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ABSTRACT 

Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke 

internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating 

groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the 

net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and 

conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact 

force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the 

ring. The conjunctional friction, comprising viscous shear of the lubricant and any boundary friction as the result of direct interaction 

of surfaces also act on the ring, as well as the inertial force in the axial direction of the cylinder. Therefore, ring motions are quite 

complex. However, with properly fitted rings, the radial modal behaviour of the ring is the most important. This provides an 

opportunity to determine the in-situ ring shape analytically by assuming a series of quasi-static steps in which the balance between 

ring tension and pressure induced forces with the instantaneous contact force is assumed. 

The resulting ring shape yields the ring-bore gap, allowing the determination of frictional losses for a given bore out-of-roundness and 

surface topography. A subsequent analysis based upon one dimensional lubricated conjunction for certain ring configurations enables 

evaluation of lubricant flow and any chance of oil loss and blow-by. This fully analytical as opposed to computationally intensive 

numerical analysis is verified with FEA. 

INTRODUCTION 

The power losses in internal combustion engines can be divided into two key categories; thermodynamic and parasitic. 

Thermodynamic losses include those due to heat, for example, heat expelled from the exhaust and heat losses from surfaces through 

conduction or convection. These losses account for 50-60% of the total engine losses. Parasitic losses such as friction or due to 

pumping account for 25%. These inefficiencies mean that only approximately 15% of the input power is available to propel the 

vehicle, overcoming road friction and any aerodynamic drag. Of the 25% lost due to friction, almost half is lost within the piston 

mechanism. A quarter is down to engine bearings, whilst around 10-15% is through valve train frictional forces. The remainder is 

accounted for with the sum of small inefficiencies within the system. Compression rings can be seen to be responsible for 4-5% of all 

losses in a standard 4-stroke internal combustion engine (Mishra et al, 2009). Clearly this is a significant proportion of all losses, 

especially for such a relatively small component. In order to reduce the frictional losses due to the compression ring, a comprehensive 

model is first required to understand all aspects of the forces and motions encountered. 

Previous studies on the tribology of piston ring cylinder liner conjunction have treated the compression ring as a rigid body, with no 

global deformation (modal behaviour). However due to the forces applied, particularly at the firing crank angle in the engine, intuition 

alone suggests that both in-plane and out-of-plane deflections of the compression ring from its original shape should take place. This 

can in turn affect the conformability of piston ring to the cylinder liner. The latter itself is subject to global deformations due to 

dynamic loadings, thermal distortion and initial (static) deformations originated from manufacturing and machining processes. 
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In fact, the conformability of piston ring to cylinder liner has long been the subject of interest for engine designers. Any gap between 

the ring and liner can be a source of excessive oil consumption and increased blow-by. This gap can be caused by factors such as the 

bore out-of-roundness, limitations in ring’s elastic behaviour and distortion of cylinder liner due to thermal and mechanical 

(vibrational) loads and in-plane and out of plane vibrations of piston ring. The problem has been addressed by some researchers. In 

one of the earlier studies Loenne and Ziemba (1989) measured the cylinder bore distortions using an ‘Incometer’. They found that a 

typical cylinder can hold various orders of distortion. The second order distortion of a cylinder refers to its ovality, whilst the third and 

fourth orders arise from machining and excessive tightening of the cylinder head bolts, respectively (Bardzimashvili et al, 2005). Hill 

and Newman (1985) introduced the concept of ‘ring conformability factor’ in order to quantify the ability of a ring to seal a given bore 

distortion. Using an empirical relationship, they were able to describe the radial deformation for a cylinder at given order which can be 

sealed by a ring with a known conformability factor. Later, Dunaevsky (1990) and Dunaevsky et al (2000, 2002 and 2005) expanded 

the ring-bore conformability analysis and introduced a rigorous mathematical method to model the conformability of a ring to a 

distorted bore profile. They also studied the conformability of the rings with non-symmetrical cross-sections (Dunaevsky and 

Alexandrov 2005). A semi-empirical relation to determine the maximum bore deformation that a ring can conform to has also been 

introduced by Tomanik (1996) and Mueller (2005). Bardzimashvili et al (2004) examined various existing conformability criteria with 

a ring-pack model and concluded that the higher orders of deformations may need to be considered as well as the effect of gas 

pressure. A summary of the existing empirical and/or analytical methods is given in Dunaevsky and Rudzitis (2007). 

