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Analytical expressions for the envelope correlation of certain
narrow-band stimuli

Steven van de Par and Armin Kohlrausch
Institute for Perception Research (IPO), P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

~Received 1 December 1994; revised 27 April 1995; accepted 28 May 1995!

Analytical solutions are presented for the correlation between the envelopes of certain narrow-band
stimuli which are typically used in binaural research. These stimuli are either the sum of an in-phase
masker and an out-of-phase signal, or they are two partially correlated noises. Because an envelope
has a nonzero mean, the solutions differ depending on whether the envelope correlation is expressed
as the normalized cross correlation or as the normalized cross covariance~Pearson product-moment
correlation!. The envelope correlation depends on the statistics of the masker and the signal whereas
the waveform correlation depends on neither. This influence only disappears for the normalized
envelopecross correlationprovided that the correlation is close to one. In this case, the normalized
envelope cross correlation is equal to the square root of the waveform correlation. The results for
two partially correlated noise bands are also of relevance for experiments dealing with monaural
envelope discrimination and comodulation masking release. ©1995 Acoustical Society of America.

PACS numbers: 43.66.Pn, 43.66.Dc, 43.66.Ba

INTRODUCTION

The interaural cross correlation of a stimulus presented
to the two ears of a listener forms an important cue in bin-
aural listening. For example, the masked threshold in condi-
tions leading to a binaural masking level difference can be
predicted in many cases from the subject’s sensitivity to
changes in the interaural cross correlation~Durlach et al.,
1986; Bernstein and Trahiotis, 1992!. Therefore most mod-
ern models of binaural interaction incorporate a central stage
in which the interaural cross-correlation functions are calcu-
lated within each critical band~e.g., Colburn, 1977; Linde-
mann, 1986; Raatgever and Bilsen, 1986!.

The interaural correlation is usually calculated from the
temporal waveforms. In the typical condition of an in-phase
masker combined with an out-of-phase signal (M0Sp),

1 this
leads to a very simple relation between the interaural wave-
form correlation and the relative intensity of masker and sig-
nal ~cf. Durlach et al., 1986!. This correlation measure is,
however, of little relevance for experiments that use high-
frequency stimuli. Various binaural experiments have re-
vealed that, at high frequencies, the ear is insensitive to in-
teraural differences in the fine structure of the stimuli, but
that it can detect interaural differences in the envelopes~cf.
Henning, 1974; McFadden and Pasanen, 1978!. Furthermore,
at frequencies above about 1.5 kHz, the phase locking in the
responses of the inner hair cells decreases and, consequently,
the coding of the stimulus fine structure is lost~e.g., Palmer
and Russell, 1986!. Thus, at high frequencies, only theenve-
lopeof the acoustic stimuli is coded in the neural activity. As
a consequence, the envelope correlation is a more interesting
measure than the waveform correlation for binaural experi-
ments performed at high frequencies.

The envelope correlation is also of interest for experi-
ments onmonauralenvelope correlation perception~e.g., Ri-
chards, 1987!. In these experiments, the~monaural! stimulus
consists of two narrow-band noises at different center fre-

quencies. Subjects are asked to discriminate between stimuli
with different degrees of envelope correlation. For these
stimuli, the waveform correlation between the two noise
bands is always zero, independent of the correlation between
their envelopes.

Despite the relevance of the envelope correlation for
binaural and monaural experiments, no analytical expres-
sions have been derived so far~to the best of our knowledge!
that relate waveform and envelope correlation to one another.
There are, however, some observations available that are de-
rived from numerical simulations. Bernstein~1991! reported
an empirical relation between the normalized cross covari-
ance~sometimes referred to as the Pearson product-moment
correlation! of the envelopes,r E , and the waveform correla-
tion, rW , for an M0Sp condition and also for conditions
where narrow bands of noise are mixed according to the
method specified by Licklider and Dzendolet~1948! and Jef-
fress and Robinson~1962!. Provided thatrW was close to
one, he found thatr E was approximately equal torW

