111

-0.0089365709 0.0000000 0.0092465532 -0.83602038

0.0018295629 0.0000000 0.16990881 -0.00015096286

-0.0033434991 4.1351604e-08 0.00052705071 -0.31093283

-0.014223531 2.9252218e-08 0.024998039 -0.89744424

-0.0039566721 0.0000000 8.6297094e-05 -0.23454226

-0.0068314097 3.3581302e-08 8.6125427e-05 -0.63499616

-0.00087577934 0.0000000 1.1172225e-05 -0.081447853

TABLE 1. Accuracy of Analytical versus Numerical Gradients - Example

Parametera
Computed
Gradient

Forward
Gradient

Central
Gradient

Richardson
Gradient

β22
β23
β24
γ11 1,
γ11 1,
γ22 1,
γ22 2,
σ1
σ2

β1 j β2 j
γkk i,

σk

σ

yt β1 β2X2 t, β3+ X3 t, 1.4εt+ += Xi t, εt
Φ zii( )

β1 β2 β3 zii, , ,[ ] 0.6 0.7 0.5 1.8, , ,[ ] 0.2 0.5– 0.3 0.6, , ,[ ]

β11
β12
β13
β21
β22
β23
γ11 1,
γ11 1,
σ

(continued)
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First, we note that for each parameter, the median percentage difference in the estim

using the two kinds of gradients was less than . There were a few larger differe
however. Upon further examination, we found that most of the large discrepancies c
from a single sample. Removing this data sample (#71) from our experiment then pr
duced the results shown in Table 3. Mean, minimum and maximum differences betw
the two sets of parameter estimates are now much reduced for most parameters. Fu
more, we found that the problem with the 71st sample appeared to be one of two loc
maximums. If either set of parameters is supplied as the starting values, both analyt
and numerical gradients will converge to that value.

Based on the above results, we can conclude that the analytical and the numerical g
ents will generally converge to the same estimate. However, the sensitivity of maxim
likelihood estimation to intermediate calculations when there are multiple local maxi
mums may occasionally cause differences. This does not imply that one method is s
rior to another. It simply means that researchers should remember to check for mult
local maximums.

3.0  Speed

To compare the computational efficiency of the two gradient procedures, we again e
mated regime-switching models on simulated data, using both procedures on each 
set. This was done 10 times for four different sample sizes. Results are reported in Ta
and in Figure 1.

TABLE 3. Results After Removing the 71st Trial

Parameter MEAN MEDIAN MAX. MIN.

6.1340217e-07 0.0000000 7.0871000e-05 -3.0400000e-05

-8.5868450e-06 1.6933548e-08 0.00012254550 -0.00054090740

5.3470534e-05 0.0000000 0.0092465532 -0.00099279136

2.6145186e-06 0.0000000 0.00035430604 -0.00015096286

-1.3683861e-07 5.2138270e-08 0.00052705071 -0.00075399754

-0.0096435665 3.2498027e-08 0.024998039 -0.89744424

-0.0014503071 0.0000000 8.6297094e-05 -0.058690961

-3.5319578e-06 4.2514594e-08 8.6125427e-05 -0.00034058177

4.0692540e-09 0.0000000 1.1172225e-05 -7.7739852e-06

TABLE 4. SPEED UP FACTOR:
(Total Elapsed Time with Numerical Gradients) / (Total Elapsed Time with Analytical Gradients)

# Obs. MEAN MAX. MIN.
Standard
Deviation

100 3.4840708 3.9978395 2.2788343 0.48204014

250 4.1314662 5.0734526 3.3856693 0.50488882

500 4.2898862 6.0966392 1.0698553 1.4188306

1000 4.4052682 6.5387418 3.3724443 0.98204026

10 7–

β11
β12
β13
β21
β22
β23
γ11 1,
γ11 1,
σ

12 of 32
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A minimum of 1.069 signifies that for one draw the analytical gradients were only negligibly faster
than the numerical.

In general, we see that analytical derivatives can improve calculation efficiency by rou
a factor of four. The relative speed of the analytical derivatives increases with an inc
in sample size, but the improvement seems to slow as samples become large. Resu
also somewhat variable. For example, in one experiment with 500 observations, anal
gradients produced almost no time savings relative to the numerical gradients. How
of the remaining nine cases examined for this sample size, the speed-up factor was
less than three.

