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We obtain an analytical expression for the linewidth of the 1s exciton as a function of temperature in transition
metal dichalcogenides. The total linewidth, as a function of temperature, is dominated by three contributions: (i)
the radiative decay (essentially temperature independent), (ii) the phonon-induced intravalley scattering, and (iii)
the phonon-induced intervalley scattering. Our approach uses a variational Ansatz to solve the Wannier equation,
allowing for an analytical treatment of the excitonic problem, including rates of the decay dynamics. Our results
are in good agreement with experimental data already present in the literature and can be used to readily predict
the value of the total linewidth at any temperature in the broad class of excitonic two-dimensional materials.
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I. INTRODUCTION

The optical response of transition metal dichalcogenides
(TMDs) is characterized by strong absorption peaks due to
excitons formed at the K and K′ points of the Brillouin zone
[1,2]. The peaks commonly seen in absorption and photolu-
minescence spectra are associated with the so-called bright
excitons, particularly to the s states (with vanishing angular
momentum) of the A and B series [1,3]. The existence of
two distinct series of resonances comes about because of the
strong spin-orbit coupling which breaks the spin degeneracy
in these systems [4]. The effect of spin-orbit coupling is par-
ticularly noticeable in the valence band, where in the K valley,
the band with positive spin polarization is shifted downward
relative to the band with opposite spin. In the conduction band,
this effect is barely perceptible in MoS2 but plays a significant
role in WS2 and WSe2 [5].

In addition to the optically active exciton states, TMDs
present a plethora of dark excitons [6–8], corresponding to
exciton states which may be formed but cannot be directly
accessed optically. Examples of these are the p states [9], the
spin-opposed excitons [10], and the momentum dark excitons
[11]. The first ones cannot be directly activated with optical
excitation due to angular momentum conservation; however,
they can be accessed in a pump-probe setup where the pump
laser populates the 1s exciton state, and the probe induces
transitions between the 1s and the p states [12]. The spin-
opposed excitons are composed of an electron and a hole
with opposite spins and are not optically accessible since the
electron-light interaction does not produce the required spin
flip. At last, the momentum dark states are composed of an
electron and a hole with equal spin but located in different
momentum points of the Brillouin zone. Due to the small
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momentum carried by photons, these states are not optically
active; however, the momentum mismatch may be overcome,
and they may be accessed due to additional coupling with
phonons [13].

The rich optical properties of TMDs make them some of
the most prominent materials in the area of nanodevices, with
applications ranging from photodetectors to biosensors and
valleytronics [14–18]. The application of TMDs in devices
at finite temperature is limited by the linewidth of the 1s-
excitonic line [19]. Therefore, an understanding of how this
linewidth depends both on temperature and on the dielectric
media surrounding the two-dimensional (2D) material is key
to a complete description of device performance based on this
class of materials. The effect of temperature is mostly dom-
inated by carrier-phonon scattering, and understanding the
details of how this scattering mechanism affects the linewidth
is essential. Even though this process has already been studied
both theoretically and experimentally [7,11], a simple analyt-
ical framework giving insight into the underlying physics is
lacking and is necessary.

In this paper, we derive analytical expressions describ-
ing the linewidth of the lowest-lying excitonic resonance in
TMDs at finite temperature. We account for the contributions
of radiative recombination and exciton-phonon scattering, in-
cluding both intravalley and intervalley processes. To describe
these contributions, we obtain the exciton energies and wave
functions from the solution of the Wannier equation using
a variational Ansatz. The combination of the methods and
concepts in this paper give a unified analytical picture of the
phonon linewidth in TMDs.

II. WANNIER EQUATION

A. Derivation

The starting point of our discussion is the introduction of
the exciton creation operator. This bosonic operator describes

2469-9950/2021/103(23)/235402(10) 235402-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1508-6738
https://orcid.org/0000-0001-7936-6264
https://orcid.org/0000-0002-7928-8005
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.235402&domain=pdf&date_stamp=2021-06-01
https://doi.org/10.1103/PhysRevB.103.235402


HENRIQUES, MORTENSEN, AND PERES PHYSICAL REVIEW B 103, 235402 (2021)

the creation of an exciton with the electron in the point ξe

and the hole in the point ξh of the Brillouin zone, with cen-
ter of mass momentum Q (measured relative to the ξe and
ξh) and quantum numbers ν (containing both the principal
and angular quantum numbers). This operator is composed
of a superposition of electronic operators that annihilate an
electron in the valence band and create one in the conduction
band, weighted with the Fourier transform of the exciton wave
function ψν (k), that is,

b†,ξe,ξh
Q,ν

= 1√
A

∑
k

ψ
ξeξh
ν,k c†,ξe

k+αξe ,ξh Q,ccξh
k−βξe ,ξh Q,v

. (1)

When this operator acts on the excitonic ground state (a full
valence band and an empty conduction band), we find

b†,ξe,ξh
Q,ν |GS〉 = |ξe, ξh, ν, Q〉. (2)

Then we assume that the Hamiltonian (containing kinetic and
potential energy contributions) is diagonal in this operator,
with the eigenvalue Eν,Q = Eg + Eν + h̄2Q2/2M, where Eg is
the band gap (obtained from, for example, GW calculations
accounting for the exchange correction), Eν the exciton bind-
ing energy, and h̄2Q2/2M the kinetic energy of the center of
mass. Afterward, we compute the commutator of the Hamil-
tonian with the exciton operator using its representation in
terms of exciton operators and in terms of electron operators.
Demanding the equality of both results, the Bethe-Salpeter
equation (BSE) follows; its solution yields the binding en-
ergies and wave functions of the excitonic problem. The
interaction potential in the electronic Hamiltonian is treated
within the Rytova-Keldysh (RK) formalism [20–22], which
crucially accounts for the nonlocal screening in the TMD
monolayer. Fourier transforming the BSE (see Appendix A),
we find the Wannier equation [23], a differential equation in
real space reading

