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Abstract
The paper discusses the analytical expressions of a motion profile characterized by elliptic jerk. This motion profile
is obtained through a kinematic approach, defining the jerk profile and then obtaining acceleration, velocity, and
displacement laws by successive integrations. A dimensionless formulation is adopted for the sake of generality.
The main characteristics of the profile are analyzed, outlining the relationships between the profile parameters. A
kinematic comparison with other motion laws is carried out: trapezoidal velocity, trapezoidal acceleration, cycloidal,
sinusoidal jerk, and modified sinusoidal jerk. Then, the features of these motion profiles are evaluated in a dynamic
case study, assessing the vibrations induced to a second-order linear system with different levels of damping. The
results show that the proposed motion law provides a good compromise between different performance indexes
(settling time, maximum absolute values of velocity and acceleration).

1. Introduction
The study on novel motion profiles is a motivating and valuable research area, since it can provide
productivity increase and other significant benefits and to a wide variety of industrial applications. As
a matter of fact, in many automation tasks transfer time represents a large part of the complete cycle
time; as a consequence, the reduction of the transfer time can remarkably improve the overall plant effi-
ciency. An emblematic example is robotics. Nowadays, robot mechanisms are much more lightweight
and, consequently, flexible than in the past [1, 2], in particular when compliant joints are adopted
[3, 4]. Therefore, the conception of smooth motion profiles, suitable for reducing residual vibrations
and overshoot, plays a noteworthy role in the optimization of the task execution [5].

For given limits on force/torque and on linear/angular velocity, the motion completion time is min-
imized by trapezoidal velocity motion profiles, with constant acceleration and deceleration in the first
and last phase, and constant velocity in the intermediate phase. Nevertheless, it is well known that this
law, characterized by discontinuities in acceleration (infinite jerk), produces persistent residual vibra-
tions, penalizing the settling time [6]. To face this issue, great research efforts have been devoted to the
conception of smoother velocity profiles, which are frequently based on trigonometric or polynomials
functions [7–11].

There are two main classes of methods which can be used for the generation of a rest-to-rest motion
profile for a dynamic system.

The first class is represented by dynamic methods [12]. These approaches exploit the dynamic model
of the system, optimizing the motion profile while respecting kinematic and dynamic constraints, such
as limits on force/torque and on the jerk.

On the contrary, kinematic methods do not consider the dynamic model. The synthesis of the motion
profile is based exclusively on kinematic assumptions and constraints, usually expressed in terms of
acceleration and jerk [13]. Unquestionably, these methods are much simpler than dynamic ones, and
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consequently, they are widespread in industry. Moreover, they are more suitable for all implementations
in which the motion planning is not known a priori but needs to be calculated in real-time. On the
other hand, only sub-optimal solutions can be obtained using kinematic methods, reducing the system’s
performance. However, reasonably good performances can be achieved, provided that jerk is properly
limited [14].

In ref. [15], a kinematic method based on a motion law with elliptic jerk has been proposed and
compared to other profiles discussed in the scientific literature: trapezoidal velocity, S-curve (trapezoidal
acceleration), cycloidal, sinusoidal jerk [16], modified sinusoidal jerk [17].

The conception of this law is indeed curiosity-driven: the ellipse is a geometrical entity related to
many physical phenomena, and it can be defined by a small number of parameters. Therefore, the starting
point is the idea of defining a motion law with an elliptical jerk profile and then evaluating its features
by comparison with other widely used and well-known profiles.

In this paper, the definition of the motion profile is presented (Section 2); then, the analytical expres-
sions of jerk (Section 3.1), acceleration (Section 3.2), velocity (Section 3.3), and position (Section 3.4)
are discussed. Section 3.5 explains how all the profile parameters can be calculated from a minimum
set of independent parameters (six time parameters for the asymmetric elliptic jerk profile and four time
parameters for the symmetric elliptic jerk profile). In Section 4, a purely kinematic comparison with
the other considered motion profiles is carried out, in terms of coefficients of jerk, acceleration, and
velocity. Then in Section 5, the comparison is extended using a dynamic model, assessing the vibrations
induced by the motion profiles to a second-order linear system. In Section 6, conclusions are debated,
outlining benefits and drawbacks of the proposed motion law.

