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ABSTRACT

Aims. We investigate pitch-angle scattering, which is a fundamental process in the physics of cosmic rays.
Methods. By employing the second-order quasilinear theory, the pitch-angle Fokker-Planck coefficient is calculated analytically for
the first time.
Results. We demonstrate that for sufficiently strong turbulence the pitch-angle Fokker-Planck coefficient is isotropic. The derived
results can be used to compute the parallel mean free path for all forms of the turbulence spectrum. We also consider applications,
namely the transport of solar energetic particles and the propagation of cosmic rays in the Galaxy.
Conclusions. The previously used assumption of isotropic pitch-angle diffusion is indeed correct for sufficiently strong turbulence.
An analytical description of nonlinear particle scattering is possible.

Key words. acceleration of particles – diffusion – cosmic rays – Magnetohydrodynamics (MHD) – turbulence –
interplanetary medium

1. Introduction

Here, we revisit the problem of charged particle transport in
MHD turbulence. Particle transport is described by the diffusion
tensor κi j in the case of diffusive propagation. For certain pa-
rameters regimes (for a detailed discussion see Shalchi & Dosch
2009), one expects isotropic scattering. In this case the tensor is
given by κi j = κδi j. In addition to the turbulent magnetic fields
δBi we expect the existence of a non-vanishing mean magnetic
field 〈Bi〉 = B0δiz. The latter parameter breaks the symmetry
of the physical system leading to different diffusion coefficients
along and across the mean magnetic field. For not too strong tur-
bulent fields we expect κ⊥ � κ‖. In this case the parallel spatial
diffusion coefficient κ‖ ≡ κzz controls the particle motion.

An important example for the application of diffusion theory
is the propagation and acceleration of charged cosmic rays (for a
review see Shalchi 2009b). The investigation of these processes
is relevant for different physical systems. Some examples are the
solar corona (see, e.g., Fletcher 1997; Gkioulidou et al. 2007),
the heliosphere (e.g., Dröge 2000; Shalchi et al. 2006; Alania &
Wawrzynczak 2008), the interstellar medium (see, e.g., Yan &
Lazarian 2002; Shalchi & Schlickeiser 2005), and shock waves
(see, e.g., Zank et al. 2000; Li et al. 2003; Li et al. 2005; Zank
et al. 2006).

The parallel mean free path λ‖ of the charged particle is re-
lated to the parallel spatial diffusion coefficient κ‖ via λ‖ = 3κ‖/v
and can be expressed as an integral over the inverse pitch-angle
Fokker-Planck coefficient Dμμ (see, e.g., Earl 1974)

λ‖ =
3v
8

∫ +1

−1
dμ

(1 − μ2)2

Dμμ(μ)
(1)

with the pitch-angle cosine μ = v‖/v and the particle velocity v.
The first approach to compute the parameter Dμμ was the ap-

plication of perturbation theory also known as quasilinear theory
(QLT, Jokipii 1966). In the years after QLT had been developed,

it was noticed that the theory is not able to describe pitch-angle
scattering at 90◦ (corresponding to μ = 0) correctly. This prob-
lem, which is known as the 90◦−scattering problem, was then
investigated in numerous papers (see, e.g., Jones et al. 1973;
Völk 1973; Owens 1974; Völk 1975; Goldstein 1976; Jones
et al. 1978). In these articles, QLT has been improved by replac-
ing unperturbed orbits by more appropriate models. However,
some of these previous theories do not provide agreement with
simulations or they are difficult to apply due to mathematical
problems (see Shalchi 2009a,b). More recently, a second order
quasilinear theory (SOQLT, Shalchi 2005a) was developed. This
theory is in good agreement with test-particle simulations (for a
detailed comparision between SOQLT and simulations we refer
to Shalchi 2007) and is mathematically tractable. Furthermore,
Tautz et al. (2008) have demonstrated that SOQLT can repro-
duce the simulations of Giacalone & Jokipii (1999) performed
for isotropic turbulence.

In previous applications of nonlinear theories for pitch-angle
scattering and parallel spatial diffusion, only numerical results
have been derived due to mathematical intractability. Analytical
forms of these parameters are, however, very useful for different
astrophysical applications. It is the purpose of the present arti-
cle to investigate the SOQLT analytically for the first time. In
previous articles, simple models have been used without justifi-
cation. In the theory of diffusive shock acceleration, for instance,
it was often assumed that pitch-angle scattering is isotropic (see,
e.g., Kirk & Schneider 1988; Schneider & Kirk 1989; Kirk &
Schneider 1989), in disagreement with the quasilinear result. It
is also the purpose of the present article to investigate the validity
of the assumption of isotropic scattering.