− h̄2

2μξeξh

∇2ψν (r) + VRK(r)ψν (r) = Eνψν (r), (3)

where μξeξh is the reduced mass of the electron-hole pair,
with the former and the latter located in the ξe and ξh valley,
respectively. In Eq. (3), VRK(r) is the RK potential and ψν (r)
the exciton wave function in real space. The RK potential
follows from the solution of the Poisson equation for a point
charge in a thin dielectric and reads [20,21]

VRK(r) = − e2

4πε0

π

2r0

[
H0

(κr

r0

)
− Y0

(κr

r0

)]
, (4)

where e is the electron charge; ε0 the permittivity of vacuum;
κ is the mean dielectric constant of the media above and
below the TMD layer; r0 is a material parameter which can
be macroscopically associated with a screening length and is
microscopically related to the polarizability of the monolayer;
and H0 is the Struve function and Y0 the Bessel function of
the second kind, both of order zero. The difference between
momentum bright and momentum dark excitons lies solely
on the value of the reduced mass, which should be computed
with the adequate effective masses of the carriers. To obtain
the location of the exciton states, the structure of the elec-
tronic bands must also be known. In this paper, we used the
band parameters found from ab initio calculations in Ref. [5].

r0
2 (a.u.)

E
2

 (a
.u

.)

5 10 15 20 25 30 35 40
0

2

4

6

8

a

Single exp.
Fit

10-1 100 101
-1.5

-1

-0.5

0
Variational
Exact

r0
2 (a.u.)

FIG. 1. (Top) Comparison between the values of Ẽ obtained
using a variational approach and expanding the wave functions in a
Gaussian basis and numerically diagonalizing the Hamiltonian. (Bot-
tom) values of μa/κ obtained with the single exponential Ansatz,
as well as the fit to χ + b(r̃0)c, which yields Eq. (7). The different
quantities depicted in both panels are given in atomic units (a.u.).

We stress that the goal of our approach is not so much the
quantitative accuracy, but rather the possibility of obtaining
qualitative and physically transparent results using simpler
techniques which can be explored analytically.

B. Variational solution

While the direct solution of the BSE requires a deli-
cate numerical diagonalization, Eq. (3) can be solved with
a variational approach [24], which allows us to develop an
analytical framework and gain insight into the underlying
physics. Different variational Ansätze can be employed to
solve this problem; here, we opt to use the simplest one, a
single evanescent exponential

ψ1s(r) =
√

2

πa2
e−r/a,

like the wave function of the hydrogen atom. The value of a
is determined from the minimization of the energy in Eq. (3).
Following the scaling procedure to a dimensionless represen-
tation proposed in Ref. [25], and working for the moment in
atomic units (a.u.), we introduce the following quantities:

r0μ

κ2
= r̃0,

κ2

μ
E = Ẽ ,

μr

κ
= ρ, (5)

which allow us to conveniently describe the excitonic problem
with a single effective parameter r̃0 = r0μ/κ2 instead of the
three independent ones we currently have. In the top panel
of Fig. 1, we plot the value of Ẽ vs r̃0 obtained using the
variational approach and compare it with the result found
by numerically diagonalizing the Hamiltonian. The depicted
interval of r̃0 covers the relevant region of the parameter space
for the most common TMDs with different dielectric back-
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grounds. The agreement between the variational and the exact
results is clear. The differences between the two solutions,
corresponding to a few millielectronvolts, are not expected to
significantly change the final results. Another possible varia-
tional approach uses the more sophisticated Ansatz [25]

ψ (r) = N (e−r/α + βe−r/γ ), (6)

with N a normalization constant and α, β, and γ the vari-
ational parameters. Although this double exponential Ansatz
yields more accurate results (in fact it produces a near perfect
description of the exact results), we do not consider the in-
creased precision to be sufficient to justify the more involved
analytical treatment.

Now noting that, in the usual TMDs, one finds r0μ =
30–40 atomic units [25,26], and considering κ ∈ [1, 5] (a rea-
sonable range of values for typical experiments), we perform
a power-law fit of a vs r̃0 in the region of interest of the
parameter space. Doing so, we realize that, in International
System of Units (SI) units, a is accurately described by

a

aB
� κ

μ/m0
χ +

√
r0/aB

μ/m0
, (7)

where χ = 0.4 is determined by the fitting process, m0 is the
bare electron mass, and aB is the Bohr radius. The comparison
between Eq. (7) and the values found directly from the vari-
ational procedure is depicted in the bottom panel of Fig. 1.
If the fit had been performed in a region corresponding to
smaller values of r0, and consequently smaller r̃0, the value
of χ would become ever closer to 0.5, just like in the 2D
hydrogen atom, and in agreement with the limiting case

lim
r0→0

VRK(r) = VCoulomb(r).

The fact that, in the relevant region of parameters for TMDs,
the value of χ differs from 0.5 reflects the nonhydrogenic na-
ture of excitons in these 2D systems; the term

√
r0/μ further

enhances this difference.
We emphasize that having an analytical description for a

is a rather useful achievement since we can now obtain an
analytical expression for the binding energies of excitons in
the 1s state. In Appendix B, we study in more detail how the
binding energies found with the variational method compare
with those obtained by numerically solving the Wannier equa-
tion.

C. Exciton energy landscape

Using the single exponential variational Ansatz, we solve
the Wannier equation and obtain the excitonic energy disper-
sion for the lowest-lying exciton in the vicinity of the principle
high-symmetry points of the excitonic Brillouin zone for
MoS2, MoSe2, WS2, and WSe2 on a substrate of SiO2. The
energy spectrum is depicted in Fig. 2 for excitons, where the
electron and hole are located in the K valley (KK exciton),
excitons where the hole is in the K valley, and the electron
either in  or K′ (K and KK′ excitons, respectively). The
values of the binding energies for each exciton are shown
in Appendix B. To obtain these results, we considered the
effective masses and relative band edge energies presented in
Ref. [5], where these quantities were obtained from density
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FIG. 2. Exciton band structure in four different transition metal
dichalcogenides (TMDs). The excitons are labeled by the hole and
electron valley, respectively, e.g., K refers to a momentum dark
exciton with the hole in the K valley and the electron in the 

valley. The energies are measured with respect to the bottom of the
conduction band in the K valley. The effective masses and relative
band edge energies of Ref. [5] were used.

functional theory (DFT) calculations using the Perdew-Burke-
Ernzerhof generalized gradient approximation. The effective
masses used for the  valley were obtained as the square
root of the product of the effective masses along the x and
y directions.