An analysis of the code illustrates why the analytical derivatives are typically faster t
the numerically calculated derivatives. The numerically calculated derivatives make P
number of parameters) calls to the likelihood function. Most of the time in the likeliho
function is in turn spent in a loop over the sample size (N). One therefore could app
mate the amount of calculations in the numerical derivatives as P*N.
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The analytical derivatives make one call to the smoother, which in turn calculates the
lihood function and then performs an additional loop over the sample size. Hence, th
smoother requires approximately 2*N calculations. Calculating the gradient then requ
a loop over the number of states (S) for a set number of calculations (L). In total, there
this requires approximately 2*N+S*L calculations.

With the above analysis, we can predict that the analytical gradient procedure will be
faster as either the sample size or the number of parameters increases. In the unlikel
that the number of states increases with the number of parameters held constant, the
be a relative improvement of the numerical technique. More likely, an increase in the n
ber of states will cause a substantial increase in the number of parameters.

These conclusions will of course depend on the relative costs (time required) of diffe
operations. For interpreted languages (like Gauss), loops are particularly inefficient 
operations should be vectorized wherever possible. If our procedure were rewritten 
compiled language, the relative efficiency of numerical and analytical gradients for a
ticular model might change. However, we would still expect that the relative efficienc
the analytical gradients would increase with the number of parameters.
14 of 32
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4.0  Mathematical Appendix:
Derivation of Analytical Gradients

The general regime-switching model that we consider describes the generation of a s
variable  byK distinct states. In any given statei,  is generated by a linear regressio

model

, (EQ 3)

where is a vector that is exogenous with respect to . The states are assumed to f

a first-order Markov process, with transition probabilities that may vary over time acc

ing to the formula6

(EQ 4)

where  is the standard normal cumulative distribution.

4.1  Notation

Let  and  denote the standard normal probability density function and cumulative
tribution function.

Let  respectively denote a matrix of values from time1 to T of .

Let the sum of over all possible realizations of  (which in general has  per

tations) define the expression .

Let the parameters of the model be gathered into a vector , where capt

all the parameters entering into the state-transition probabilities (EQ 3), and  is all 

other model parameters. We denote thejth element of  by .

The likelihood function of this model is , which for simplicity we will

write as .

6.  We assume that  is also exogenous with respect to .

yt yt

yt xt βi⋅ εit+= εit i.i.d. N 0 σi,( )∼

xt εit

zt εi t

P st i= st 1– j=( ) Φ zt γ ij⋅( )=

Φ

φ Φ

YT XT ZT ST, , , yt xt zt st, , ,

f ST( ) ST KT

f ST( )
ST

∑

λ′ θ ρ ′= ρ

θ
λ λ j

p YT λ XT ZT, ,( )

p YT λ( )
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4.2  Basic Results

We are trying to find . Obviously,

(EQ 5)

Note that we can rewrite the likelihood function as

(EQ 6)

where the first equality follows from Bayes Theorem and the second from the prope
of the switching model.

This means for ,

(EQ 7)

Using (EQ 5) then gives

(EQ 8)

Since

,

(EQ 9)

λ j∂
∂

p YT λ( )log

λ j∂
∂

p YT λ( )log
1

p YT λ( )
--------------------

λ j∂
∂

p YT λ( )⋅=

p YT λ( ) p YT ST λ,( ) p ST λ( )⋅
ST

∑ p YT ST θ,( ) p ST ρ(⋅
ST

∑= =

λ j θ∈

λ j

∂
p YT λ( )

θ j∂
∂

p YT λ( )
θ j∂
∂

p YT ST θ,( ) p ST ρ( )⋅
ST

∑ p ST ρ( )
θ j∂
∂

p YT ST θ,(⋅
ST

∑= = =

θ j∂
∂

p YT λ( )log
1

p YT λ( )
-------------------- p ST ρ( )

θ j∂
∂

p YT ST θ,(⋅
ST

∑⋅=

θ j∂
∂

p YT λ( )log
p YT ST θ,( ) p ST ρ( )⋅

p YT λ( )
----------------------------------------------------

 
 
 