Ma et al (1997) implemented the ring bore gap calculation into their tribological model. They used Hill and Newman’s method and 

also incorporated the gas force effect. They showed that gas force can aid conformation of the ring with a distorted bore profile, 

especially at and near TDC. All the studies cited thus far ignore ring modal behaviour subjected to a transient force balance. 

Early studies of ring dynamics took the form of analyzing curved bars. Lamb (1888) was among the first to perform this analysis. He 

discussed the in-plane flexure of a uniform bar. Based on the previous work by Kirchoff, Clebsch, Thomson and Tait, a general 

equation for free-free end conditions was derived and solved. However, Lamb’s work only considered beams with a small curvature. 

Den Hartog (1927) built on this work by deriving formulae for the first and second natural frequencies of an incomplete circular ring. 

He applied the Rayleigh-Ritz energy method to obtain the natural frequencies for both hinged and clamped boundary conditions. 

Brown (1934) presented an approximate solution for the out-of-plane vibrations problem, using a modification to the Rayleigh 

method. He found that the calculated values using this method were higher than those obtained through experimentation. However, 

these fell within the level of expected error. Later Volterra and Morell (1961) used the Rayleigh-Ritz method to find the lowest natural 

frequencies for various elastic arcs, in and out-of-plane of curvature. Further to this, they applied the theory to elastic hinged arcs. 

Love (1944) obtained the classical equation of motion for an incomplete ring of small cross-section. He assumed an undeformed 

central radial axis in order to evaluate the global deformation of an incomplete circular ring. He obtained various modal frequencies 

using a previous work attributed to Mayer. The ring was considered with different types of applied normal loads. Archer (1960) 

studied the in-plane in-extensional vibrations of incomplete rings with small cross-sections. The results were obtained using classical 

equations of motion, considering only in-plane forces. The results found by Archer for rings of angular extension between π and 2π 
were in agreement with den Hartog’s results. Shear deformation was neglected in his studies. However, Timoshenko (1955) proved 

that this was a valid assumption. Lang (1962) found solution forms for both extensional and in-extensional deformation theories 

regarding thin circular rings. He considered both the modal response and forced excitation. 

The current study aims to show the importance of including ring-bore conformability in tribological assessment of piston ring-to-

cylinder liner conjunction. In addition, deformation of a given ring under load is investigated in order to provide a first step towards 

the inclusion of inertial ring dynamics in tribological studies. 

RING BORE CONFORMABILITY 

A typical engine cylinder profile was measured using a coordinate measuring machine (CMM). To be able to measure the cylinder a 

block consisting of two cylinders was cut-off from a V8 engine (see Figure 1). This in-situ liner has already been subject to thermal 

and mechanical loads, as well as embodying the usual initial manufacturing imperfections and post-processing (such as honing) 

effects. The measurements provide the real shape of the bore at any given cross-section. 
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Figure 1 – (a) The CMM arrangement and (b) the measured block sample 

The cylinder profile was measured at several axial heights. The heights at which the measurements were taken are shown in Figure 2. 

These represent the deviation of the measured liner profile from a nominal (average) radius. In these measurements the top dead centre 

(TDC) was considered as the reference position. The second cross-section corresponds to the location where maximum combustion 

pressure occurs in the power stroke. A typical combustion gas pressure curve is shown in Figure 3. Study of this point is of further 

importance as the combustion gas force (Hill and Newman, 1985) is one of the main contributors to the cylinder liner deformation. 
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z = 4.83 [mm] (after DP)
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z = 45.78 [mm] (after mid stroke)
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z = 79.5 [mm] (BDC)
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Figure 2 – Measured cylinder profile at various axial cross-sections 
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Figure 3 – Variations of combustion gas pressure with the crank angle at 2000rpm 

The measured shape of the liner can be described using a Fourier series: 

                                                                 (1) 

where r is the average (nominal) bore radius. The maximum distortion of any order (any term of the series) can then be calculated 

from the Fourier coefficients as: 

                                                                                        (2) 

Given a ring with known characteristics and associated loading, one needs to obtain a relationship for ring-liner conformance. Various 

analytical and/or (semi-) empirical relations can be used. In this study, the conformability criteria given by Mueller, Tomanik, 

Dunaevsky, and Hill and Newman are studied (see Introduction). Table 1 compares these four conformability analyses as described by 

Bardzimashvili, et al (2005) and Newman and Hill (1985). 