When the electron and hole are located in the K valley, the
lowest-lying bright exciton is composed of carriers belonging
to the spin-down bands (for the four considered TMDs). Since
in TMDs the valley and spin degrees of freedom are coupled,
in the K′ valley, the lowest-lying bright exciton would have
carriers with the opposite spin to the ones in the K valley.
Henceforth, we will consider all the relevant carriers to have
downward pointing spin because interaction with phonons
does not lead to spin flips.

The most important aspect of Fig. 2 is the existence of
momentum forbidden excitonic states below the optically ac-
tive KK exciton in tungsten-based TMDs. Regarding the K

exciton, the main difference between MoX2 and WX2 TMDs
is the position of the conduction band edge near the  valley
since, for the former, the band edge sits ∼200 meV above the
bottom of the conduction band in the K valley, while for the
latter, the separation is inferior to 30 meV. This small energy
separation, combined with the larger effective masses in the 

valley (leading to more tightly bound excitons), is responsible
for the appearance of the K excitons below the bright one
in tungsten-based TMDs. In MoX2, the conduction band edge
at the  point is located too far up, and the K excitons are
formed above the the bright one.

As far as the KK′ exciton is concerned, its position is
mainly determined by the effect of spin-orbit coupling in the
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conduction band near the K and K′ valleys. Since in TMDs the
spin and valley degrees of freedom are coupled, the position of
a band with a given spin polarization in the K valley coincides
with the position of the band with opposite spin in the K′

valley. The spin splitting in the conduction band is rather small
for TMDs with molybdenum, justifying the similar positions
of the KK and KK′ excitons in MoS2 and MoSe2 in Fig. 2.
For WS2 and WSe2, the spin splitting in the conduction band
is larger, leading to an increased difference in the KK and KK′

excitons. Moreover, the spin splittings have opposite signs
depending on the transition metal atom; the sign in WS2 and
WSe2 further shifts the KK′ exciton below the optically bright
one.

Comparing our results with the ones found by Malic et al.
in Ref. [6], where the binding energies were obtained from
the numerical solution of the Wannier equation in momentum
space, a good agreement is seen; this emphasizes the merits of
the variational approach we apply here. Furthermore, we note
that our results are also in line with the ones found from DFT
calculations in Ref. [27].

III. HOMOGENEOUS LINEWIDTH

Now that the equation governing the excitonic problem
was found and a simple variational approach of solving it
was introduced, we can move onto the computation of the
homogeneous linewidth of the 1s exciton in TMDs.

A. Radiative linewidth

Starting with the radiative linewidth [28] and using Fermi’s
golden rule, we write in the dipole approximation

γrad = h̄

τ1s
=2π

∑
q

|〈GS; 1q|eE · r|1s; Q = 0〉|2

× δ(Eg + E1s − h̄ωq), (8)

where h̄ωq is the energy of a photon with momentum q, and
the matrix element describes the radiative recombination of
an exciton in the state 1s such that, in the final state, there
is one extra photon in the light field; Eg is the full band gap
between the edges of the spin-down bands at the K valley (ob-
tained from, e.g., GW calculations [5]); and E1s is the exciton
binding energy (Eg + E1s is the energy of the initial state).
Quantizing E · r in terms of photon and exciton operators and
carrying out the calculation (see Appendix C), one finds

γrad = 8π

κ
α(h̄vF )2 Eg + E1s(

E τ,sz
g

)2 ψ2
1s(r = 0), (9)

where α ∼ 1/137 is the fine-structure constant, vF is the
Fermi velocity (which may be obtained from first-principles
calculations of the electronic band structure), τ = ±1 and
sz = ±1 are the valley (K/K′) and spin (up/down) indices,
respectively, and E τ,sz

g is the noninteracting band gap, which is
spin and valley dependent and is obtained from first-principles
calculations [5,29]. Note that Eg and E τ,sz

g are not identical
since the former contains exchange corrections which widen
the band gap. The dependence of ψ2

1s(r = 0) on κ , μ, and r0

follows from Eq. (7).

Analyzing Eq. (9), we expect the radiative linewidth to in-
crease as the band gap of the material widens and to decrease
approximately according to a power law as the surrounding
dielectric screening increases. Although our expression is
independent of the temperature, the radiative linewidth may
vary with it as a result of modifications in the band structure.
This, however, is beyond the scope of this paper. For the most
common TMDs, i.e., MoS2, MoSe2, WS2, and WSe2, we find
γrad ∼ 5 meV, in agreement with other independent results
[28,30]. Furthermore, we note that, although the expression
we obtained for the radiative linewidth refers to the 1s state, it
can be easily generalized to other states by replacing E1s and
ψ1s with the appropriate binding energies and wave functions
(this easily leads to the result that states whose wave function
vanishes at r = 0, such as the p states, are optically dark).