θ j∂
∂

p YT ST θ,( )log 
 ⋅

ST

∑=∴

θ j∂
∂

p YT λ( )log p ST YT λ,( )
θ j∂
∂

p YT ST θ,( )log 
 ⋅

ST

∑=∴

p YT ST θ,( ) p yt st θ,( )
t 1=

T

∏=

p ST YT λ,( ) p st YT λ,( )
t 1=

T

∏=
16 of 32



it follows that

(EQ 10)

Similarly, (EQ 5) and (EQ 6) imply that for , we obtain

(EQ 11)

θ j∂
∂

p YT λ( )log p st YT λ,( )
t 1=

T

∏
 
 
 

θ j∂
∂

p yt st θ,( )log
t 1=

T

∑
 
 
 

⋅
ST

∑=

θ j∂
∂

p YT λ( )log p st YT λ,( )
t 1=

T

∏
 
 
  θ j∂

∂
p yt st θ,( )

p yt st θ,( )
---------------------------------

t 1=

T

∑
 
 
 
 
 

⋅
ST

∑=∴

λ j ρ∈

λ j

∂
p YT λ( )log

ρ j∂
∂

p YT λ( )log
1

p YT λ( )
--------------------

ρ j∂
∂

p YT ST θ,( ) p ST ρ(⋅
ST

∑⋅= =

ρ j∂
∂

p YT λ( )log
1

p YT λ( )
-------------------- p YT ST θ,( )

ρ j∂
∂

p ST ρ(⋅
ST

∑⋅=∴

ρ j∂
∂

p YT λ( )log
p YT ST, λ( )

p YT λ( ) p ST ρ( )⋅
-------------------------------------------

ρ j∂
∂

p ST ρ( )⋅
ST

∑
p ST YT λ,( )

p ST ρ( )
-----------------------------

ρ j∂
∂

p ST ρ(⋅
ST

∑= =∴

ρ j∂
∂

p YT λ( )log p ST YT λ,( )
ρ j∂
∂

p ST ρ( )log⋅
ST

∑=∴

ρ j∂
∂

p YT λ( )log p ST YT λ,( )
ρ j∂
∂

p s0 ρ( ) p st st 1– ρ,( )
t 1=

T

∏⋅
 

 

log⋅
ST

∑=∴

ρ j∂
∂

p YT λ( )log p ST YT λ,( )
ρ j∂
∂

p s0 ρ( )log p st st 1– ρ,( )log
t 1=

T

∑+
 

 

⋅
ST

∑=∴

ρ j∂
∂

p YT λ( )log p ST YT λ,( )
ρ j∂
∂

p s0 ρ( )log⋅
ST

∑ 
  +=∴

p ST YT λ,( ) ρ j∂
∂

p st st 1– ρ,( )log
t 1=

T

∑
 
 
 

⋅
ST

∑

ρ j∂
∂

p YT λ( )log p s0 YT λ,( )
ρ j∂
∂

p s0 ρ( )log⋅
s0

∑ 
  +=∴

p ST YT λ,( ) ρ j∂
∂

p st st 1– ρ,( )log
t 1=

T

∑
 
 
 

⋅
ST

∑
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The derivation of the analytical derivatives now requires only two major steps: collap

the  expression and then simplifying the remaining terms in (EQ 10) and (EQ 11

4.3  Collapsing the Summation

To understand how we collapse the summation, consider first the simpler problem o
lapsing the summation in the following expression:

(EQ 12)

(EQ 12) shows the expansion for the general case of aK state switching model. Note that

theT independent summations ofK states each will produce all possible permutation

of the vector of realizations . However, the right-hand term in parentheses is a func

of only , which implies that of the  terms in the summation over all possible ,

have at most onlyK distinct terms. In other words, taking together all theT+1 summations

in (EQ 12), we have  terms, of which at most  are distinct. This means tha
(EQ 12) can be rewritten as

(EQ 13)

(EQ 10) differs from (EQ 12) only in that each term in the summation over is weigh

by the “smoothed” probability of its occurrence. However, since these probabilities a

themselves functions of  only rather than all of , we can rewrite (EQ 10) as7

(EQ 14)

For , we will first rewrite the order of summation

7.  This can be shown on induction ont.

ST

∑

θ j∂
∂

p yt st θ,( )

p yt st θ,( )
---------------------------------

t 1=

T

∑
 
 
 