In Sect. 8 we consider some applications of our analytical
results, namely:

1. cosmic rays from the Sun;
2. interstellar transport and steep turbulence spectra;
3. the Hillas limit and high energetic particles.
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and a discussion of the results is provided in Sect. 9.

2. Standard quasilinear theory

The Fokker-Planck coefficient Dμμ used in Eq. (1) can be com-
puted by employing the so-called Taylor-Green-Kubo formu-
lation (TGK formulation, e.g. Taylor 1922; Green 1952; Kubo
1957)

Dμμ =
∫ ∞

0
dt 〈μ̇(t)μ̇(0)〉 . (2)

The acceleration parameter μ̇(t) can be obtained from the
Newton-Lorentz-equation whose parallel component reads

μ̇ =
1

RL

(
vx(t)
δBy [x(t), t]

B0
− vy(t)δBx [x(t), t]

B0

)
(3)

for purely magnetic fields1. Here we have used the unperturbed
Larmor radius

RL =
v

Ω
=
vmcγ
qB0

=
pc

qB0
(4)

with the unperturbed gyrofrequency Ω, the particle mass m and
charge q, the mean magnetic field B0, the speed of light c, and
the particle momentum p.

The simplest method to compute the parameter Dμμ is the ap-
plication of perturbation theory also known as quasilinear theory
(Jokipii 1966). In this case the velocities vx(t) and vy(t) as well as
the particle trajectories x(t) in Eq. (3) are replaced by the unper-
turbed particle orbit. A further assumption which is often used is
that the stochastic magnetic fields are replaced by the so-called
magnetostatic slab model for which we assume δBi(x) = δBi(z).
For the slab model the magnetic correlation tensor is given by

Pi j(k) =
〈
δBi(k)δB∗j(k)

〉
= gslab(k‖)

δ(k⊥)
k⊥
δi j (5)

with the (symmetric) turbulence spectrum gslab(k‖). The combi-
nation of quasilinear theory and the magnetostatic slab model is
also known as standard quasilinear theory. In this case we find
(see, e.g., Teufel & Schlickeiser 2002, 2003 for a detailed deriva-
tion of this formula)

Dμμ =
2πv2(1 − μ2)

B2
0R2

L

∫ ∞

0
dk‖ gslab(k‖)

× [
R+(k‖) + R−(k‖)

]
(6)

with the quasilinear resonance function

R±(k‖) = πδ
(
vμk‖ ±Ω)

. (7)

All parameters used in the present article are explained in
Table 1. The particle experiences only interaction with a cer-
tain wavenumber vμk‖ = Ω corresponding to μRLk‖ = 1. This
scattering condition is known as gyroresonance. We find

Dμμ =
2π2v(1 − μ2)

|μ| B2
0R2

L

gslab
[
k‖ = (|μ|RL)−1

]
· (8)

In combination with Eq. (1) this formula can be used to compute
the quasilinear parallel mean free path.

1 In the current article we neglect electric fields since they are less
important for spatial diffusion. If one is interested in stochastic acceler-
ation, however, electric fields are relevant (see, e.g., Schlickeiser 2002).

Table 1. Parameters used in the present article.

Parameter Symbol
Inertial range spectral index s
Energy range spectral index q
Alfvén speed vA
Slab bendover scale lslab

Particle velocity v
Pitch-angle cosine μ
Larmor radius RL

Gyrofrequency Ω

Parallel wavenumber k‖
Mean field B0

Turbulence strength δB/B0

Dimensionless rigidity R = RL/lslab

3. Second order quasilinear theory

3.1. The second order resonance function

In this section we employ the second order theory of Shalchi
(2005) in combination with the magnetostatic slab model. In
the second order theory we no longer assume unperturbed or-
bits. Instead, quasilinear theory is employed in order to compute
improved orbits. The improved orbits are then combined with
Eqs. (1)–(3). Mathematically, the second order approach leads to
a modified (broadend) resonance function (for a detailed deriva-
tion see Shalchi 2005)2

RS OQLT
± (k‖) =

√
π

vk‖
B0

δB
exp

⎡⎢⎢⎢⎢⎣− (vμk‖ ±Ω)2B2
0

(vk‖δB)2

⎤⎥⎥⎥⎥⎦ · (9)

Here the resonance function has the form of a Gaussian function
with the width

σ2 =

(
vk‖δB

B0

)2

· (10)

The quasilinear resonance function (see Eq. (7)) can be recov-
ered by considering the limit σ2 → 0. The physics of a nonlinear
particle motion is illustrated in Fig. 1.