The main novelty of the work with respect to the early results presented in ref. [15] is the presentation
of the analytical expressions of the motion profile in terms of acceleration, velocity, and displacement,
obtained by successive integrations, and a more extended discussion of the dynamic response as a
function of the system damping coefficient.

2. Elliptic jerk motion profile
A dimensionless formulation is adopted for the sake of generality. For given displacement length h and
motion duration T :

• the dimensionless time is the time t normalized by T : tad = t/T ;
• the dimensionless position is the position s normalized by h: sad = s/h;
• the dimensionless velocity is the velocity v normalized by h/T : vad = vT /h;
• the dimensionless acceleration is the acceleration a normalized by h/T 2: aad = aT 2/h;
• the dimensionless jerk is the jerk j normalized by h/T 3: jad = jT 3/h.

The proposed motion law is based on the jerk profile shown in Fig. 1 as a function of the dimensionless
time, which varies from 0 to 1 from rest to rest. This profile is divided into seven phases (#1– #7, Fig. 1).
The ith phase starts at tad,i-1 and ends at tad,i.

The first three phases are characterized by positive acceleration and have an overall duration tad,pa.
The fourth phase has null acceleration and constant velocity. The last three phases are characterized by
negative acceleration and have an overall duration tad,na. Consequently, the duration of the fourth phase
is (1 − tad,pa − tad,na).

The positive acceleration motion is performed with positive jerk in phase #1, with null jerk in phase
#2, and with negative jerk in phase #3. The durations of the phases #1 and #3 are, respectively, tad,papj

and tad,panj. Consequently, the duration of phase #2 is (tad,pa − tad,papj − tad,panj).
The deceleration is performed with negative jerk in phase #5, with null jerk in phase #6, and with

positive jerk in phase #7. The durations of the phases #5 and #7 are, respectively, tad,nanj and tad,napj.
Consequently, the duration of phase #6 is (tad,na − tad,nanj − tad,napj).
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Figure 1. Elliptic jerk motion profile as a function of the dimensionless time tad.

Figure 2. Elliptic jerk as a function of dimensionless time tad for the ith phase.

There are four phases with non-null jerk: #1, 3, #5, and #7. In these phases, the jerk profile is elliptic.
The two phases with positive jerk, #1 and #7, have, respectively, maximum values of +jad1 and +jad7. The
two phases with negative jerk, #3 and #5, have, respectively, minimum values of −jad3 and −jad5. With
the hypothesis of the elliptical profile, the dimensionless jerk law is completely defined by 10 positive
parameters:

• four positive jerk peak parameters: jad1, jad3, jad5, jad7;
• six time parameters: tad,pa, tad,na, tad,papj, tad,panj, tad,nanj, tad,napj.

3. Analytical expression of the motion profile
3.1. Expression of the jerk profile
The analytical expression of the motion profile can be derived from the representation of the semi-
elliptical shape of the jerk of a generic phase shown in Fig. 2.
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The parametric equation of the semi-ellipse of Fig. 2 is

jad = σ jad,isen(u)

cos(u) = 1 − 2
(
tad − tad,i−1

)
tad,i − tad,i−1

σi =

⎧⎪⎨
⎪⎩

+1, i = 1, 7

−1, i = 3, 5

0, i = 2, 4, 6

(1)

where 0 ≤ u ≤ π. By means of some trigonometric manipulation, we can obtain the following expression
of the jerk, valid for all the phases, including the null jerk ones, for which σ i = 0:

jad(tad) = 2σi jad,i

√
tad − tad,i−1

tad,i − tad,i−1

−
(

tad − tad,i−1

tad,i − tad,i−1

)2

(2)