 
 

ST

∑ …
θ j∂
∂

p yt st θ,( )

p yt st θ,( )
---------------------------------

t 1=

T

∑
 
 
 
 
 

sT 1=

K

∑
s1 1=

K

∑=

KT

ST

st KT ST

KT T⋅ K T⋅

KT 1–
θ j∂
∂

p yt st θ,( )

p yt st θ,( )
---------------------------------

st 1=

K

∑
 
 
 
 
 

t 1=

T

∑⋅

ST

st ST

θ j∂
∂

p YT λ( )log
θ j∂
∂

p yt st θ,( )

p yt st θ,( )
--------------------------------- p st YT λ,( )⋅

 
 
 
 
 

st 1=

K

∑
 
 
 
 
 

t 1=

T

∑=

λ j ρ∈
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. (EQ 15)

Since

and this last expression can be rewritten as

,

(EQ 15) can be rewritten as

.

Then  can be broken down to give8

8.  For a proof, see Hamilton (1994), p. 701.

ρ j∂
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This is further simplified by taking the derivative of the log, which gives

(EQ 16)

4.4

We already know how to calculate several of the elements in (EQ 14). Once we con
on the state (and, implicitly, the independent variables ), has a normal distribut

so

(EQ 17)

Since

(EQ 18)

it follows that

(EQ 19)

This means that

(EQ 20)

and

(EQ 21)

Furthermore, it should be clear that when
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(EQ 22)

(EQ 23)

Finally,  is simply the smoothed probability of having observed .

If we now substitute some of these back into (EQ 14), we obtain

(EQ 24)

(EQ 25)

(EQ 26)

(EQ 27)

We conclude this section with some observations on computational efficiency. First, s
all of these derivatives require both the regime-dependent residuals  and

smoother probabilities, it makes sense to calculate these common elements before 
lating the individual derivatives. Second, (EQ 25) implies that the derivative of two sl
coefficients in the same state differ only by a factor of , suggesting a shortcut 

could be used after calculating the derivative with respect to .

4.5

From (EQ 16), we see that we have four terms to contend with: ,

, , and . Of these,  is calculated via
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the full-sample smoother. The term  is defined in (EQ 3) and its derivativ

simply

 if  and 0 otherwise. (EQ 28)

In applying this formula, it is important to keep in mind that each  enters in  for 

least two different values ofi given any value ofk. This simply reflects the fact that

(EQ 29)

Therefore, if changes in  affect , they must also affect some

 for some  and  in order for the sum of probabilities

across allK states to be equal to 1. Applying (EQ 28) therefore requires us to specify h
we ensure that our parameterization obeys (EQ 29). We will assume that there is so
other parameter  that will be adjusted to satisfy (EQ 29). We will return to this p

below.

The derivative of  is not straightforward, since it will depend on how we

choose to initialize the filter. While there are a variety of ways to do so, we need wor
about only three cases.

In the first case, we simply assign a set of initial state probabilities, so

. (EQ 30)

In the second case, we treat the initial state probabilities as part of the optimization 
lem, so we add an extraK-1 parameters (call them ) to  such that

 if  and 0 otherwise. (EQ 31)

Again, note that in this case we will need to be careful to respect (EQ 29).
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p s0 ρ( )log 0=∴

ι ρ
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The third case is the trickiest. Here, we initialize the filter using the unconditional sta
probabilities, so

(EQ 32)

Note that we have valid formulas for these probabilities only in the constant transitio

probability case.9 When we allow for time variation in the transition probabilities, we
approximate by replacing the constant transition probability matrix  with the mean 
sition probabilities

(EQ 33)

where theij th element of the square matrix  is

(EQ 34)

Hamilton (1994) shows that these unconditional probabilities may be found as

elements of the eigenvector of with the eigenvalue 1. This requires us to find the de

tive of a particular eigenvector with respect to elements in the matrix , which is diffic
and might be easier to approximate using numerical methods.

In the two-state case, however, simpler solutions are obtainable. In particular,

, (EQ 35)

Note that because these two expressions sum to one, it follows that

,

It is straightforward to show that

, (EQ 36)

9. See Hamilton (1994), Chap 22.2. He refers to these “unconditional” probabilities as theergodicprobabil-
ities.
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Finally, we need to calculate . It follows from Hamilton’s (1994) presentati

of Kim’s smoother that

(EQ 37)

The terms  and  are available from the calculation of Kim’s

smoother. As  provides no information on future values of Y, we can substitute

 for .