3.2. An approximation for the resonance function

The second order resonance function of Eq. (9) has the form

RS OQLT
± (k‖) =

√
π

σ
exp

[
−

(
β2
±/σ

2
)]
· (11)

Please note that β± = β±(k‖). In Eq. (11) we have used the reso-
nance condition

β± = vμk‖ ± Ω (12)

and the width σ as defined in Eq. (10). In principle the exponen-
tial (or Gaussian) function cuts off the wavenumber integral in
Eq. (6). Furthermore, we have for the area under the resonance
function∫ ∞

−∞
dβ± RS OQLT

± (β±) = π. (13)

2 The resonance function of Eq. (9) was obtained by Shalchi (2005) by
combining a second order approach in combination with two mathemat-
ical approximations, namely a Late-Time-Approximation (LTA) and
a 90◦-approximation. These approximations were employed to ensure
mathematical tractability. For a detailed explanation of these approxi-
mations and their justifications we refer to Shalchi (2005, 2009b).
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Fig. 1. The particle motion through the turbulent plasma. The turbulent
magnetic field is represented by the dashed line. If there would be no
interaction between the plasma and the cosmic rays, the particles would
follow unperturbed orbits (dotted line). The latter trajectories are used
in quasilinear theory. In reality, however, the particles experience scat-
tering and, therefore, the true orbits decorrelate from the unperturbed
motion (solid lines).

To achieve a simplification we approximate the resonance func-
tion by

RS OQLT
± (k‖) =

π

2σ

{
0 for |β±| ≥ σ
1 for |β±| < σ (14)

or in terms of the Heaviside stepfuntion H

RS OQLT
± (k‖) =

π

2σ
H (σ − |β±|) · (15)

Equations (14) and (15) have similar properties in comparison
with the original function (11). Furthermore, the function is sim-
ilar to the heuristic ansatz of Völk (1975). In Fig. 2 the reso-
nance functions of quasilinear theory, second-order theory (see
Eq. (11)) and the approximation used in the present article (see
Eqs. (14) and (15)) are visualized.

3.3. The pitch-angle Fokker-Planck coefficient for the general
case

The pitch-angle Fokker-Planck coefficient from Eq. (6) has the
form

Dμμ =
2πv2(1 − μ2)

B2
0R2

L

I(μ) (16)

with

I(μ) = I−(μ) + I+(μ) (17)

and

I± =
∫ ∞

0
dk‖ gslab(k‖) R±(k‖). (18)

To solve the integral with the approximation of Eq. (14) we have
to split the integral. It is convenient to introduce the parameters

k± =
1

RL
(|μ| ± δB/B0)−1

k0 =
1
|μ|RL

· (19)
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Fig. 2. The different resonance functions σR± versus the resonance pa-
rameter β±/σ. The quasilinear resonance function (dashed line) is a δ-
function, whereas we find a Gaussian function within the second order
theory (dotted line). In the present article we approximate the Gaussian
function by a Heaviside stepfunction (solid line).

By combining Eqs. (15) and (18) we find after straightforward
algebra

I+ (|μ| < δB/B0) =
π

2

∫ ∞

−k−
dk‖ gslab(k‖)σ−1

I+ (|μ| ≥ δB/B0) = 0. (20)

The function I− is more difficult to evaluate. We find

I− (μ) =
π

2

∫ k0

0
dk‖ g(k‖)σ−1H(σ + v |μ| k‖ − Ω)

+
π

2

∫ ∞

k0

dk‖ g(k‖)σ−1H(σ − v |μ| k‖ + Ω). (21)

To proceed we have to distinguish between the cases |μ| ≥ δB/B0
and |μ| ≤ δB/B0. We find after straighforward algebra

I− (|μ| < δB/B0) =
π

2

∫ ∞

k+

dk‖ gslab(k‖)σ−1

I− (|μ| > δB/B0) =
π

2

∫ k−

k+

dk‖ gslab(k‖)σ−1. (22)

By using the parameter

Γ =
Ω

v

B0

δB
=

B0

RLδB
, (23)

the total function I = I− + I+ can be written as

Inres (|μ| < δB/B0) =
π

2Ω
Γ

[∫ ∞

−k−

dk‖
k‖
gslab(k‖)

+

∫ ∞

k+

dk‖
k‖
gslab(k‖)

]

Iqres (|μ| > δB/B0) =
π

2Ω
Γ

∫ k−

k+

dk‖
k‖
gslab(k‖). (24)

The case |μ| = δB/B0 can be obtained from both formulas by
employing a limiting process. We find

I(|μ| = δB/B0) =
π

2Ω
Γ

∫ ∞

k+

dk‖
k‖
gslab(k‖). (25)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912755&pdf_id=1
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The first term in Eq. (24) is a non-resonant term and Iqres can be
called the quasi-resonant term. The reason will become clearer
in the next section where we will discuss special cases.

4. Special limits and cases

Here we explore Eq. (24) for special limits and cases to recover
previous results.