2 .
A qualitatively similar result has been published earlier

by Richards~1987!. Using the cross-covariance measure for
the envelope she noted that ‘‘waveform correlations are
larger than correlations based on envelopes alone~except at
r50 andr51, where whole waveform and envelope corre-
lations are the same!’’ ~Richards, 1987, pp. 1628–1629!.2

A different result, again based on numerical simulations,
was found by Kohlrauschet al. ~1995!. They derived the
normalizedcross correlationof the envelopes forM0Sp for a
wide range of signal-to-masker ratios~SMR!. In this simula-
tion, the envelope correlation was approximately equal to the
square root of the waveform correlation. Thus, in numerical
simulations, the cross covariance and the cross correlation of
the envelopes differ significantly. The different outcome of
these numerical simulations was one of the motivations for
the investigation presented in this paper.

Analytical expressions are derived that relate the SMR
of anM0Sp configuration to the envelope correlation for a
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specific class of stimuli. It is shown how these expressions
can be used for any set of partially correlated Gaussian
noises as well. The specific class consists of pairs of band-
limited waveforms where one waveform is the sum and the
other is the difference of a maskerM (t) and a signalS(t).
The phase and amplitude of the masker and the signal are
assumed to be stationary and pointwise independent for each
specific instant of time. Furthermore, the differences between
the phases ofM (t) andS(t) are assumed to be uniformly
distributed. The masker and signal can both be noiselike, but
the derivation is also applicable to a situation where one or
both are sinusoids with a random starting phase. Further-
more, it is shown how the derivation can be applied to mul-
tiplied noise which is generated by multiplying a low-pass
noise by a sinusoidal carrier. If the masker~or the signal! is
such a multiplied noise and the signal~or the masker! is a
sinusoid with the same frequency as the sinusoidal carrier
and differs only in a constant phase offset, i.e., if it is spec-
trally centered in the multiplied noise, the differences be-
tween the phases ofM (t) andS(t) are not uniformly distrib-
uted.

All derivations are presented for the normalized cross
covariance and the normalized cross correlation. Because
this paper concentrates on the mathematical derivations, we
do not go into the interesting discussion of which of the two
envelope correlation measures is more appropriate for psy-
choacoustics.

The following section~I! gives some general definitions
and assumptions and some assumptions about the masker
and signal used. At the end of that section, the well-known
relation between the SMR and the waveform correlation~cf.
Durlach et al., 1986! is formulated in the notation used
throughout this study. In Secs. II and III, analytical expres-
sions are derived for the cross correlation and the cross co-
variance, respectively, for the conditionM 0Sp . Besides the
exact solutions, which are quite complex and not suitable for
fast calculations, approximations are given for the case that
the SMR is small. Section IV shows how the previous results
can be applied to the general case of two partially correlated
Gaussian noises and Sec. V derives solutions for multiplied
noise. The final section~VI ! gives an overview of the results
and presents some implications and questions for future re-
search.

I. DEFINITIONS AND ASSUMPTIONS

In the psychoacoustical literature, we find that two defi-
nitions of correlation are used for the correlation between
two random processesx and y ~e.g., Lindemann, 1986; Ri-
chards, 1987!:

~1! the normalized cross correlation~in short,cross correla-
tion!, which is defined as

rxy5
^xy&

A^x2&^y2&
; ~1!

~2! the normalized cross covariance~in short,cross covari-
ance!, which is defined as

r xy5
^~x2^x&!~y2^y&!&

A^~x2^x&!2&^~y2^y&!2&
. ~2!

In these equations,^ & is used to denote an expected value. It
is obvious that both types of correlation are identical whenx
andy have zero mean.

For psychoacoustical experiments, the following estima-
tors are commonly used to analyze specific waveform
samples:

%xy5
~1/T!*0

Tx~ t !y~ t !dt

A~1/T!2*0
Tx2~ t !dt *0

Ty2~ t !dt
~3!

for the cross correlation, whereT is the length of the wave-
form sample, and

xxy5
~1/T!*0

T
„x~ t !2 x̄…„y~ t !2 ȳ…dt

A~1/T!2*0
T
„x~ t !2 x̄…2 dt *0

T
„y~ t !2 ȳ…2 dt

~4!

for the cross covariance, wherex̄ and ȳ denote the time
averages ofx andy, respectively.