Having found the expressions for these various components, we now need only com
them in (EQ 16), keeping in mind how the filter is initialized and the restriction impos
by (EQ 29). The simplest way to impose such a restriction is to assume that

(EQ 38)

We can now consider the three different ways of initializing the filter.

(A) If we simply fix the probabilities of being in statei at time 0 and treat them as given,
then

, where

. (EQ 39)

(B) If instead we treat them asK-1 additional parameters over which we must opti-

mize, then  is given by (EQ 39) for , and by

 for (EQ 40)
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(C) We might instead restrict the time 0 densities to be equal to the mean densities ov
period . To date, we only have a solution for the analytical derivatives in th

 case. For , it is greater than that in (EQ 39) by the amount

(EQ 41)

By similar reasoning we can find that for , it is greater than that in (EQ 39) by the

amount

(EQ 42)

 Note that both (EQ 41) and (EQ 42) require that we evaluate an expression of the f
, whose formula is found in (EQ 37). To recap, this means that in case (C
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derivative of the likelihood function with respect to  and  differs from (EQ 39) b

the amount shown in (EQ 41) and (EQ 42).

5.0  Program Appendix

The procedure ANGRAD.G is written for use with the matrix programming language
Gauss. The procedure conforms with the requirements of Gauss’s maximum likeliho
estimation routines Maxlik. (In particular, the procedure returns the matrix of the der
tive evaluated at each observation rather than the sum as presented in the paper.)

ANGRAD.G requires the global variablesnstat, vei, ix, iy, terms.The variablenstatis the

number of states. At presentnstatmust be equal to two. The variablevei is annstat2 by 1
vector. The firstnstat entries specify the number of variables in the corresponding leve
equation. The nextnstat (nstat-1) specify the number of variables in the corresponding
transition equation. The variableix controls whether variances differ across states or ar
equal. The variableiy sets the starting condition for the probability of being in the diffe
ent states at time 0. TABLE 5. gives the possible settings forix and iy.

Each row ofterms,annstat2 by two matrix, specifies what data is used by a particular
equation. The firstnstat rows are for the level equations. The rest are for the transition
equations. The first column oftermsspecifies the first column of data used in an equatio
The second specifies the last. The dependent variable is assumed to occupy the firs
umn of the data matrix. The elements intermsmay be specified such that the same vari
ables are used in more than one equation.

The analytical gradients and likelihood function currently can be used only for a two-s
system. The code has been written such that the change to an n-state system, while
trivial, is certainly feasible. The code for the derivatives of (EQ 1) is already capable
handling n-states. The global variablesvei, terms, andnstatshould facilitate the transition
to the n-state system.

5.1  Angrad.g
@Analytical Gradients for Two-State Markov process@

proc (1)=angrad(beta,y);

TABLE 5. Settings for ix and iy

Value ix iy

0 Variances Equal
Across States

rho=

1 Variances Differ
Across States

rho is a parameter

2 rho =0

3 rho=1

γ11 γ22

1 q–
2 p– q–
---------------------
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local pxa,pxp,p,pp,qq,q, pkim,rho,pcr,ppcr,qcr,qqcr,begz,
endz,numvar,sigma,errz,angrd, i,nobs,ultp,ultq,pkimso1,
pkimso2,pstart,qstart,pfin,qfin,s1s1,s2s2;

nobs=rows(y);

endz=0;

i=0;

numvar=sumc(vei);

errz=zeros(nobs,nstat);

angrd=zeros(nobs,rows(beta));

{pkim,pxa,pxp}=kimsmth(beta,y);

pkim=pkim~(1-pkim);

@The above was done so it could be handled in a loop. With the n-state smoother
it will not be needed.@

do while i<nstat;

i=i+1;

begz =1+endz;

endz=begz+ vei[i,1]-1;

if ix==1;

sigma=beta[numvar+i,1];

else;

sigma= beta[numvar+1,1];

endif;

errz[.,i]=y[.,1]-(y[.,terms[i,1]:terms[i,2]]*beta[begz:endz,1]);

errz[.,i]=errz[.,i]/(sigma);

angrd[.,begz:endz]=(errz[.,i].*y[.,terms[i,1]:terms[i,2]]).*pkim[.,i]/sigma;