Table 1 – Various relations for critical deformations 

Mueller (1970) 
 

Dunaevsky 

(1990)  

Tomanik (1996) 
 

Hill and Newman 

(1985)  

 

The parameter K in Table 1 is called the ring conformability coefficient (or factor) and is defined as: 

                                                                                              (3) 
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in which FT is the tangential force which is required to close the ring gap and r is the nominal bore radius. 

In the case of Hill and Newman (1985) conformability relation, this factor is expressed as:  

                                                                                         (4) 

where d is radial thickness of the ring. 

Each point on a ring having an initial end gap of γ, after being fitted to a circular cylinder with a nominal radius of r would have a 

radial deformation which can be described by the following equation (Bin Chik and Fessler, 1966): 

                                                                       (5) 

The uniform elastic pressure exerted by the ring can also be found as: 

                                                                                             (6) 

Therefore, the tangential force of the ring can be obtained as: 

                                                                                            (7) 

Using the equation above one can obtain the deformed ring profile from its free state with an initial end gap. Figure 4 shows the 

resulted deformed ring profile for the compression ring studied in the current work. 

 

Figure 4 – The predicted deformation in the ring profile after being fitted to a circular bore of nominal diameter 

The applied force in these relations takes into account only the ring tension force. However, in an engine other forces also arise. The 

most prominent force is the combustion gas force, which is assumed to act on the ring back face. This force is expected to enhance 

ring-bore conformability. This effective gas force is added to the ring tension force, yielding the total outward force on the ring as: 

                                                                                     (8) 

in which Pg is the gas pressure (Figure 3) and b is the ring axial face-width. 
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Figure 5 represents the ring bore gap which is obtained using the Tomanik’s bound with the total applied force F. A gap appears with 

the 4
th

 order of bore distortion (n = 4). Dunaevsky’s analytical method predicts no gap even for relatively high bore orders. Thus, the 

ring bore gap can be examined based on the other methods listed in Table 1 (Figure 6). 

 

Figure 5 – Studied ring bore gap based on Tomanik’s bound 

 

Figure 6 – A comparison of obtained ring bore gap using different criteria 

 

It can be seen that the gap predicted using the Tomanik’s bound is the lowest of all for a bore distorted dominantly by an order of five. 

TRIBOLOGICAL ANALYSIS 

In order to investigate the effect of ring bore gap on the tribological performance of the engine, a two-dimensional computer model to 

solve the lubrication problem, using Reynolds’ equation under quasi-static condition (radial force balance) is used. A parabolic axial 

ring profile was assumed for a worn compression ring. Isothermal conditions were assumed for this initial analysis, eliminating the 

effect of viscous shear heating of the lubricant. The surface roughness parameters used in Greenwood and Tripp (1971) were 

measured for the given liner surface. The ring tension and gas loading represent the contact force under quasi-static conditions. This 

force is sustained by hydrodynamic lubricant reaction and by the asperity interactions. 

The bore cross section at which Reynolds’ equation was solved was selected to be that corresponding to the point after the maximum 

combustion pressure. The data used are given in Table 2. 