B. Phonon-induced linewidth

To describe the linewidth originating from exciton-phonon
coupling, one must consider the mechanisms responsible for
phonon-driven carrier scattering. In the present discussion, we
will restrict ourselves to the deformation potential framework
[31–34], which is expected to give the main contribution for
exciton-phonon scattering in TMDs. Within this framework,
the carrier-phonon coupling element (gq,λ) is evaluated at
the bottom/top of the conduction/valence band and is thus
independent of the carrier momentum [31,32]; its expression
reads

gq,λ =
√

h̄

2ρAωq,λ

Mq,λ, (10)

where ρ is the mass density of the monolayer, A its area,
ωq,λ is the energy of a phonon with momentum q belonging
to the mode λ, and Mq,λ is the coupling matrix element. To
describe intravalley scattering due to acoustic phonons, we
assume a linear dispersion relation and Mq,λ = �λq, where
the deformation potential �λ is obtained from first-principles
calculations. To describe intravalley scattering due to optical
phonons and all intervalley scattering processes, we consider
the dispersion relations of the involved phonons to be constant
and the carrier-phonon matrix element to be given by the
zero-order deformation potential Mq,λ = D0

λ. The values of
the deformation potential are obtained from DFT calculations,
like the ones of Jin et al. [34]. These values correspond to ef-
fective parameters capable of accurately describing transport
properties. The acoustic deformation potentials contain the
contributions of longitudinal acoustic and transverse acoustic
phonons, while the optical ones are composed of the longitu-
dinal optical, transverse optical, and A1 branches.

The Hamiltonian describing the exciton-phonon interac-
tion can be obtained from the usual carrier-phonon Hamilto-
nian by quantizing it in terms of exciton operators, and it reads
[35]

Hint =
∑
q,λ

∑
Qνμ

∑
j∈BZ

(a†
− j,−q,λ + a j,q,λ)

× [
g(e),ξh,(ξe+ j),μ,ν;λ

q bξh,(ξe+ j)†
Q+qν

bξh,ξe
Qμ

− g(h),(ξh− j),ξe,μ,ν;λ
q b(ξh+ j),ξe†

Q+qν
bξh,ξe

Qμ

]
. (11)
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The first part of this Hamiltonian describes events where the
exciton is scattered via scattering of the electron, while the
second characterizes the processes with scattering of holes.
In a more detailed way, the first term describes the scattering
of the state |ξe, ξh, μ, Q〉 to the state |ξe + j, ξh, ν, Q + q〉
due to the absorption/emission of a phonon of the mode
λ with momentum −q/q measured relative to the point
− j/ j of the Brillouin zone. A similar interpretation can be
applied to the second term. The two g(...)

q characterize the
exciton-phonon coupling strength, and their relation with the
individual carrier-phonon coupling is given in Eq. (13). Note
that this Hamiltonian describes both intravalley (setting j =
�) and intervalley ( j 
= �) scattering events.

1. Intravalley contribution

Let us now focus on the particular case of intravalley scat-
tering. Considering only the term with j = � in Hint, we write

H intra
int =

∑
q,λ

∑
Qνμ

gintra;λ
q (a†

−q,λ + aq,λ)b†
Q+qνbQμ, (12)

where

gintra;λ
q = g(e),μ,ν;λ

q − g(h),μ,ν;λ
q

= 1

A
g(e)

q,λ

∑
k

ψ∗
μ(k + βq)ψν (k)

− 1

A
g(h)

q,λ

∑
k

ψ∗
μ(k)ψν (k + αq), (13)

with α = me/(me + mh) and β = mh/(me + mh). Note that,
for simplicity, we omitted the indexes ξe and ξh since we
consider that both carriers are in the K valley before and after
the interaction takes place (the momenta of both carriers are
measured relative to this point, while the momentum of the
phonons is measured relative to the center of the respective
Brillouin zone).

To compute the intravalley scattering contribution to the
linewidth, we once again turn to Fermi’s golden rule, this time
with the interaction Hamiltonian of Eq. (12). Noting that, by
definition, the transferred momentum in intravalley scattering
processes is small, we take the limit of vanishing q in Eq. (13).
Doing so and using the orthogonality of the exciton wave
functions, we obtain

gintra;λ
q ≈ [

g(e)
q,λ − g(h)

q,λ

]
δμ,ν . (14)

This is in line with the idea that intravalley scattering should
not induce transition between exciton states (e.g., 1s → 2s)
since the energy required to originate such transitions far
exceeds the energy phonons carry. We further note that, con-
sidering the exciton to be initially in the 1s state with Q =
0, only processes involving scattering through absorption of
phonons are possible due to conservation of energy.

Applying Fermi’s golden rule, we find

γintra =2π
∑
λ,q

∣∣g(e)
q,λ − g(h)

q,λ

∣∣2
n(ωq,λ)δ

(
h̄2q2

2M
− h̄ωq,λ

)
,

(15)
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FIG. 3. Intravalley scattering induced linewidth for four different
transition metal dichalcogenides (TMDs). The solid lines represent
the contribution from acoustic phonons, and the dashed lines repre-
sent the combined contribution of acoustic and optical phonons. The
parameters of Ref. [34] were used.

which gives the contributions

γintra, ac ≈ |�(e) − �(h)|2
ρv2

ac

M

h̄2 kBT, (16a)

and

γintra, op = M
|D0,(e) − D0,(h)|2

2ρ h̄ωop
n(h̄ωop), (16b)

for the intravalley process due both to acoustic (ac) and op-
tical (op) phonons. Here, �(e/h) and D0,(e/h) are the first-order
acoustic deformation potential and the zero-order optical
deformation potential for electron/hole-phonon intravalley
scattering, n(h̄ω) is the Bose-Einstein distribution, vac is the
speed of sound in the TMD, h̄ωop is the optical phonon energy,
M = me + mh, ρ is the mass density of the monolayer [36],
and kB is the Boltzmann’s constant. As expected, we observe
that the intravalley linewidth from acoustic phonons increases
approximately linearly with temperature [33,34]. The contri-
bution from optical phonons presents the same temperature
dependence as the Bose-Einstein distribution function. From
the DFT calculations of Ref. [34], one finds that the values
of the deformation potential make scattering with acoustic
phonons the dominant mechanism of the two, and thus, it
is expected that the total intravalley scattering linewidth in-
creases linearly with temperature with a small exponential
correction. Also, we note that both contributions are insen-
sitive to dielectric screening from the environment, which is a
consequence of the vanishing transferred momentum approx-
imation.