4.1. The quasilinear limit

In this paragraph we investigate the limit |μ| � δB/B0. In this
case we have to use the quasi-resonant formula of Eq. (24).
Therefore, we can approximate

Iqres (|μ| � δB/B0) =
π

2Ω
Γ
[
gslab(k‖)k−1

‖
]
k‖=k0

∫ k−

k+

dk‖

=
π

2Ω
Γ

k0
gslab(k0) [k− − k+] · (26)

With

k− − k+ =
2

RL

δB/B0

μ2 − (δB/B0)2
(27)

we find for |μ| � δB/B0

Iqres (|μ| � δB/B0) ≈ π

v |μ|g
slab [

k‖ = 1/(|μ|RL)
]

(28)

and the pitch-angle Fokker-Planck coefficient reads

Dμμ (|μ| � δB/B0) =
2π2v(1 − μ2)

|μ| B2
0R2

L

× gslab [
k‖ = 1/(|μ|RL)

]
(29)

in agreement with Eq. (8). Obviously, quasilinear theory is valid
so long as the restriction |μ| � δB/B0 holds. For pitch-angles
satisfying |μ| > δB/B0, quasilinear theory could be approxi-
mately correct.

4.2. Strong turbulence and 90◦−scattering

Now we investigate the limit |μ| � δB/B0. In this case we have

k± ≈ ±Γ (30)

with the parameter Γ defined in Eq. (23). Therefore the non-
resonant term in Eq. (24) has the form

Inres (|μ| � δB/B0) =
π

Ω
Γ

∫ ∞

Γ

dk‖
k‖
gslab(k‖) (31)

which is a pitch-angle independent result.
For strong turbulence (δB � B0) we always have |μ| �

δB/B0. In this case we find with Eq. (16) the form

Dμμ(δB� B0) =
(
1 − μ2

)
D (32)

with

D = Dμμ(μ = 0) =
2π2Ω

B2
0

Γ

∫ ∞

Γ

dk‖
k‖
gslab(k‖). (33)

Equation (32) corresponds to an isotropic form (see later discus-
sions). The parameter D is the pitch-angle Fokker-Planck coef-
ficient at 90◦. The second order theory was already investigated
analytically for μ = 0 in Shalchi (2005). In this paragraph we
derived this limit from the general Eq. (24).

5. Results for a realistic turbulence spectrum

For the turbulence spectrum we employ the form introduced by
Shalchi & Weinhorst (2009)

gslab(k‖) =
D(s, q)

2π
δB2lslab

∣∣∣k‖lslab

∣∣∣q[
1 + (k‖lslab)2

](s+q)/2
(34)

with the normalization constant

D(s, q) =
Γ
(

s+q
2

)
2Γ

(
s−1
2

)
Γ
(

q+1
2

) · (35)

In Eq. (34) we have used the bendover scale of the turbulence3

lslab, the energy range spectral index q, and the inertial range
spectral index s. The spectrum is correctly normalized for q >
−1 and s > 1. In the following two paragraphs we investigate the
quasi-resonant as well as the non-resonant case analytically for
the spectrum defined in Eq. (34).

5.1. The quasi-resonant case

For the spectrum of Eq. (34) the quasi-resonant function derived
in Eq. (24) becomes

Iqres (|μ| > δB/B0) =
D(s, q)

4Ω
δB2lslabΓ

×
∫ k−

k+

dk‖
k‖

∣∣∣k‖lslab

∣∣∣q[
1 + (k‖lslab)2](s+q)/2

· (36)

To proceed we employ the integral transformation x = k‖lslab and
split the integral to derive

Iqres (|μ| > δB/B0) =
D(s, q)

4Ω
δB2lslabΓ

×
⎡⎢⎢⎢⎢⎣
∫ ∞

x+

dx
xq−1

[
1 + x2

](s+q)/2

−
∫ ∞

x−
dx

xq−1

[
1 + x2

](s+q)/2

⎤⎥⎥⎥⎥⎦ (37)

with

x± =
lslab

RL

1
|μ| ± δB/B0

· (38)

The two integrals can be expressed by the hypergeometric func-
tion 2F1(a, b; c; z) (see, e.g., Gradshteyn & Ryzhik 2000)∫ ∞

a
dx

xq−1

[
1 + x2

](s+q)/2
=

a−s

s 2F1

(
s
2
,

q + s
2

;
2 + s

2
;
−1
a2

)
· (39)

With this formula we find

Iqres (|μ| > δB/B0) =
D(s, q)

4sΩ
δB2lslabΓ

(
RL

lslab

)s

×
[(
|μ| + δB

B0

)s

2F1

(
s
2
,

q + s
2

;
2 + s

2
;−ξ2

)