@Sigma gradients when they differ across states@

if ix == 1;

angrd[.,numvar+i]=(errz[.,i]^2-1).*pkim[.,i] /sigma;

endif;

endo;

@Calculate the sigma gradients if ix = 0@

if ix == 0;

angrd[.,numvar+1]=sumc(((errz[.,.]^2-ones(rows(errz),nstat)).*pkim[.,.])’ /
sigma);

endif;

@Calculate the prob gradients. The modification to n-states should be possible. @

pstart = sumc(vei[1:nstat,1])+1;

pfin = pstart +vei[nstat+1,1]-1;

qstart = pfin+1;

qfin = qstart + vei[nstat+2,1]-1;

s1s1 = cdfn(y[.,terms[nstat+1,1]:terms[nstat+1,2]]*beta[pstart:pfin,1]);

s2s2= cdfn(y[.,terms[nstat+2,1]:terms[nstat+2,2]]*beta[qstart:qfin,1]);
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p =(pkim[2:nobs,1].*pxp[1:nobs-1,1])./pxa[2:nobs,1];

pp = (pkim[2:nobs,2].*pxp[1:nobs-1,1])./(1-pxa[2:nobs,1]);

q = (pkim[2:nobs,2].*(1-pxp[1:nobs-1,1]))./(1-pxa[2:nobs,1]);

qq = (pkim[2:nobs,1].*(1-pxp[1:nobs-1,1]))./(pxa[2:nobs,1]);

p=p-pp;

q=q-qq;

p=p.*y[2:nobs,terms[nstat+1,1]:terms[nstat+1,2]].*pdfn(y[2:nobs,terms[nstat+1,1]
:terms[nstat+1,2]]*beta[pstart:pfin,1]);

q=q.*y[2:nobs,terms[nstat+2,1]:terms[nstat+2,2]].*pdfn(y[2:nobs,terms[nstat+2,1]
:terms[nstat+2,2]]*beta[qstart:qfin,1]);

pcr=0;

qcr=0;

ultp=0;

ultq=0;

 if iy == 0; rho = (1-meanc(s2s2))/(2-meanc(s1s1)-meanc(s2s2));

pkimso1=rho*(s1s1[1,1]*pkim[1,1]/pxa[1,1]+(1-s1s1[1,1])*(1-pkim[1,1])/(1-
pxa[1,1]));

pkimso2= 1- pkimso1;

ultp=(pkimso1-rho)/(1-rho);

ultp=ultp/(nobs*(2-meanc(s1s1)-meanc(s2s2)));

ultp=ultp*sumc(
pdfn(y[1:nobs,terms[nstat+1,1]:terms[nstat+1,2]]*beta[pstart:pfin,1])
.*y[1:nobs,terms[nstat+1,1]:terms[nstat+1,2]]);

ultq=(pkimso2-(1-rho))/(rho);

ultq=ultq/(nobs*(2-meanc(s1s1)-meanc(s2s2)));

ultq=ultq*sumc(
pdfn(y[1:nobs,terms[nstat+2,1]:terms[nstat+2,2]]*beta[qstart:qfin,1])
.*y[1:nobs,terms[nstat+2,1]:terms[nstat+2,2]]);

elseif iy == 1; rho=cdfn(beta[numvar+2+ix*(nstat-1),1]);

pkimso1 = rho*(s1s1[1,1]*pkim[1,1]/pxa[1,1]+(1-s1s1[1,1])*(1-pkim[1,1])/(1-
pxa[1,1]));

pkimso2 = 1-pkimso1;

angrd[numvar+2+ix*(nstat-1),1]=pkimso1*pdfn(beta[numvar+2+ix*(nstat-1),1])/
(cdfn(beta[numvar+2+ix*(nstat-1),1])*(1-cdfn(beta[numvar+2+ix*(nstat-1),1])));

angrd[numvar+2+ix*(nstat-1),1]= angrd[numvar+2+ix*(nstat-1),1]-
pdfn(beta[numvar+2+ix*(nstat-1),1])/(1-cdfn(beta[numvar+2+ix*(nstat-1),1]));