In Fig. 3, we depict the intravalley linewidth as a function
of temperature for MoS2, MoSe2, WS2, and WSe2. We ob-
serve that this linewidth takes higher values for molybdenum
(Mo)-based TMDs than for tungsten (W)-based ones because
of the higher effective masses and deformation potentials of
the former. Moreover, TMDs with the selenium (Se) are asso-
ciated with larger broadenings than the ones with sulfur (S);
this is due to the higher values of ρvac and h̄ωop suppressing
γintra, ac and γintra, op, respectively, in TMDs with sulfur.
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2. Intervalley contribution

Now let us consider the contribution from intervalley scat-
tering to the temperature dependence of the linewidth. As
before, we assume that the exciton remains in the 1s state
before and after the scattering event. Moreover, for simplicity,
we will consider that only the electron is scattered, going
from the K valley to other points of the Brillouin zone (
and K′ valleys), while the hole remains in the K valley. This
approximation is not expected to have a significant impact
on the final result since the latter is a less efficient scattering
process due to the smaller values of the deformation potentials
[34].

The efficiency of intervalley scattering is directly related to
the electronic band structure and the relative position of the
exciton energy levels in different points of the Brillouin zone
(cf., Fig. 2). In molybdenum-based TMDs, where the lowest-
lying exciton state is located at the K valley, we do not expect
intervalley processes to play a significant role since the en-
ergetically more favorable scattering event K → K′ is rather
inefficient. However, the situation is significantly different in
tungsten-based TMDs, where the conduction band presents a
satellite minimum halfway along the path from the vertices of
the Brillouin zone to its center, the  valley. In this region,
the effective masses are larger than in the K valley, leading
to more tightly bound excitons. As a consequence, in these
TMDs, a momentum dark state at the  valley appears below
the optically active exciton. Since scattering events of the type
K →  are energetically favorable and the required momen-
tum transfer is half of that required in K → K′ processes,
it is expected that intervalley scattering offers a significant
contribution to the total linewidth in tungsten-based TMDs.

To compute the intervalley linewidth, we return to Fermi’s
golden rule. Considering the aforementioned assumptions
regarding the relevant scattering possibilities, we write the
interaction Hamiltonian as

H inter
int =

∑
q,λ

∑
Qνμ

∑
j∈BZ

(a†
− j,−q,λ + a j,q,λ)

× g(e),ξh,(ξe+ j),μ,ν;λ
q bξh,(ξe+ j)†

Q+qν
bξh,ξe

Qμ
. (17)

Just as in the case of intravalley scattering events, the exciton-
phonon coupling is given by the product of the carrier-phonon
coupling with a sum in momentum space of the wave func-
tions of the initial and final exciton states, which are now
located in different points of the Brillouin zone due to the
nature of intervalley scattering. Explicitly,

g(e),ξh,(ξe+ j),μ,ν;λ
q = 1

A

∑
k

g(e)
q,λψ

∗
ξh,(ξe+ j),μ

× [
k + βξh,(ξe+ j)q

]
ψξh,ξe,ν (k), (18)

with βξh,(ξe+ j) = mξh

h /mξe+ j
e + mξh

h .
Since this time around the exciton wave functions refer

to different points of the Brillouin zone, this sum cannot
be simply approximated to a Kronecker δ and needs to be
explicitly computed. Because we have mapped the problem
of both bright and dark excitons to the Wannier equation,
which can be solved with a simple variational Ansatz, the sum
in momentum space can still be computed analytically (see
Appendix D). Thus, the nonradiative decay rate associated

with the intervalley scattering of an electron from the K to the
ξ f valley, with the hole remaining in the K valley (scattering
of a KK exciton to a Kξ f one), reads

γinter,Kξ f ≈
∑
λ,±

w

∣∣D0,λ,(e)
K→ξ f

∣∣2

ρ h̄ωj,λ

8Mξ f a
2
Ka2

ξ f
(aK + aξ f )2[(

aK + aξ f

)2 + β2
ξ f

a2
Ka2

ξ f
j2

]3

×
[

1

2
± 1

2
+ n(h̄ωj,λ)

]
�

( − �Kξ f ∓ h̄ωj,λ
)
, (19)

where the sums are over the phonon modes λ (acoustic and
optical) and the emission/absorption (+/−) of phonons, and
w is the degeneracy factor of the K → ξ f scattering event; j
is the momentum given by K − ξ f ; Mξ f = me,ξ f + mh,K is the
translational mass of the Kξ f exciton; and βξ f = mh,K/Mξ f .
The Heaviside function �(x) sets the threshold for ener-
getically allowed scattering processes, with �Kξ f = �CB

Kξ f
+

�
binding
Kξ f

the energy difference of the conduction band edge at

the K and ξ f valleys (�CB
Kξ f

) plus the difference of the binding

energy of the KK and Kξ f excitons (�binding
Kξ f

), and aξ f (aK ) is
the variational parameter associated with the wave function
of the Kξ f (KK) exciton. The dependence of the variational
parameters with μξe,ξh , κ , and r0 is given by Eq. (7).

The appearance of the transferred momentum j in the
denominator of Eq. (19) contributes to the suppression of
intervalley processes such as K → K′ when compared with
K → . This is further enhanced by the deformation po-
tential D0,λ,(e)