−
(
|μ| − δB

B0

)s

2F1

(
s
2
,

q + s
2

;
2 + s

2
;−ξ2

)]
(40)

3 The bendover or turnover scale denotes the frequency break between
the large scales (energy range) and the intermediate scales (inertial
range) of the turbulence. For the spectrum defined in Eq. (34) the ben-
dover scale is directly proportional to the turbulence correlation length.
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Fig. 3. Shown are the results of QLT (dotted line), SOQLT within the
90◦−LTA (solid line), and simulations (Qin 2002, dots) for Dμμ. Also
shown is the more accurate SOQLT result without LTA (star) which
is closer to the simulations. Furthermore, the analytical results derived
in the present paper are shown. The resonant case is correct for |μ| ≥
δB/B0 (bright grey line) and the non-resonant case is valid for |μ| ≤
δB/B0 (dark grey line). In this plot, the rigidity is R = 0.0363 and the
strength of turbulence is assumed to be δB/B0 = 0.05.

with

ξ2 =

(
RL

lslab

)2 (
|μ| + δB

B0

)2

· (41)

To proceed we consider RL ||μ| ± δB/B0| � lslab. This case cor-
responds to the assumption of not too strong turbulence and low
energetic particles. In this case the argument of the hypergeo-
metric function is small (ξ2 � 1) and we can use (see, e.g.,
Abramowitz & Stegun 1974)

2F1 (a, b; c; |z| � 1) ≈ 1. (42)

By combining Eqs. (37)–(42) and by using R = RL/lslab we find

Iqres (|μ| > δB/B0) =
D(s, q)

4sΩ
δB2lslabΓR

s

×
[(
|μ| + δB

B0

)s

−
(
|μ| − δB

B0

)s]
· (43)

Note that this result is only valid for |μ| > δB/B0. From this result
we can derive the quasilinear limit by considering |μ| � δB/B0

IQLT (μ) =
D(s, q)

2v
lslabδB

2Rs |μ|s−1 . (44)

5.2. The non-resonant case

The calculations of the previous paragraph can be repeated for
|μ| < δB/B0. In this case we have to use the non-resonant for-
mula in Eq. (24) to derive

Inres (|μ| < δB/B0) =
D(s, q)

4sΩ
δB2lslabΓR

s

×
[(
δB
B0
+ |μ|

)s

+

(
δB
B0
− |μ|

)s]
. (45)

Except for the signs, Eq. (45) agrees with Eq. (43).
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Fig. 4. Enlarge of Fig. 3 at small pitch-angle cosines.

5.3. The general case

Equations (43) and (45) can be combined to find for arbitrary μ
the formula

I(μ) =
D(s, q)

4sΩ
δB2lslabΓR

s

×
[∣∣∣∣∣|μ| + δBB0

∣∣∣∣∣
s

+ sign

(
δB
B0
− |μ|

) ∣∣∣∣∣|μ| − δBB0

∣∣∣∣∣
s]
. (46)

With Eq. (16) the pitch-angle Fokker-Planck coefficient becomes

Dμμ =
πD(s, q)

2s
(1 − μ2)

v

lslab
Rs−2 δB

B0

×
∑
n=±1

sign

(
δB
B0
+ n |μ|

)
·
∣∣∣∣∣|μ| + n

δB
B0

∣∣∣∣∣
s

· (47)

This formula can be applied for RL ||μ| ± δB/B0| � lslab. In the
other case we have to consider the hypergeometric function of
Eq. (40) in the limit of large arguments. In Figs. 3 and 4 we
compare our analytical results with numerical results, QLT, and
computer simulations.

6. The parallel mean free path

By using Eq. (1) we can compute the parallel mean free path. It
is useful to consider again two different cases.

6.1. The case δB� B0

Here we can use Eq. (1) to find approximately

λ‖ =
3v
4

∫ 1

0
dμ

(1 − μ2)2

Dμμ(μ)

≈ 3v
4

∫ 1

0
dμ

(1 − μ2)2

Dμμ(μ� δB/B0)
· (48)

By employing Eq. (47) for the pitch-angle Fokker-Planck coef-
ficient in the limits μ � δB/B0, we derive

λ‖ =
s

2πD(s, q)
lslabR2−s

( B0

δB

)s+1

· (49)

This formula provides the behavior λ‖ ∼ (B0/δB)s+1 in disagree-
ment with the QLT result (λ‖ ∼ (B0/δB)2).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912755&pdf_id=3


594 A. Shalchi et al.: Pitch-angle diffusion

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

δ B / B
0

λ || / 
l sl

ab

Fig. 5. The parallel mean free path computed by using QLT (dotted line)
for s = 5/3. Also shown are the analytical results of SOQLT, namely
the weak turbulence solution (dashed line) of Eq. (51) and the strong
turbulence solution (solid line) of Eq. (49).