3.2. Expression of the acceleration profile
The expression of the acceleration profile has been found by analytical integration of Eq. (2), obtaining
the following formula for the ith phase, for tad,i-1 ≤ tad < tad,i:

aad(tad) = aad,i−1 + 1

4

(
tad,i − tad,i−1

)
σi jad,ia cos

(
1 − 2

tad − tad,i−1

tad,i − tad,i−1

)
+

− 1

2

(
tad,i − tad,i−1

)
σi jad,i

(
1 − 2

tad − tad,i−1

tad,i − tad,i−1

)√
tad − tad,i−1

tad,i − tad,i−1

−
(

tad − tad,i−1

tad,i − tad,i−1

)2

(3)

where aad,i-1 is the acceleration at the end of the i − 1th phase. In particular, for the phases with null jerk
(i = 2, 4, 6), σ i = 0, then acceleration is constant, and Eq. (3) becomes:

aad(tad) = aad,i−1 (4)

3.3. Expression of the velocity profile
The expression of the velocity profile has been found by analytical integration of Eq. (3), obtaining the
following formula for the ith phase, for tad,i-1 ≤ tad < tad,i:

vad(tad) = vad,i−1 + aad,i−1

(
tad − tad,i−1

)+

− 1

8

(
tad,i − tad,i−1

)2
σi jad,i

(
1 − 2

tad − tad,i−1

tad,i − tad,i−1

)
arccos

(
1 − 2

tad − tad,i−1

tad,i − tad,i−1

)
+

+ 1

4

(
tad,i − tad,i−1

)2
σi jad,i

√
tad − tad,i−1

tad,i − tad,i−1

−
(

tad − tad,i−1

tad,i − tad,i−1

)2

+

− 1

3

(
tad,i − tad,i−1

)2
σi jad,i

√√√√( tad − tad,i−1

tad,i − tad,i−1

−
(

tad − tad,i−1

tad,i − tad,i−1

)2
)3

(5)

where vad,i-1 is the velocity at the end of the i − 1th phase. In particular, for the phases with null jerk
(i = 2, 4, 6), σ i = 0, then acceleration is constant, and the velocity profile becomes:

vad(tad) = vad,i−1 + aad,i−1

(
tad − tad,i−1

)
(6)
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3.4. Expression of the position profile
The expression of the velocity profile has been found by analytical integration of Eq. (5), obtaining the
following formula for the ith phase, for tad,i-1 ≤ tad < tad,i:

sad(tad) = sad,i−1 + vad,i−1

(
tad − tad,i−1

)+ 1

2
aad,i−1

(
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)2 +

+ 5

128

(
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)3
σi jad,i arccos

(
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)
+
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64
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where sad,i-1 is the position at the end of the i − 1th phase. In particular, for the phases with null jerk
(i = 2, 4, 6), σ i = 0, and the position profile becomes:

sad(tad) = sad,i−1 + vad,i−1

(
tad − tad,i−1

)+ 1

2
aad,i−1

(
tad − tad,i−1

)2 (8)

3.5. Dependence of the motion profile parameters
As discussed in Section 2, the jerk profile is completely defined by 10 parameters, four jerk peak
parameters and six time parameters. Consequently, also the acceleration, velocity, and position pro-
files, which are obtained by successive integrations, are defined by these 10 parameters. Nevertheless,
these parameters are not independent, once these conditions are imposed:

I. null acceleration at the end of phase #3: aad(tad3) = aad(tad,pa) = 0;
II. null acceleration at the end of phase #7: aad(tad7) = aad(1) = 0;

III. null velocity at the end of phase #7: vad(tad7) = vad(1) = 0;
IV. unit dimensionless position at the end of phase #7: sad(tad7) = sad(1) = 1.