K→ξ f
, which is approximately seven times larger

in K →  processes than in K → K′. Considering that, in
Eq. (19), γinter is proportional to the square of the deforma-
tion potential, it is clear that the contribution from K → 

is by far the dominant one. Moreover, transitions involving
acoustic phonons have larger deformation potentials and thus
are more relevant than the ones assisted by optical phonons.
If �Kξ f < 0, which is more likely to occur in tungsten-based
TMDs due to the structure of its conduction band (cf., Fig. 2),
then intervalley scattering is highly favorable and can occur
via absorption or emission of phonons. On the other hand, if
�Kξ f > 0, then only absorption scattering channels are avail-
able, and even those may be suppressed depending on how
�Kξ f compares with the phonon energies (which range up to
∼50 meV). Contrary to intravalley scattering, the contribution
from intervalley processes depends on the dielectric screen-
ing from the environment, owing to its dependence on the
variational parameter a. Analyzing Eq. (19) combined with
Eq. (7), we predict a decrease of linewidth with increasing
dielectric screening roughly following a power law of the
sixth order. Furthermore, as the dielectric screening increases,
the binding energies decrease, and the K excitons get
closer to the optically bright one, leading to less energetically
favorable intervalley processes, which results in the suppres-
sion of scattering channels and consequent decrease of the
linewidth. This effect is depicted in Fig. 4, where we observe
a sudden decrease in the nonradiative linewidth due to the
suppression of the emission scattering channels. For higher
values of the substrate dielectric constant, even the absorption
scattering channels could be suppressed; however, for such
values of screening, the intervalley linewidth becomes almost
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FIG. 4. (Top) Nonradiative linewidth as a function of the dielec-
tric screening at T = 300 K. (Bottom) Different contributions to
the total linewidth of WS2 on quartz as a function of temperature.
Contributions labeled by KK refer to intravalley scattering, while
the others refer to intervalley contributions. The experimental points
were taken from Ref. [11]. The parameters of Refs. [5,34] were
used. For the intervalley contribution, we considered mK

e = 0.27m0,
mK

h = 0.36m0, mK′
e = 0.36m0, m

e = 0.36m0, r0 = 40 Å, h̄ωac =
16 meV, h̄ωop = 44 meV, D(e),K→

0,ac = 7.4 × 108 eV/cm, D(e),K→
0,op =

0.9 × 108 eV/cm, D(e),K→K′
0,ac = 1.2 × 108 eV/cm, and D(e),K→K′

0,op =
1.1 × 108 eV/cm. For the intravalley part, we used ρ = 4.32 ×
10−7 g/cm2, vac = 4.3 × 105 cm/s, �(e) = 3.2 eV, �(h) = −1.7 eV,
D(e)

0 = 3.1 × 108 eV/cm, and D(h)
0 = −2.3 × 108. For the radiative

contribution, we used h̄vF = 3.34 eVÅ, Eg = 2.88 eV, and E τ,sz
g =

1.61 eV.

insignificant even before the suppression of the channel. Band
gap engineering and changes in the effective masses may also
be used to enhance (or suppress) different scattering channels.

IV. RESULTS: APPLICATION TO WS2

Now that all the necessary analytical expressions were
derived, we study the specific case of the variation of the 1s
exciton linewidth in WS2 with temperature and compare our
theoretical prediction with the experimental data of Ref. [11];
in Fig. 4, a good agreement between theory and experiment
is seen. We note that the total linewidth is composed of a
constant radiative term of ∼5 meV combined with the almost
linear contribution from intravalley scattering (cf., Fig. 3) and
an exponentially increasing intervalley term. These contri-
butions amount to a total linewidth at room temperature of
∼25 meV. Moreover, the intervalley contributions stem almost
entirely from K →  events as a consequence of the low effi-
ciency of the K → K′ scattering processes (something similar
would happen with the K → � hole scattering contribution).
In the low temperature region, we observe that, contrary to the
intravalley linewidth, the intervalley term is finite due to the

efficient process of scattering with phonon emission. As the
temperature increases, so do the intravalley and intervalley
contributions, presenting similar magnitudes at room tem-
perature. A similar calculation for WSe2 yields an identical
result, with a slightly larger linewidth, as a consequence of the
more favorable intravalley scattering processes (cf., Fig. 3).
For MoS2 and MoSe2, where intervalley processes are less
efficient, the total linewidth is basically given by the radiative
and intravalley contributions.

V. FINAL REMARKS

In summary, solving the Wannier equation with a vari-
ational Ansatz, we obtained the binding energies and wave
functions of both bright and momentum dark excitons. Then
employing Fermi’s golden rule, we derived analytical ex-
pressions describing the radiative, intravalley, and intervalley
contributions to the total linewidth of the lowest-lying exciton
resonance in different TMDs at finite temperature. Our theo-
retical prediction is in good agreement with experimental data.
The derived expressions combined with parameters computed
from DFT calculations allow for easily accessible estimates of
the different contributions for the linewidth at any temperature
value and give insight on how these quantities depend on the
material and environment parameters.
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APPENDIX A: DETAILS ON THE WANNIER EQUATION

In this Appendix, we outline the necessary steps to obtain
the Wannier equation in its differential form as presented in
the main text.

To obtain the Wannier equation, we start by defining the
exciton creation operator using electronic operators:

b†,ξe,ξh
Q,ν

= 1√
A

∑
k

ψ
ξeξh
ν,k c†,ξe

k+αξe ,ξh Q,ccξh
k−βξe ,ξh Q,v

, (A1)

where A is the area of the monolayer; ψ
ξe,ξh
ν,k is the Fourier

transform of an exciton with quantum numbers denoted by
ν, with the electron located in the ξe point of the Brillouin
zone and the hole in the ξh point; and the relative momentum
k is defined with respect to the ξe and ξh points. The opera-
tor c†,ξe

k+αξe ,ξh Q,c creates an electron in the conduction band in
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the vicinity of point ξe of the Brillouin zone, with momen-
tum k + αξe,ξh Q measured relative to ξe (a similar definition
applies to cξh

k−βξe ,ξh Q,v
). Also, αξe,ξh = mξe

e /(mξe
e + mξh

h ), and

βξe,ξh = mξe

h /(mξe
e + mξh

h ). Hence, b†,ξe,ξh
Q,ν corresponds to the

creation of an exciton with quantum numbers ν and center of
mass momentum Q measured relative to the high-symmetry
points ξe and ξh. The total momentum of the exciton reads
Qtotal = ξe − ξh + Q. When this operator acts on the excitonic
ground state (a full valence band and an empty conduction
band), we find

b†,ξe,ξh
Q,ν

|GS〉 = |ξe, ξh, ν, Q〉. (A2)

The energy of such a state reads

E ξe,ξh
Q,ν

= E ξe,ξh
g + E ξ e,ξh

ν + h̄2Q2

2Mξe,ξh

, (A3)

with E ξe,ξh
g the band gap between the ξe and ξh points, E ξ e,ξh

ν

the exciton binding energy, and h̄2Q2/2Mξe,ξh its center of
mass kinetic energy. This last term originates the parabolic
dispersion near the high-symmetry point ξe − ξh in the exciton
Brillouin zone. Note that indexes such as ξe refer to points
in the Brillouin zone and as a consequence can be seen as
momenta measured relative to the � point.