6.2. The case δB� B0

Here we can use Eq. (1) to find approximately

λ‖ =
3v
4

∫ 1

0
dμ

(1 − μ2)2

Dμμ(μ)

=
3v
4

∫ δB/B0

0
dμ

(1 − μ2)2

Dμμ(μ� δB/B0)

+
3v
4

∫ 1

δB/B0

dμ
(1 − μ2)2

Dμμ(μ � δB/B0)
· (50)

By employing Eq. (47) for the pitch-angle Fokker-Planck coef-
ficient in the limits μ � δB/B0 and μ � δB/B0, we derive

λ‖ =
3

2πD(s, q)
lslabR2−s

[
1

(2 − s)(4 − s)

( B0

δB

)2

+
s(2 − s) − 1

2(2 − s)

( B0

δB

)s]
· (51)

The first term corresponds to the well-known quasilinear result.
The second term is new and arises due to nonlinear effects. So
long as the turbulent field is weak (δB � B0) and the inertial
range spectral index satisfies s < 2 the first term is dominant and
quasilinear theory provides the correct result. For a weak turbu-
lent field and the case s > 2, corresponding to a steep inertial
range spectrum, the second (nonlinear) term controls the paral-
lel mean free path. In the latter case the parallel mean free path
scales like λ‖ ∼ (B0/δB)s. For a strong turbulent field we have to
employ Eq. (49). In Fig. 5 we have shown the parallel mean free
path versus the turbulence strength δB/B0.

7. Wave propagation effects

7.1. Parallel and anti-parallel propagating waves

So far we have only discussed the magnetostatic case. In the cur-
rent section we include plasma wave propagation effects by fol-
lowing the work of Schlickeiser (1989). We assume that there are
only parallel and anti-parallel propagating shear Alfvén waves.

The magnetostatic pitch-angle Fokker-Planck coefficient has
the form

Dμμ =
2πv2(1 − μ2)

B2
0R2

L

I(|μ|) (52)

Table 2. Plasmawave propagation versus nonlinearity.

Case Transport regime
ε � |μ| & δB/B0 � |μ| Quasilinear magnetostatic regime
δB/B0 � |μ| � ε Quasilinear plasmawave regime
ε � |μ| � δB/B0 Nonlinear magnetostatic regime
|μ| � ε & |μ| � δB/B0 Nonlinear plasmawave regime

where we must distinguish the cases |μ| ≥ δB/B0 and |μ| ≤
δB/B0. We include wave effects by employing the substitution

|μ| → |μ − jε| (53)

where we have used the (energy dependent) parameter ε = vA/v
with the Alfvén velocity vA. The parameter j is used to track the
wave direction ( j = +1 is used for forward and j = −1 for back-
ward to the ambient magnetic field propagating Alfvén waves).
If we assume equal intensities of parallel and anti-parallel prop-
agating waves we can use

I(|μ|)→ Iwave(μ) = I(|μ − ε|) + I(|μ + ε|). (54)

We notice that

Iwave(μ = 0) = 2I(ε) (55)

and

Iwave(μ = ±ε) = I(2ε). (56)

For μ = 0 as well as μ = ±ε we find a non-vanishing pitch-
angle Fokker-Planck coefficient. The question is whether wave
propagation effects or nonlinear effects are more relevant. In the
following paragraph we will investigate this issue.

7.2. Wave versus nonlinear effects

By combining Eqs. (46) and (54) we derive

I(μ) =
D(s, q)

4sΩ
δB2lslabΓR

s

×
∑

j,n=±1

sign

(
δB
B0
+ n |μ + jε|

) ∣∣∣∣∣|μ + jε| + n
δB
B0

∣∣∣∣∣
s

· (57)

Mathematically, plasma wave propagation effects enter the func-
tion I(μ) in a similar way as the nonlinear effects. We can derive
the parameter regimes for which wave effects are dominant and
for which nonlinear effects have a stronger influence. It is con-
venient to define the characteristic velocity

vc = vA
B0

δB
· (58)

For low particles velocities v � vc we are in the wave dominated
regime (since we have ε � δB/B0) and for higher velocities v �
vc we are in the nonlinear regime (since we have ε � δB/B0).
Magnetostatic quasilinear theory is valid for |μ| � ε and |μ| �
δB/B0 (see Table 2).