@For the next two cases the derivative with respect to intial conditions is zero@

elseif iy == 2; rho = 1.0;

elseif iy == 3; rho = 0;

endif;

if iy /= 3;
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pcr=(pkim[1,1]*rho)./pxa[1,1];

ppcr=(pkim[1,2]*rho)./(1-pxa[1,1]);

pcr=pcr-ppcr;

pcr=pcr.*y[1,terms[nstat+1,1]:terms[nstat+1,2]].*pdfn(y[1,terms[nstat+1,1]:terms
[nstat+1,2]]*beta[pstart:pfin,1]);

endif;

if iy /= 2;

qcr= (pkim[1,2]*(1-rho))./(1-pxa[1,1]);

qqcr= (pkim[1,1]*(1-rho) )./pxa[1,1];

qcr=qcr-qqcr;

qcr=qcr.*y[1,terms[nstat+2,1]:terms[nstat+2,2]].*pdfn(y[1,terms[nstat+2,1]:terms
[nstat+2,2]]*beta[qstart:qfin,1]);

endif;

p=pcr|p;

q=qcr|q;

p[.,1]=p[.,1]+ultp’;

q[.,1]=q[.,1]+ultq’;

angrd[.,pstart:pfin]=p;

angrd[.,qstart:qfin]=q;

retp(angrd’);

endp;

5.2  The Likelihood Function

proc(1) =swmkv(th,y);

local  alpha1,alpha2,p,q,sig2,sig1,rho,pxp2,pxp1,

          pxa1,pxpkim,fit,it,qq1,qq2,lf,pth,qth,x,z,nrows;

@ Establish values of parameters @

  alpha1 = th[1:vei[1,1],1];

  alpha2 = th[1+vei[1,1]:vei[1,1]+vei[2,1],1];

  pth = th[1+sumc(vei[1:nstat,1]):sumc(vei[1:nstat,1])+vei[3,1],1];

  qth = th[1+sumc(vei[1:nstat+1,1]):sumc(vei[1:nstat+1,1])+vei[4,1],1];

  sig1 = abs(th[sumc(vei)+1,1]);

  if ix == 0;

    sig2 = sig1;

  else;

    sig2 = abs(th[sumc(vei)+2,1]);

  endif;

nrows=rows(y);

  lf = zeros(nrows,1);

@ Set the p and q for each period @

 p = cdfn(y[.,terms[nstat+1,1]:terms[nstat+1,2]]*pth);
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  q = cdfn(y[.,terms[nstat+2,1]:terms[nstat+2,2]]*qth); /**/

@ Select the correct value of rho (prob of state 1 at time 0) @

  if iy == 0;             rho = (1-meanc(q))/(2-meanc(p)-meanc(q));

  elseif iy == 1;         rho = cdfn(th[sumc(vei)+2+ix,1]);

  elseif iy == 2;         rho = 1.0;

  elseif iy == 3;         rho = 0;

  endif;

  pxp2 = 1-rho;

  pxp1 = rho;

@ Set PDF’s of y for each regime @

  qq1 = pdfn((y[.,1]-y[.,terms[1,1]:terms[1,2]]*alpha1)/sig1)/sig1;

  qq2 = pdfn((y[.,1]-y[.,terms[2,1]:terms[2,2]]*alpha2)/sig2)/sig2;

    @ This allows for underflows in the above expression. @

    if ndpchk(3);   ndpclex;    endif;

/*

    NOTE: The qq’s in the above expressions differs from those in the Hamilton

    likelihood function LIKEPROC.  First, the division by sig2 and sig1 is

    moved up from the lines setting pxp2 and pxp1, below.  Second, they are

    smaller by a factor of sqrt(2*pi); this is required to make it a true

    log-likelihood.  To correct; Hamilton’s llf - llf swmkv = (n/2)*ln(2*pi).