The Hamiltonian describing electron-electron interactions
is composed of a kinetic and a potential term and can be
quantized in terms of electron operators as

Ĥ0 =
∑
k,λ,ξ

E ξ

k,λc†,ξ

k,λcξ

k,λ. (A4)

The potential term reads

Ĥint = 1

2A

∑
{λ,ξ}

∑
q,k3,k4

V (q)F ξ1,ξ2,ξ3,ξ4
λ1,λ2,λ3,λ4

(k3, k4, q)

× c†,ξ1
k4+qλ1

c†,ξ2
k3−qλ2

cξ3
k3λ3

cξ4
k4λ4

, (A5)

where V (q) is the Fourier transform of the interaction poten-
tial, and

F ξ1,ξ2,ξ3,ξ4
λ1,λ2,λ3,λ4

(k3, k4, q) = u†,ξ1
k4+qλ1

u†,ξ2
k3−qλ2

uξ3
k3λ3

uξ4
k4λ4

, (A6)

with uξ

k the band spinor of the ξ point evaluated at k. Note that
the sum over the transferred momentum in Eq. (A5) excludes
the term q = 0 since this term cancels with the background
contribution in the jellium model.

To obtain the equation that the defines the wave functions
ψ

ξeξh
ν,k and the associated binding energies, we state that the

total Hamiltonian is diagonal in the exciton operator repre-
sentation, that is,

Ĥ =
∑

Q,ν,ξe,ξh

E ξe,ξh
Q,ν

b†,ξe,ξh
Q,ν

bξe,ξh
Q,ν

. (A7)

This is in principle always possible, given that the exciton
wave function is correctly chosen. Then we compute the
commutator (Ĥ, b†,ξe,ξh

Q,ν
) using the exciton and the electron

representation of the Hamiltonian and demand both results to
be equal. Although we may keep the center of mass momen-
tum Q finite throughout the calculation, in the end, we set it
equal to zero since our goal is to compute the exciton binding
energy, and as a result, we are interested in the bottom of the

parabolic energy dispersion relation. In the end, we arrive at
an integral equation in momentum space, which reads

E ξe,ξh
0,ν ψ

ξeξh
ν,k =ψ

ξeξh
ν,k

(
E ξe

k,c − E ξh
k,v

)
− 1

A

∑
p

ψξeξh
ν,p V (k − p)F ξe,ξh,ξh,ξe

c,v,v,c (k, p, k − p).

(A8)

The term on the left-hand side of the equation corresponds to
the product of the exciton energy (E ξe,ξh

0,ν
) and its wave function

in momentum space (ψξeξh
ν,k ). On the right-hand side, the first

term gives the energy difference of the electron and hole in
the noninteracting limit, and the second term describes the
electron-hole attractive interaction. Now two approximations
are introduced: (i) the term (E ξe

k,c − E ξh
k,v

) is expanded to the
second order in k, yielding E ξe,ξh

g + h̄2k2/2μξeξh , with μ the
electron-hole reduced mass (note that the term E ξe,ξh

g does not
contribute to the binding energy); and (ii) the form factor
F ξe,ξh,ξh,ξe

c,v,v,c (k, p, k − p) is approximated to one, which is a
good approximation in the K/K′ valleys due to the large en-
ergy gap and identically true in the  valley). With these two
approximations, this integral equation in momentum space
can be transformed into a differential one by means of a
Fourier transform. Doing so, we arrive at the Wannier equa-
tion given in the main text:

− h̄2

2μξeξh

∇2ψξeξh
ν (r) + VRK(r)ψξeξh

ν (r) = E ξeξh
ν ψξeξh

ν (r).

(A9)

APPENDIX B: TESTING THE VARIATIONAL APPROACH

In the main text, we introduced the variational Ansatz

ψ1s(r) =
√

2

πa2
e−r/a,

to describe the wave function of the excitonic 1s state. We
also found that the variational parameter can be accurately
described by the relation

a

aB
� κ

μ/m0
χ +

√
r0/aB

μ/m0
. (B1)

The binding energy can then be obtained from

E1s =
∫

ψ∗
1s(r)Hψ1s(r)dr, (B2)

where H is the Hamiltonian containing the kinetic energy and
the RK potential. Analytically, this reads

E1s = h̄2

2μa2

+ αh̄c

r0

[
1 − x

1 + x2
− ArcCsch(x) + ArcSinh(x)

(1 + x2)3/2

]
, (B3)

with x = aκ/(2r0). In Table I, we present the binding energies
for different excitons obtained using Eq. (B3) and by numer-
ically solving the Wannier equation. An excellent agreement
between the two approaches is seen when the two sets of data
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TABLE I. Binding energies (in meV) for the excitons depicted
in Fig. 2, obtained with the variational Ansatz and by numerically
solving the Wannier equation. The effective masses of Ref. [3] were
used.

KK KK′ K

Var. Num. Var. Num. Var. Num.

MoS2 −354 −361 −359 −366 −394 −401
MoSe2 −318 −325 −326 −333 −340 −347
WS2 −317 −324 −336 −343 −368 −375
WSe2 −289 −295 −307 −314 −325 −331

are compared, with a relative difference of ∼2%. The quality
of these results validates the use of the variational approach.