Since acceleration is the integral of the jerk, conditions I and II mean that the semi-elliptical areas
defined by the jerk profiles are equal for the couple of phases #1–#3, and for the couple #5–#7. The
four conditions I–IV establish four equations in the 10 profile parameters, which can be used in different
ways. One possible choice, which is adopted in the following of the work, is to obtain the four jerk
peak parameters (jad1, jad3, jad5, jad7) as functions of the six time parameters (tad,pa, tad,na, tad,papj, tad,panj,
tad,nanj, tad,napj). Using this approach, the equations representing the conditions I–IV have been elaborated,
obtaining the following expressions of the four peak parameters as a function of the time parameters:

jad1 = 1

c1 + c2 + c3

(9)

jad3 = tad,papj

tad,panj
jad1 (10)

jad5 = c0

tad,papj

tad,napj
jad1 (11)
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Figure 3. Asymmetric elliptic jerk profile: jerk, acceleration, velocity, and position profiles for tad,pa =
0.3, tad,na = 0.5, tad,papj = 0.05, tad,panj = 0.15, tad,nanj = 0.2, tad,napj = 0.25.

jad7 = tad,nanj

tad,napj
jad5 (12)

where the four constants c0–c3 are defined by the following equations:

c0 = 2tad,pa − tad,papj − tad,panj

2tad,na − tad,nanj − tad,napj
(13)

c1 = π

8
tad,papjtad,pa

(
tad,pa − tad,papj

)+ 5

128
π tad,papj

(
t2
ad,papj − t2

ad,panj

)
(14)

c2 = π

8
tad,papj

(
1 − tad,pa − tad,na

)(
2tad,pa − tad,papj − tad,panj

)
(15)

c3 = π

8
c0tad,papjtad,na

(
tad,na − tad,napj

)+ 5

128
πc0tad,papj

(
t2
ad,napj − t2

ad,nanj

)
(16)

In particular, Eq. (10) represents the ratio between the two jerk peaks in acceleration due to
condition I, while Eq. (12) represents the ratio between the two jerk peaks in deceleration due to
condition II. Equations (9) and (11) derive, respectively, from conditions IV and III.

For example, Fig. 3 shows the jerk, acceleration, velocity, and acceleration motion profiles obtained
imposing the time parameters tad,pa = 0.3, tad,na = 0.5, tad,papj = 0.05, tad,panj = 0.15, tad,nanj = 0.2, and
tad,napj = 0.25. The resulting jerk peak parameters are jad1 = 208.07, jad3 = 69.36, jad5 = 37.83, and
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Figure 4. Symmetric elliptic jerk profile: jerk, acceleration, velocity, and position profiles for tad,pa =
0.3, tad,na = 0.5, tad,papj = tad,panj = 0.1, tad,nanj = tad,napj = 0.2.

jad7 = 30.26. The dimensionless acceleration varies between a maximum of 8.17 in phase #2 and a min-
imum of −5.94 in phase #6, while the dimensionless velocity reaches a maximum value of 1.634 in
phase #4.

The maximum absolute values of dimensionless jerk, acceleration, and velocity (208.07, 8.17, 1.634)
correspond to the coefficients of jerk, acceleration, and velocity, defined as follows [7]:

Cj = max(|j|)
h/T3

, Ca = max(|a|)
h/T2

, Cv = max(|v|)
h/T

(17)

The jerk profile of Fig. 3 is completely asymmetric, since all the phases have different durations,
and all the four jerk peaks are different. This profile is named asymmetric elliptic jerk profile. The
maximum absolute values of acceleration and jerk are lower in deceleration (phases #5−#7) with respect
to acceleration (phases #1−#3), as usual in motion control to reduce residual vibrations.

The condition of lower absolute values of acceleration and jerk in deceleration can be maintained
even with a simplifying assumption, which reduces the number of profile parameters. With the hypoth-
esis that tad,papj = tad,panj and tad,nanj = tad,napj, from Eqs. (10) and (12), it follows that jad1 = jad3 and jad5

= jad7. Consequently, both the acceleration motion (phases #1–#3) and the deceleration motion (phases
#5-#7) have symmetric acceleration profile, but can have different maximum values of acceleration and
jerk. This profile is named symmetric elliptic jerk profile. In this case, the minimum set of parameters
that define the motion profile is lower: four independent duration parameters (tad,pa, tad,papj = tad,panj, tad,na,
tad,nanj = tad,napj) and two dependent peak parameters (jad1 = jad3 and jad5 = jad7). An example of symmetric
jerk profile is shown in Fig. 4, which represents the dimensionless jerk, acceleration, velocity, and dis-
placement for tad,pa = 0.3, tad,na = 0.5, tad,papj = tad,panj = 0.1, and tad,nanj = tad,napj = 0.2. The corresponding

https://doi.org/10.1017/S0263574723000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000255