Table 2 – Data for the tribological study 

Parameter Value 
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Engine stroke 79.5 mm 

Engine speed 2000 rpm 

Bore nominal radius 44.52 mm 

Modulus of elasticity of ring  203 GPa 

Ring face-width 1.2 mm 

Liner surface roughness (RMS) 0.26 µm 

Lubricant density 

849.7 kg/m
3
 @ 15 [°C] 

833.8 kg/m
3
 @ 40 [°C] 

Lubricant kinematic viscosity 

59.99 cSt @ 40 [°C] 

9.590 cSt @ 100 [°C] 

 

The result of the analysis yields the minimum clearance as shown in Figure 7. As expected, the conformability obtained using the Hill 

and Newman’s bounds resulted in the lowest minimum clearance, which yields the worst case scenario. However, it must be noted 

that these predictions for the ring bore gap change for the other orders of distortion. The dominant order of distortion for the bore is 

obtained using the Fourier analyses as shown by equation (1) and calculating the maximum amplitude of deformations through 

subsequent DFT or FFT analyses. 

 

Figure 7 – Predicted minimum clearance with different conformability criterion 

Figure 8 compares the predicted minimum film thicknesses for a complete engine cycle for an ideal circular bore with a distorted bore 

as described above, based on the bounds obtained using Mueller’s method. It is assumed that the predicted gap between the ring and 

the bore at the studied point (DP) is more or less prevalent at other cross-sections as well. This is reasonable, given the measured 

profiles at different cross sections shown in Figure 2. The results show that the difference can be significant when the gas pressure is 

low. At these points, the sealing ability of the ring is compromised. Zero degrees crank angle represents the TDC position in power 

stroke. 
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Figure 8 – Minimum conjunctional gap for ideal and distorted bores 

Hitherto, these analyses ignore the ring dynamics. In fact, the ring bore conjunction can be affected by ring dynamics, which should be 

taken into account at any crank angle position during the engine cycle. 

DYNAMICS OF THE PISTON RING: NATURAL FREQUENCIES AND MODE 

SHAPES 

Figure 9 shows the in-plane motion degrees of freedom for an incomplete circular ring, with a radius significantly larger than its face- 

width (thin structure). 

 

Figure 9 – Incomplete ring, in-plane motion degrees of freedom, as used by Lang (1962) 

By neglecting rotary inertia, and considering the radial and tangential forces, as well as bending moments, the equations of motion for 

radial and tangential displacements are: 
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Both equations need to be separated as performed by Archer (1960), into space and time expressions. This gives three solution forms 

for v and w, where the appropriate solution is determined by the nature of λ value in: 

                                                                             (11) 

Letting ξ = σ2
: 

                                                                             (12) 

Equation (12) is the characteristic equation of the eigenproblem, a cubic expression in σ2
. Depending on the value of λ a number of 

solutions exist according to Lang. Those applicable to inextensional deformation of an incomplete ring, yield: 

For: 0.113401< λ2
 <17.6366, ξn1 = ±idn, ξn2 = δn ± iμ and ξn3 = -δn± iμ. 

And for: λ2
 >17.6366, ξn1 = -dn

2
, ξn2 = en

2
, ξn3 = fn

2
. 

The modal response equations are in the form: 

                                                            (13) 

Evaluation of these equations of motion gives the natural frequencies of the ring, and the resulting mode shapes at each modal 

frequency, fn: 

                                                                                              (14) 

DYNAMICS OF THE PISTON RING: FORCED RESPONSE OF AN INCOMPLETE 

RING 

Equations (9) and (10), as stated previously, are partial differential equations. Whilst the space-based response solves the natural 

frequencies and mode shapes as described above, the time-based response is also required for a full solution, so that: 

                                                                                 (15) 

For the dynamic response of the system: 

                                                                                       (16) 

Where 
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                                                                           (17) 

FR and FT are the radial and tangential force components, respectively. The solution to equation (16) takes the form: 

                                           (18) 

Where Cn1 and Cn2 are constants dependent on the initial displacement and velocity conditions: 

,                                                             (19) 

Hence equation (15) provides the full space-time solution.  

In addition, the elastic force acting on the ring comes from equations (6) and (7) above. The gas pressure acting on the ring is regarded 

as constant circumferentially. 

DYNAMICS OF THE PISTON RING: CASE STUDY 

The method for calculating the natural frequencies was verified through FEA for a free incomplete ring. Snapshots of the mode shapes 

were compared with the analytical solution. Table 3 shows the values of the parameter used in this ring model. 