APPENDIX C: DETAILS ON THE RADIATIVE LINEWIDTH

Using Fermi’s golden rule, we define the radiative
linewidth of the exciton in the state ν as

γrad = h̄

τν

=2π
∑

q

|〈GS; 1q|eE · r|ν; Q = 0〉|2

× δ(Eg + Eν − h̄ωq). (C1)

To compute the matrix element, we start by writing the posi-
tion operator r in the electronic basis as

r =
∑

k

〈uk,c|i∇k|uk,v〉c†
k,cck,v + H.c.

= i
∑

k

ξkcvc†
k,cck,v + H.c., (C2)

where ∇k is the gradient operator in momentum space; ck,v

/c†
k,c is the operator that annihilates/creates an electron with

momentum k in the valence/conduction band; |uk,v/c〉 is the
periodic part of the Bloch function for the valence/conduction
band and can be obtained as the eigenvector of the effective
Hamiltonian (including spin-orbit coupling) in the vicinity of
the K valley; and ξkcv = 〈uk,c|∇k|uk,v〉 is termed the Berry
connection. The electric field is quantized in the usual way
and reads

E ≈ i
∑
q,λ

√
h̄ωq

2V ε0
[eλaq,λ(t ) − (eλ)∗a†

q,λ(t )], (C3)

where the sum over λ corresponds to a sum over the polariza-
tion of light, eλ is a polarization vector, V is the volume of the
system, ε0 is the permittivity of vacuum, and aq,λ/a†

q,λ is the
annihilation/creation operator of a photon with momentum
q with polarization λ. Computing the matrix element that
appears in Eq. (C1), we obtain

1

τν

= 4π

h̄
α(Eg + Eν )

∣∣∣∣ 1

A

∑
λ,k

ψν (k)ξ∗
kcv · (eλ)∗

∣∣∣∣
2

, (C4)

where α ∼ 1/137 is the fine structure constant. To compute
the Berry connection, we approximate |uk,v/c〉 by its form
near the top/bottom of the valence/conduction band, that is,

we perform a k · p expansion around the respective high-
symmetry point of the Brillouin zone. In the end, we find

1

τν

= 8π

h̄
α(Eg + Eν )

(
h̄vF

E τ,sz
g

)2

ψ2
ν (r = 0). (C5)

For a TMD in a dielectric medium with dielectric constant κ ,
we obtain

h̄

τν

= γrad = 8π

κ
α(Eg + Eν )

(
h̄vF

E τ,sz
g

)2

ψ2
ν (r = 0). (C6)

This expression is the generalization of the result given in the
main text since it is valid for an arbitrary state ν.

APPENDIX D: DETAILS ON THE INTERVALLEY
LINEWIDTH

For intervalley scattering, we consider the initial exciton
state to have both electron and hole in the K valley and van-
ishing center of mass momentum (relative to this valley); its
energy reads EKK

g + EKK
1s . The final exciton state corresponds

to an exciton where the hole is in the K valley and the elec-
tron in the vicinity of K + j (which we consider to be either
the K′ or  valleys); its energy reads EK(K+ j)

g + EK(K+ j)
1s +

h̄2q2/2MK(K+ j).
Using Fermi’s golden rule, one finds

γinter =2π
∑
λ,±

∑
q, j 
=�

w j

∣∣gK,(K+ j),1s,1s;λ
q

∣∣2

×
[

1

2
± 1

2
+ n(ω j,q,λ)

]

× δ

[
h̄2q2

2MK(K+ j)
+ �K j ± h̄ω j,q,λ

]
, (D1)

where w j is the degeneracy factor of the K → K + j scat-
tering event, and �K j = EK(K+ j)

g − EKK
g + EK(K+ j)

1s − EKK
1s .

Since the hole remains in the K valley. this is the same as
�K j = �CB

K j + �
binding
K j , that is, the energy difference between

the bottom of the conduction band in the two valleys plus the
difference in the binding energies. The coupling strength reads

gK,(K+ j),1s,1s;λ
q = 1

A

∑
k

g(e),λ
q ψ∗

K,(K+ j),1s

× [k + βK,(K+ j)q]ψK,K,1s(k), (D2)

where contrarily to the intravalley case, the valleys where the
electron and hole sit must be explicitly stated. We note that
the value of g(e),λ

q is not the same as in the intravalley case and
should be chosen according to the scattering event in question
[e.g., the scattering K → K′ has a different value for g(e),λ

q than
the one used to describe the K → � event]. This coupling
element is associated with the process where a phonon from
the vicinity of the j point (e.g., K) of the phonon Brillouin
zone is absorbed, and as a consequence, the electron leaves the
K valley to the region near the K+ j valley (e.g., K+K = �);
the transferred momentum is j + q. Introducing the Fourier

235402-9



HENRIQUES, MORTENSEN, AND PERES PHYSICAL REVIEW B 103, 235402 (2021)

representation of the wave functions, we find

gK,(K+ j),1s,1s;λ
q =g(e),λ

q

∫
ψ∗

K,(K+ j),1s(r)ψK,K,1s

× (r) exp [iβK,(K+ j)r · ( j + q)]dr. (D3)

The exciton wave functions can be described with the single
exponential variational Ansatz given in the main text. Contrary
to the intravalley case, the complex exponential cannot be
approximated to one due to the large transferred momen-
tum. However, considering | j| � |q| and using the variational

Ansatz for the 1s state to describe the wave functions, we can
approximate this by

gK,(K+ j),1s,1s;λ
q = g(e),λ

q
4a1a2(a1 + a2)

[(a1 + a2)2 + (a1a2β2| j|)2]3/2
, (D4)

where to simplify the notation, we introduced the indexes
1 and 2, which correspond to the valley information of the
initial and final states, respectively; that is, 1 ≡ {K, K} and
2 ≡ {K, K + j}. Inserting this result into γinter and recalling
that, for intervalley processes, g(e)

q is described by a zeroth-
order deformation potential, one recovers the result given in
the main text.
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