Robotica 1983

Figure 5. Comparison of the elliptical jerk law (EJ, red) with other motion laws: trapezoidal veloc-
ity (TV, blue), trapezoidal acceleration (TA, green), cycloidal (CY, black), sinusoidal jerk (SJ, cyan),
modified sinusoidal jerk (MSJ, black dashed).

jerk peak parameters are jad1 = jad3 = 106.10, and jad5 = jad7 = 35.37. The dimensionless acceleration
varies between a maximum positive of 8.33 in phase #2 and negative minimum of −5.56 in phase #6,
while the dimensionless velocity reaches a maximum value of 1.667 in phase #4.

4. Kinematic comparison with other motion laws
In this section, the proposed elliptical jerk motion profile (EJ) is compared from a purely kinematic
point of view to other geometric and trigonometric motion laws analyzed in the scientific literature,
maintaining the dimensionless approach for the sake of generality. The following motion profiles are
compared in Fig. 5:

• TV: trapezoidal velocity profile [7]
• TA: trapezoidal acceleration (S-curve) [7]
• CY: cycloidal profile [7]
• SJ: sinusoidal jerk profile [16]
• MSJ: modified sinusoidal jerk profile [17]
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Table I. Coefficients of jerk, acceleration,
velocity.

Profile Cj Ca Cv

EJ 40.74 8 2
TV ∞ 4 2
TA 32.00 8 2
CY 39.48 2π 2
SJ 50.27 8 2
MSJ 39.11 8 2

The cycloidal law cannot have finite phases with null jerk. Therefore, in order to include in the com-
parison also the cycloidal law, for the EJ profile a null duration has been imposed for the phases with
null jerk (#2, #4, #6), along with an equal duration of 1/4 for the remaining ones (#1, #3, #5, #7). With
these assumptions, all the considered motion profiles are fully defined, except the MSJ profile.

In general, the MSJ profile is characterized by 15 phases [17]. In the phases #1, #3, #5, #7, #9, #11,
#13, and #15 jerk is sinusoidal; in the phases #2, #6, #10, and #14 the jerk is constant; in the phases
#4, #8, and #12 the jerk is null. In practice, the MSJ profile is similar to the EJ profile, but each phase
with semi-elliptical jerk is replaced by a triplet of phases (sinusoidal-constant-sinusoidal). To include
in the comparison the CY law, the null jerk phases of the MSJ law (#4, #8, #12) have been eliminated.
The constant jerk phases cannot be eliminated; otherwise, the MSJ law becomes a SJ law. Therefore,
the following assumptions are made: the duration of the phases with sinusoidal jerk is 1/16, and the
duration of the phases with constant jerk is 1/8.

Table I summarizes the coefficients of jerk, acceleration, and velocity (Eq. 17) for the considered
motion profiles. The influence of these coefficients is extensively debated in ref. [7]. In general, smoother
trajectories present higher peaks of velocity and acceleration (Cv and Ca). The coefficient Ca is signifi-
cant since the force/torque applied by the motor is proportional to acceleration for inertial systems. On
the other hand, the kinetic energy is proportional to square of velocity; therefore, it is convenient to have
low values of Cv. The coefficient Cj provides an information about the jerk peaks, which influence the
vibrations induced by a motion profile.

From the analysis of Fig. 5 and Table I, it is possible to summarize the following observations:

• As regards the coefficient of jerk, the SJ profile has the highest value (50.27), excluding the TV
profile, which has infinite jerk, due to the acceleration discontinuities. The EJ profile has a coeffi-
cient Cj of 40.74, which is slightly higher than the ones of the CY and MSJ profiles (respectively
39.48 and 39.11). The TA profile has the lowest Cj (32.00), but has also jerk discontinuities for
tad = 0, 0.25, 0.75, and 1. Jerk is discontinuous also for the CY profile in tad = 0, when it varies
from 0 to 39.48, and in tad = 1, when it varies from 39.48 to 0.