Table 3 – Values used in calculation of natural frequencies and mode shapes 

Elastic modulus, E 210 GPa 

Density, ρ 7800 kg/m
3
 

Ring thickness, d 3.5mm  

Axial width, w 1.198mm  

Nominal ring radius, R 43mm 

Second moment of area, Ir 4.2e-12 m
4
 

Ring angle, α 359
o
 

 

Figure 10 shows an example mode shape taken from the FEA analysis. This is for comparison with Figure 11, which shows the shape 

obtained by implementing Lang’s analytical method. The mode number is n = 8. 
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Figure 10 – Snapshot of the FEA mode shape when f = 7457Hz 

 

Figure 11 – Plotted mode shape for f = 7363Hz 

Table 4 gives a comparison of all the FEA results with the calculated natural frequencies. 

Table 4 – Natural frequency values from FEA and Lang’s method 

Lang (Hz) FEA (Hz) % difference 

151.96 198.31 23.37 

383.9 432.35 11.21 

1350 969.76 28.15 

1895.1 1795.4  5.26 

2533.4 2871.9 11.79 

3924 4181.7 6.16 

5532 5712.8 3.16 

7363 7457 1.26 

 

Copyright © 2011 SAE International. This paper is posted on this site with permission from SAE International. It may not be shared, downloaded, duplicated, 

 printed or transmitted in any manner, or stored on any additional repositories or retrieval system without prior written permission from SAE.



SAE Paper No. 2011-01-1535, DOI: 10.4271/2011-01-1535 

(Submitted Version) 

 

Page 13 of 16 

 

 

SUMMARY/CONCLUSIONS 

This study shows the importance of including some salient practical features in tribological studies of compression ring-bore/liner 

conjunction, which are often neglected in literature. One is bore out-of-roundness; the other is conformance of the ring to such a bore, 

both in fitment and with applied gas pressure. Furthermore, the elastodynamic behaviour of an in-situ ring is important as under 

transient conditions the net force acting on the ring alters. The inclusion of all these features makes for computationally intensive 

analysis, which is mitigated by closed form analytical solutions for ring dynamics and analytical or semi-empirical representation of 

ring-bore conformance. At the same time this level of detail and beyond is required in order to reliably estimate the conjunctional gap, 

with the view to estimate regime of lubrication and most importantly evaluate friction. The ultimate aim of any analysis should be to 

predict friction and oil losses. The balance between these two key requirements is the essence of ring function. Further required detail 

is implied here, because another key function of the compression ring is to conduct the heat away from the conjunction, often forming 

a very thin film of lubricant. For this purpose simultaneous solution of energy equation with Reynolds’ equation is necessary, as well 

as adjusting for lubricant viscosity. These represent the immediate future extensions of this research. 
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NOMENCLATURE 

Ak, Bk  Fourier coefficients 

b, h  ring face width (axial height) 
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Cn1, Cn2  Dynamic response constants 

d  radial thickness of ring 

dn  Root parameter 

E  Young elasticity modulus 

F  total force 

FR, FT  excitation forces (radial and tangential) 

f  frequency of vibration 

Ir  Second moment of area of ring 

Kn  conformability factor 

k  summation index 

m  mass per unit area of ring 

n  order of deformation, mode number 

Pe  elastic pressure 

Pg  gas pressure 

Q  generalised force term 

R  nominal ring radius 

r  nominal bore radius 

ri  inner radius of ring 

ro  outer radius of ring 

t  time 

Un  maximum bore deformation 

u  ring deformation 

v, w  displacement (tangential and radial) 

Vn, Wn  modal function, (tangential and radial) 

Greek symbols 

α  subtended angle of ring 
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γ  ring end gap 

δ, μ  root parameters 

ζ  deviation from average 

θ  circumferential angle 

λ  frequency parameter 

ξ  σ2
 

ρ  density of ring material 

σ  root 

φ  crank angle 

ω  frequency of vibration 

Abbreviations 

2D  two-dimensional 

CMM  Coordinate Measuring Machine 

DFT  Discrete Fourier Transform 

DP  Detonation Point 

FEA  Finite Element Analysis 

FFT  Fast Fourier Transform 

RMS  Root Mean Square 

rpm  Revolution per minute 

TDC  Top Dead Centre 
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