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Abstract . The motion of an artificial satellite in the Earth's gravitational field is 
discussed in the post-Newtonian framework including the effect of weak gravitation 
waves using the perturbation technique of the canonical Lie-transformations. Two 
successive canonical transformations are used to derive analytical expressions for 
the short-period, long-period and secular perturbations of orbital elements. The 
solution is expressed in terms of the Delaunay variables. 

1. Introduct ion 

All methods developed to detect gravitational waves depend more or less 
on the fact tha t maximum variation on the separation of two particles, 
produced by a gravitational wave propagating along the Z-axis, occurs if 
the particles are located in the XY plane. For a plane wave travelling in 
the Z-direction the only non-vanishing components are hn = — h22 and 
hn = ^21 s o tha t the metric describing the wave becomes 

ds2 = c2 dt2 - dz2 - (1 - / in) dx2 - (1 + hn) dy2 + 2 h12 dx dy, (1) 

and the separation 

dl2 = dz2 + (1 - hn) dx2 + (1 + hn) dy2 + 2 hu dx dy. (2) 

The plane wave can be written as the sum of two components 

hn = htcos(ngt + ai), (3) 

h12 = hxcos(ngt + a2), (4) 
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where ng is the frequency of the wave, OL\ and a2 are the phase differences, 
ht and hx are the amplitudes of the wave in the two orthogonal directions 
in the transverse plane. 

To find acceleration components produced by the wave on a bound 
system of two bodies (Earth-Satellite) we assume tha t the characteristic 
dimension of the system is small compared to the length of the wave, and 
the velocities of the system are much smaller than the speed of light. The 
radial accelerations (tidal forces) are described by Riemann tensor via the 
equation of geodesic deviation (Straumann, 1984) 

di* ~ 2 dt2 U ' {b) 

where n is the separation vector between neighboring geodesies. In terms 
of x, y, z coordinates, the equation (5) yields 

d2x _ 1 d2hn 1 d2h12 

dt2 ~ 2 dt2 X+2 8t2 y ' 
d2y 1 d2h12 1 d2hn 

ut.
 x - o - * 7 2 - y > (6) 

= 0. 

dt2 2 dt2 2 dt2 

dt2 

In the present work, we are using the canonical Lie series methods (Hori, 
1966; Deprit, 1969) to define and evaluate the amount of the mixed per
turbations produced by the gravitational waves and the oblateness of the 
Earth. The series, in canonical Delaunay variables, are expanded up to the 
fourth order of the oblateness parameter J2. 

2. T h e Hami l ton ion 

From the components of the acceleration vector at a point with coordinantes 
x, y, z, which is given in (6), we can construct the Hamiltonian of the 
gravitational waves as follows: 

H\v = 2 ^ i (V2 ~ x2) ~h2xy, (7) 

where h\ = \n ^ ^ = /?cos(ng t + a i ) , h2 = \n ^ P = 7cos(na t + a2), 

fj = — i fi ht n2, 7 = — I /j, hx n2, fi is the reduced mass of the system, and 

/3 and 7 coefficients are assumed to be of order Jf . 

We can express H\y in terms of the Delaunay variables: 

l\ = / (mean anomaly), L\ — L = y/Jia, l2 = g = w (argument of perigee) 

L2 = G = y/fJia(l - e2) , Z3 = h = Q (longitude of the node), L3 = H = 
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G cosi, and expand the functions of the true anomaly in terms of the mean 
anomaly Hansen's coefficients (Haighara, 1970) so tha t all powers of the 
eccentricity can be retained. It is clear, tha t the Hamiltonian Hw depends 
explicitely on the time through the term ngt. To remove the time from 
the Hamiltonian we set ngt = I4, and augment the Delaunay variables by 
the pair (I4, L4), where £4 is the conjugate of I4 which will be found from 
equation L4 = — ^ l t , using the unperturbed part of Hw- Finally, the 
Hamiltonian becomes 

Hw = HQ + e Hi, (8) 

where Ho = - j f ^ + ng L4, e is a small parameter assuming that its order 

is of 0 ( J | ) i an<i 
00 

Hi = L\ J^ {ac
Ncos(Nh+l4) + as

Nsin{Nli + l4)}, (9) 
N=-oo 

where ac
N and as

N are coefficients depending on Delaunay variables (I2, 
I3, L2, L3) and the dimensionless amplitudes of the wave (hxh^1). Since 
the parameters of the wave's potential are much smaller than any of the 
harmonics of the Ear th ' s potential, we can add the solution obtained from 
the wave's Hamiltonian, linearly to the results of any artificial satellite 
theory to find the combined effects of the oblateness of the Earth and of 
the gravitational waves. Therefore, the Hamiltonian which describes the 
relative motion of an artificial satellite moving in the Ear th ' s gravitational 
field and the external wave can be expressed as 

H = Hg + Hw, (10) 

where Hg represents the Hamiltonian of an artificial satellite in the Ear th ' s 
gravitational field 

Hg = vP-L, (11) 

L is the Lagrangian of a satellite moving about a central body, in the 
Einstein form of the post Newtonian gravitational field 

I _ ^ _ v w + ^ { £ - i y S - § . » v f f } , (12) 

v is the velocity of the satellite, c\ is the speed of light, P is the canonical 
momentum, and VN is the gravitational potential. 