• As regards the coefficient of acceleration, the EJ, TA, SJ, and MSJ profiles have the same value
(8), while the CY and TV laws are characterized by lower values (2π and 4).

• With the considered hypotheses, the coefficient of velocity has the same values for all the
profiles (2).

It is possible to note that the SJ and MSJ profiles are the most qualitatively similar to the proposed
EJ profile as regards the jerk shape, but the SJ as a significantly higher Cj. On the other hand, the Cj of
the EJ profile is very close to the ones of the CY and MSJ laws. A significant difference between the EJ
profile and the TV, TA, and CY laws is that the EJ jerk profile is continuous.

In the following section, a dynamic comparison among these motion profiles is carried out with
reference to a second-order linear system.
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Figure 6. Dynamic comparison, case study I (ζ = 0.1): relative position xr = x – xd (top) and relative
velocity dxr/dt (bottom).

Figure 7. Dynamic comparison, case study II (ζ = 0.5): relative position xr = x – xd (top) and relative
velocity dxr/dt (bottom).
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Figure 8. Dynamic comparison, case study III (ζ = 1): relative position xr = x – xd (top) and relative
velocity dxr/dt (bottom).

5. Dynamic comparison with other motion laws
For the dynamic comparison among the considered motion laws, a second-order linear system has been
taken into account, characterized by the following differential equation:

mẍ = −k(x − xd) − d(ẋ − ẋd) (18)

This very simple linear model has been selected for the investigation since it can represent a wide
variety of single-input single-output dynamic systems, such as:

• an inertia m (either translating or rotating), position-controlled by means of a PD closed-loop
with proportional gain k, derivative gain d, and time-variable set-point xd;

• an inertia m connected in parallel by a spring with stiffness k and by a damper with coefficient d
to a moving base with time-variable position xd.

The following results are referred to a case study with m = 1 kg and k = 2200N/m, considering three
different levels of damping ratio ζ: (I) ζ = 0.1 (d = 9.38 Ns/m); (II) ζ = 0.5 (d = 46.90 Ns/m); (III) ζ = 1
(d = 93.80 Ns/m).

Six different time histories of xd have been obtained scaling the six dimensionless profiles of Fig. 5
with a displacement h = 0.1 m and a motion duration T = 0.5 s. Figures 6–8 show the relative displace-
ment xr = x – xd and the relative velocity dxr/dt for the damping levels I, II, and III, comparing the
vibrations deriving from the six motion profiles.

Moreover, Table II compares the six laws in terms of maximum absolute values of xr, RMS values of
xr, settling times to within ± 0.04 mm (around 2% of the maximum relative displacement), maximum
absolute values of relative velocity (|dxr/dt|), and maximum absolute values of relative acceleration
(|d2xr/dt2|).

From the analysis of Figs. 6–8 and of Table II, it is possible to outline the following conclusions:
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Table II. Comparison of the vibrations induced by the six considered motion laws.

Profile max(|xr|) [mm] RMS (xr) [mm] Settling time [s] max(|dxr/dt|) [m/s] max(|d2xr/dt2|) [m/s2]

Case I II III I II III I II III I II III I II III
EJ 1.81 1.48 1.25 0.493 0.450 0.403 0.715 0.570 0.571 0.031 0.018 0.013 0.972 0.585 0.379
TA 1.58 1.40 1.19 0.464 0.434 0.392 0.588 0.576 0.575 0.026 0.016 0.012 0.807 0.599 0.401
CY 1.38 1.19 1.07 0.441 0.417 0.380 0.947 0.583 0.578 0.022 0.015 0.013 0.646 0.367 0.243
SJ 2.01 1.54 1.29 0.519 0.463 0.412 0.839 0.566 0.567 0.035 0.021 0.015 1.257 0.535 0.359
MSJ 1.83 1.50 1.26 0.497 0.453 0.405 0.772 0.569 0.570 0.032 0.018 0.014 0.983 0.615 0.403
TV 1.71 0.97 0.73 0.447 0.364 0.327 1.035 0.612 0.599 0.054 0.037 0.027 2.818 3.107 3.037
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• As expected, the TV profile, characterized by acceleration discontinuities and infinite jerk,
induces the highest peaks of relative acceleration and velocity, and consequently the highest
settling times, for all the damping levels.