8. Applications

8.1. Energetic particles from the sun

To describe the motion of charged particles along the magnetic
field of the Sun we can use the two-dimensional Fokker-Planck
equation:

∂ f
∂t
+ vμ
∂ f
∂z
=
∂

∂μ

(
Dμμ
∂ f
∂μ

)
· (59)
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To proceed, we compute the spatial average

F(μ, t) =
∫ +∞

−∞
dz f (μ, z, t) (60)

and the Fokker-Planck equation becomes

∂F
∂t
=
∂

∂μ

(
Dμμ
∂F
∂μ

)
· (61)

By assuming that δB ≥ B0 and v � vA we can employ Eq. (32)
and, therefore,

∂F
∂t
= D

∂

∂μ

[
(1 − μ2)

∂F
∂μ

]
· (62)

This equation can be solved analytically without further assump-
tions. E.g., Shalchi (2006) has demonstrated that the solution of
this equation can be expressed by Legendre polynomials Pl(μ):

F(μ, t) = 1 +
∞∑

l=1

αlPl(μ)e−l(l+1)Dt. (63)

For sharp initial conditions (μ(t = 0) = μ0) this becomes

F(μ, t) = 1 +
∞∑

l=1

(2l + 1)Pl(μ0)Pl(μ)e
−l(l+1)Dt . (64)

An interesting property is the anisotropy A(t) which can be de-
fined as

A(t) =
3
∫ +1

−1
dμ μF(μ, t)∫ +1

−1
dμ F(μ, t)

· (65)

With P0(μ) = 1, P1(μ) = μ, and∫ +1

−1
dμ Pl(μ)Pm(μ) =

2
2m + 1

δlm (66)

we find

A(t) = 3μ0e−2Dt = 3μ0e−vt/λ‖ . (67)

In the last step we have used Eq. (1) for the parallel mean free
path. Analytical results such as Eq. (67) can be compared with
measurements of solar particle events by spacecrafts such as
Wind (see, e.g., Dröge & Kartavykh 2009).

8.2. Interstellar propagation and steep spectra

In Lazar et al. (2003) and Spanier & Schlickeiser (2005), the
heating rate of the interstellar medium (ISM), especially the
warm ionized medium, has been calculated. Within these two
papers it was demonstrated that a steeper form of the turbulence
spectrum (s > 2) could be reasonable. In this case we obtain by
employing standard QLT an infinitely large parallel mean free
path (λ‖ = ∞). In Shalchi (2007) it has already been demon-
strated the SOQLT is in agreement with simulations for such
spectra. In the present section we compare our analytical finding
with these previous results (see Fig. 6).

For the analytical results we can use Eq. (51) since we as-
sume not too strong stochastic fields. These analytical forms are
only valid for smaller rigidities. For high particle energies the
analytical results deviate from the numerical finding. For weak
turbulence and s > 2 we can derive from Eq. (51) the formula

λ‖ =
3

2πD(s, q)
s(2 − s) − 1

2(2 − s)
lslabR2−s

( B0

δB

)s

· (68)
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Fig. 6. λ‖ for pure slab geometry and steep spectra (s = 2 + 5/3). The
simulations (dots) from Shalchi (2007) are compared with numerical
SOQLT results (dashed line) and the analytical SOQLT result (solid
line) obtained by employing Eq. (51). For sake of comparison we have
also shown the QLT result for s = 5/3 (dotted line). The magnetostatic
QLT result for s = 2 + 5/3 is λ‖ = ∞.

For strong turbulence we have to use Eq. (49). The pitch-angle
Fokker-Planck coefficient for high particle rigidities can be de-
rived from Eq. (40). In this case it is also straightforward to com-
pute the parallel mean free path.

8.3. The Hillas limit and high energetic cosmic rays

In Shalchi et al. (2009a) we have investigated for the first time
the propagation of ultrahigh energy particles within the frame-
work of SOQLT. In this article we have computed numerically
the pitch-angle Fokker-Planck coefficient and the parallel mean
free path. As shown there, the Hillas limit4 is questionable.

It is the purpose of the present section to calculate analyti-
cally the pitch-angle Fokker-Planck coefficient of very high en-
ergetic particles. For simplicity we assume δB ≈ B0 and we
can use Eq. (33). By using a spectrum with sharp cutoff at short
wavenumbers we find

D =
2π2Ω

B2
0

Γ

∫ ∞

max[kmin,Γ]

dk‖
k‖
gslab(k‖). (69)

To evaluate this formula we assume Γ < kmin corresponding to

RL

L‖
>

B0

δB
≈ 1 (70)

with the largest scale of the turbulence L‖ = k−1
min. With the spec-

trum defined in Eq. (34) we can derive

D = πΩD(s, q)lslab
δB2

B2
0

Γ

×
∫ ∞

kmin

dk‖
k‖

(k‖lslab)q

[
1 + (k‖lslab)2

](s+q)/2
· (71)