*/

it = 1;     pxp1=zeros(nrows,1);    fit=zeros(nrows,1);     pxa1=zeros(nrows,1);

    do until it > nrows;

      if it == 1;                  @ Step 1 : Ex Ante probability of State 1 @

        pxa1[it,1] = (1-q[it,1])*(1-rho) + p[it,1]*rho;

      else;

        pxa1[it,1] = (1-q[it,1])*(1-pxp1[it-1,1]) + p[it,1]*pxp1[it-1,1];

      endif;

      pxp1[it,1] = pxa1[it,1]*qq1[it,1]; @ Step 2 : Ex Post joint density of
State 1 @

                                   @ Step 3 : Likelihood Function @

      fit[it,1] = pxp1[it,1]+(1-pxa1[it,1])*qq2[it,1];

                                   @ Step 4 : Ex Post probability of State 1 @

      pxp1[it,1] = pxp1[it,1]/fit[it,1];

    it = it+1;

    endo;

retp(ln(fit));

endp;

5.3  Kim’s Smoother
proc(3) =kimsmth(th,y);

 local  alpha1,alpha2,p,q,sig2,sig1,rho,pxp2,pxp1,

          pxa1,pxpkim,fit,it,qq1,qq2,lf,pth,qth,x,z,nrows;
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@ Establish values of parameters @

  alpha1 = th[1:vei[1,1],1];

  alpha2 = th[1+vei[1,1]:vei[1,1]+vei[2,1],1];

  pth = th[1+sumc(vei[1:nstat,1]):sumc(vei[1:nstat,1])+vei[3,1],1];

  qth = th[1+sumc(vei[1:nstat+1,1]):sumc(vei[1:nstat+1,1])+vei[4,1],1];

  sig1 = abs(th[sumc(vei)+1,1]);

  if ix == 0;

    sig2 = sig1;

  else;

    sig2 = abs(th[sumc(vei)+2,1]);

  endif;

nrows=rows(y);

  lf = zeros(nrows,1);

@ Set the p and q for each period @

 p = cdfn(y[.,terms[nstat+1,1]:terms[nstat+1,2]]*pth);

  q = cdfn(y[.,terms[nstat+2,1]:terms[nstat+2,2]]*qth); /**/

@ Select the correct value of rho (prob of state 1 at time 0) @

  if iy == 0;             rho = (1-meanc(q))/(2-meanc(p)-meanc(q));

  elseif iy == 1;         rho = cdfn(th[sumc(vei)+2+ix,1]);

  elseif iy == 2;         rho = 1.0;

  elseif iy == 3;         rho = 0;

  endif;

  pxp2 = 1-rho;

  pxp1 = rho;

@ Set PDF’s of y for each regime @

  qq1 = pdfn((y[.,1]-y[.,terms[1,1]:terms[1,2]]*alpha1)/sig1)/sig1;

  qq2 = pdfn((y[.,1]-y[.,terms[2,1]:terms[2,2]]*alpha2)/sig2)/sig2;

    @ This allows for underflows in the above expression. @

    if ndpchk(3);   ndpclex;    endif;

it = 1;     pxp1=zeros(nrows,1);    fit=zeros(nrows,1);     pxa1=zeros(nrows,1);

    do until it > nrows;

      if it == 1;                  @ Step 1 : Ex Ante probability of State 1 @

        pxa1[it,1] = (1-q[it,1])*(1-rho) + p[it,1]*rho;

      else;

        pxa1[it,1] = (1-q[it,1])*(1-pxp1[it-1,1]) + p[it,1]*pxp1[it-1,1];

      endif;

pxp1[it,1] = pxa1[it,1]*qq1[it,1]; @Step 2:Ex Post joint density of State 1
@

                                   @ Step 3 : Likelihood Function @

      fit[it,1] = pxp1[it,1]+(1-pxa1[it,1])*qq2[it,1];

                                   @ Step 4 : Ex Post probability of State 1 @

      pxp1[it,1] = pxp1[it,1]/fit[it,1];

    it = it+1;

    endo;
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@Kim's Smoothing Algorithm Kim(1994)@

x = pxp1[1:nrows-1,.].*(p[2:nrows,.]./pxa1[2:nrows,.] - (1-p[2:nrows,.])./(1-
pxa1[2:nrows,.]));

x = pxp1[nrows,.]|rev(x);

z = pxp1[1:nrows-1,.].*(1-p[2:nrows,.])./(1-pxa1[2:nrows,.]);

z = zeros(1,1)|rev(z);

pxpkim = rev(recsercp(x,z));

retp(pxpkim,pxa1,pxp1);

endp;
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