• Also, the CY profile has high settling time with respect to the EJ, TA, SJ, and MSJ laws, espe-
cially in case I, with low damping; on the other hand, this profile induces the lowest peaks of
relative acceleration and velocity.

• From a qualitative point of view, the dynamic responses induced by the EJ law are similar to the
ones induced by the MSJ profile, for all the damping levels: as a matter of fact, in Figs. 6–8 the
time histories of EJ and MSJ are nearly coincident; also the behavior related to the SJ profile is
quite similar, but slightly more oscillatory.

• For all the damping levels, the maximum absolute relative displacement |xr| of the EJ law is
lower than the ones of the SJ and MSJ laws, but it is higher than the ones of the CY, TA, and TV
profiles.

• The settling time of the EJ law is the second lowest in case I (lower damping), after the TA
profile. In cases II and III, with higher damping, the settling times are more aligned for all the
profiles, and the EJ profile is better than the TA profile. Summing the settling times in the three
cases, the EJ profile is a second best after the TA law.

6. Conclusions and future developments
In this paper, a motion profile with elliptically shaped jerk has been proposed, presenting the analytical
expressions of jerk, acceleration, velocity, and position. In dimensionless formulation, the profile is
completely defined by 10 parameters: six time parameters and four jerk peak parameters. Nevertheless,
imposing four necessary conditions (null acceleration at the end of phases #3 and #7, null velocity and
unit displacement at the end of phase #7), the jerk parameters can be calculated as functions of the time
parameters (explicit equations are presented).

Moreover, the minimum set of parameters can be reduced from six to four with the assumption that
the two jerk peaks in acceleration are equal, as the two jerk peaks in deceleration (symmetric elliptic jerk
profile). Also with this simplification, it is still possible to impose lower absolute values of acceleration
and jerk during the deceleration, as usual in motion control to limit the residual vibrations.

The proposed law has been compared to other well-known geometric/trigonometric motion profiles:
trapezoidal velocity, trapezoidal acceleration (S-curve), cycloidal, sinusoidal jerk, modified sinusoidal
jerk.

First, a kinematic comparison has been carried out, discussing the coefficients of jerk, acceleration,
and velocity of the considered profiles. Then, a dynamic assessment has been performed, evaluating the
vibrations induced to a second-order linear system. Even if this model is very simple, it can represent
adequately a wide range of real applications, such as closed-loop control of a mechatronic axis, or
vibrations induced to a suspended mass by a moving base.

The results show that the elliptic jerk profile is an interesting option, since it achieves a good compro-
mise among settling time and maximum values of relative velocity and acceleration. In particular, the
performance of the elliptic jerk profile is interesting in case of high damping levels, more suitable for
closed-loop position control. Regarding this application, not only the profile effectiveness using classical
integer-order algorithms (PID/PD) will be assessed but also in combination with fractional-order and
distributed-order controllers [18–21]; to this aim, a test bench has been prepared, and an experimental
campaign is in progress.

In future work, the dynamic analysis will be extended varying continuously two parameters: (i) the
damping coefficient ζ and (ii) the nondimensional ratio between the inverse of the motion duration T
and the natural frequency of the second-order system. Then, the different profiles will be compared not
only in the time domain but also in the frequency domain.
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Moreover, the investigation will be deepened considering not only linear systems, but extending the
comparison with other motion profiles also in presence of the typical nonlinearities of real mechatronic
axes with ordinary [22] and planetary [23] gears.

Finally, another research direction is the application of multi-input multi-output robotic systems.
Innovative motion profiles can be used to plan end-effector point-to-point linear movements, improving
different performance indexes (accuracy, energy efficiency). The study will start from simple robotic
architectures, eventually statically balanced [24], arriving at flexible architectures [25].
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