4 Within the framework of magnetostatic quasilinear theory, the res-
onance function is a sharp delta function. Since there exists a largest
scale of turbulence L‖, ultrahigh energy particles having a Larmor ra-
dius larger than this scale (RL > L‖) cannot be scattered and, therefore,
they cannot be confined to the Galaxy. This limit is known as the Hillas
limit (Hillas 1984).
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With the integral transformation x = k‖lslab we derive

D = πΩD(s, q)lslab
δB2

B2
0

ΓQ(s, q, xmin) (72)

with xmin = kminlslab = lslab/L‖ � 1 and the integral

Q(s, q, xmin) =
∫ ∞

xmin

dx
xq−1

[
1 + x2

](s+q)/2
· (73)

By using Gradshteyn & Ryzhik (2000) we can solve the integral
to find

Q(s, q, xmin) =
x−s

min

s 2F1

(
s
2
,

q + s
2

;
2 + s

2
;−x−2

min

)
· (74)

Finally, we find for the pitch-angle Fokker-Planck coefficient of
ultrahigh energetic particles

Dμμ = πD(s, q)
vlslab

R2
L

δB
B0

Q(s, q, xmin). (75)

By using Eq. (1) it is a simple matter to calculate analytically the
parallel mean free path

λ‖ =
lslab

2πD(s, q)Q(s, q, xmin)
R2 B0

δB
· (76)

This result is valid for RL/L‖ > B0/δB and strong stochastic
fields. The quasilinear result for RL/L‖ > 1 is λ‖ = ∞.

Quasilinear theory predicts that the parallel mean free path
of particles with RL > L‖ is infinity. Consequently, the motion
of high energy particle is scatter-free (ballistic) and, therefore,
such particles cannot be confined to the Galaxy. According to
Eq. (76), however, we find finite scattering within the framework
of SOQLT. Therefore, we expect a finite confinement time of
real particles in the Galaxy. For details we refer to Shalchi et al.
(2009).

9. Summary and conclusion

In the present article we have revisited the problem of pitch-
angle scattering and parallel diffusion of charged particles.
Previous investigations are based on the quasilinear approxima-
tion or on nonlinear theories. In the latter case only numerical
results were available for the pitch-angle Fokker-Planck coeffi-
cient and the parallel mean free path. In Sect. 3 we have explored
for the first time analytically the second order theory of Shalchi
(2005a). By deriving general analytical expressions for the pa-
rameter Dμμ, we have shown that the traditional quasilinear the-
ory is correct for |μ| � δB/B0 and the assumption of isotropic
scattering Dμμ = D(1 − μ2) is valid for strong turbulence. This
result confirms previous articles about diffusive shock accelera-
tion (see, e.g., Kirk & Schneider 1988; Schneider & Kirk 1989;
Kirk & Schneider 1989). It should be noted, however, that for
extremely strong turbulence one expects Bohm-diffusion (see
Shalchi 2009a).

By employing the spectrum of Shalchi & Weinhorst (2009a)
we derived analytical forms for the Fokker-Planck coefficient
Dμμ and the parallel mean free path λ‖. The formulae for the lat-
ter parameter can also be used for strong turbulence and for steep
spectra (s ≥ 2). Quasilinear theory for parallel spatial diffusion
is only valid for weak turbulence (δB � B0) and flat spectra
(s < 2). For these spectra we have also introduced plasma wave
propagation effects by following Schlickeiser (2002). For parti-
cle velocities satisfying v � vc ≡ vAδB/B0 the quasilinear results

obtained for the plasma wave model are correct since nonlinear
effect are supressed. For v � vc ≡ vAδB/B0 nonlinear effects
are stronger and the magnetostatic model should provide a good
approximation.

Analytical forms for the parameters Dμμ and λ‖ are very
useful in the physics of cosmic rays. Therefore, we have pre-
sented some applications of our results (see Sect. 8). We have
shown how energetic particles from the Sun can be described
analytically be computing the anisotropy A. Such results can be
compared with spacecraft observations such as Wind measure-
ments (see, e.g., Dröge & Kartavykh 2009). As a second exam-
ple we computed the parallel mean free path of particles in the
ISM by assuming steep turbulence spectra as suggested by Lazar
et al. (2003) and Spanier & Schlickeiser (2005). These analyti-
cal results complement the numerical work of Shalchi (2007).
Standard quasilinear theory results in λ‖ = ∞ for such spectra.
We have also considered the problem of ultrahigh energy cosmic
rays. These results complement the numerical work of Shalchi
et al. (2009a). We have derived for the first time a formula for the
parallel mean free path of ultrahigh energy cosmic rays within
SOQLT. According to this formula we have λ‖ ∼ R2B0/δB if the
particle Larmor radius exceeds the largest scale of turbulence
(RL > L‖). We expect that our analytical results will lead to fur-
ther interesting and important applications in astrophysics such
as diffusive shock acceleration.
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