We truncate the gravitational potential beyond the fourth harmonic 
and neglect all deviations from axial symmetry. Therefore, we write the 
Hamiltonian Hg in the following form: 

Hg = # o + X ! ^ [ f f " ' 
n=l 
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where e is the small parameter of the expansion which represents the second 
Zonal harmonic J2 of the Ear th 's potential, and 

Ho = - £ 2 (13) 

ffi = j? 0 3 {0o + 0i + cos2(f + g)} (14) 

H2 = H21 + H22 + H23 (15) 

H2i = ^-(-)4{02sin(f + g) + e3sinS(f + g)} (16) 
L° r 

H22 = ^(°)5{04 + 0scos2(f + g) + e6cos4(f + g)} (17) 

„ _A23 
#23 — -jj- { 3 0 2 - 0 n } <»> 

ff3=${^(7)4-^O3}{0o+ei+cos2(/+5)} ( 1 9 ) 

H4 = H41 + H42 + H43 (20) 

ff4i = ^ { \ 0 5 ~ h 0 4 } {e*sin(f + 9) + 0zsin3(f + g)} (21) 

^ 3 = ^ | ( ^ ) 6 { 0 7 + ^ c o S 2 ( / + fl) + ^ c o S 4 ( / + ff)}. (23) 

In which (L,G,H,l,g,h) are usual Delaunay variables, /x is the product 
of the constant of gravitation and the central body's mass, r is the radial 
distance, / the true anomaly of the satellite, a the semi-major axis of the 
instantaneous elliptic orbit. For the different orders of J2, the coefficients 
A are: 

A - i^R* A - J ^R3 A - T ^R* A - QlM6fl2 

\IJpR2 A -AtJiUM. A — A* 1 ^R4 A - o ^ Ri 

•-^TjT, A4i — 4\J3^rjr, A42 — 4U4
t2rpr, A43 = O^TJT 

with R being the mean equatorial radius of the central body. 
Also, in the Hamiltonian Hg , we find tha t 

0O = 1 - 3 c 2 , 0i = - 3 s 2 , 02 = 1 5 s 3 - 1 2 s 2 , 
03 = - 5 s 3 , 04 = 9 - 9 0 c 2 - 1 0 5 c 4 , 05 = - 2 0 + 160 c2 - 140 c4, 
06 = 35s 4 , 07 = f c 4 - 1 5 c 2 + ^ , 08 = - 6 + 2 4 c 2 - 1 8 c 4 , 

where c = cosi , s = sin i. 
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The second-order term in the Hamiltonian Hg which is represented by equa
tion (15) is consisting of the non-relativistic terms #21 and H22 (given by J3 
and J4) and the relativistic term if23 (which contains the factor cj2). The 
order of magnitude of each term is given by A21, A22 and A23 coefficients. 

The third-order term - H3 in Hg, given by J | cf2, and representing the 
mixed perturbation due to Newtonian quadrupole field and Schwarzschild 
acceleration, is of order J$. If t n e terms containing the factor cj2 in Hg 

are omitted, it remains what is usually called the main problem in artificial 
satellite theory. This is the problem which was solved by Brouwer (1959). 

To solve the canonical equations of motion for the Delaunay variables 
by means of the canonical Lie transformations, we construct two canoni
cal transformations to eliminate the angle variables from the Hamiltonian 
(10). Firstly, we eliminate the short-period terms (i.e. those depending on 
/ ) . The remaining long-period problem is then governed by a Hamiltonian 
depending only on L ,H ,G and g, where the primes indicate the trans
formed variables using a second canonical transformation to remove the 
long-period terms (i.e. those depending on g ) . Finally, the remaining secu
lar problem, being independent of all angle variables, can be very simply 
solved. All calculations of the short-period, long-period and secular terms, 
up to order four in J^, were done on the computer VAX 651 0/VMS V5.5-2 
of the Egyptian Universities Network main center at the supreme coun
cil of Universities, using the algebraic manipulation language Reduce V3.1 
(Youssef, 1994). 

3. Discuss ion and Conculs ion 

Soffel et al. (1988) and Heimberger et al. (1990), have investigated the 
relativistic effects on the motion of a satellite moving arround an oblate 
body. Soffel et al. used Gauss ' form of the planetary equations, and de
termined the secular, the short-periodic and the long-periodic relativistic 
perturbations using the Keplerian elements to the first order in h- Heim
berger et al. (1990) have treated the same problem using the canonical Lie 
series methods. In addition, an important second-order mixed perturbation 
J2CJ2 due to Newtonian quadrupole field and Schwarzschild acceleration, 
was included in their analysis. 

In the present work, we are treating the same problem using the cano
nical Lie series methods. We are calculating, in addition to Heimberger's 
work, the third-order, mixed perturbation J2cJ2, and fourth-order mixed 
J2 cj - 4 pertubation. This was done to allow the coupling of both effects of 
gravitational waves and the Earth 's oblatness. 

Since we have eliminated the short-period terms and the long-period 
terms from Hw up to order four in J2, we have found tha t : 
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1. the zero order is given by: 

H° = ~~2L?JtnaL'4' 

2. the first order (Hi) is given by the first order solution of Hg coming 
from the effect of Ear th ' s oblateness. 

3. the second order (H2) is given by the second order solution of Hg 

coming from the effects of Ear th ' s gravity. 
4. the third order solution comes from Hw, and 
5. the fourth order solution represents the coupling between the effect of 

oblateness and the effect of the wave. 

The long-period terms will be never eliminated from the Hamiltonian Hw-
The reason for this is tha t I4 appears only in the terms arising from the wave 
effects. They can be removed when the following conditions are satisfied: 

- when the effect of the wave is not coupled to any other effect. It is 
clear tha t this decoupling will occur only in the order 6 in Ji-

— due to commensurability between the wave frequency and the mean 
motion of the satellite, when — Nl\ = I4. 
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