If x and y result from strongly ergodic processes, the
definitions in Eqs.~1! and~2! coincide with the definitions in
Eqs. ~3! and ~4! provided thatT→` ~Bendat and Piersol,
1971!. In real experiments, time intervals are always finite
and therefore the estimators are of limited accuracy.

In the following, the maskers and signals are specified to
which the derivations in the following sections are appli-
cable. A nonzero maskerM (t) and a nonzero signalS(t) are
defined. One or both may be a specific realization of a
narrow-band random process. The masker and signal are
used in the derivations of the pure waveform and the enve-
lope correlation and can be written in terms of their respec-
tive Hilbert envelopesm(t) ands(t):

M ~ t !5m~ t !cos„vt1fm~ t !…, ~5!

S~ t !5s~ t !cos„vt1fs~ t !…, ~6!

wherefm(t), fs(t), m(t), and s(t) are random functions
that vary slowly with respect to cosvt ~Davenport and Root,
1958!.

The amplitude functionsm(t) and s(t) and the phase
functionsfm(t) andfs(t) are assumed to be pointwise in-
dependent, i.e., their joint probability factors for eacht:

Pmsfmfs
„m~ t !,s~ t !,fm~ t !,fs~ t !…

5Pm„m~ t !…Ps„s~ t !…Pfm
„fm~ t !…Pfs

„fs~ t !…. ~7!

The difference of the two phase functions,f(t), is assumed
to be uniformly distributed. Furthermore, the processes gen-
eratingM (t) andS(t) are assumed to be stationary. These
assumptions imply that̂M &5^S&50.

Using the assumption that the amplitude and phase func-
tions are pointwise independent, we can find the following
relations:

^M2&5 1
2^m

2&, ~8!

^S2&5 1
2^s

2&. ~9!

For the maskerM (t) and the signalS(t), the SMR is defined
as
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SMR5
^S2&

^M2&
5

^s2&

^m2&
. ~10!

Two new waveforms are defined using the masker and
signal:

L~ t !5M ~ t !1S~ t !, ~11!

R~ t !5M ~ t !2S~ t !. ~12!

L(t) and R(t) denote waveforms that could be presented
dichotically in a binaural experiment.

Because the means ofM (t) andS(t) are zero, the means
of L(t) andR(t) are also equal to zero. This implies that the
two definitions of correlation@Eqs.~1! and~2!# give the same
value if applied toL(t) andR(t).

In order to derive an expression for the waveform cor-
relation, we will use the definition of the normalized cross
correlation in Eq.~1!. Using the fact thatM andS are un-
correlated and stationary, we get the waveform correlation

r LR5rLR5
^M1S!~M2S!&

A^~M1S!2&^~M2S!2&

5
^M2&2^S2&

^M2&1^S2&
5

^m2&2^s2&

^m2&1^s2&
, ~13!

as was also derived by others, e.g., Durlachet al. ~1986!.
The relative power of the masker,M , and the signal,S, is the
only determining factor for the correlation; other statistical
properties ofM andS have no effect.

The Hilbert envelopes3 of L andR can be derived using
Eqs.~11! and ~12!:

EL5um~ t !eifm~ t !1s~ t !eifs~ t !u, ~14!

ER5um~ t !eifm~ t !2s~ t !eifs~ t !u. ~15!

The frequencyv is not present in the expressions for the
envelope. Because all further calculations of the envelope
correlation are based on these two expressions, the wave-
formsL andR may also be located at different places in the
frequency domain as long as the functionsm(t), s(t), fm(t),
andfs(t) remain the same. Therefore the derivations of the
envelope correlations are also applicable to stimuli used in
comodulation masking release experiments.

II. NORMALIZED CROSS CORRELATION OF THE
ENVELOPES

In this section, the normalized cross correlation of the
envelopes of two waveformsL andR as defined in the pre-
vious section is calculated. Because the definition of the nor-
malized cross correlation@Eq. ~1!# is the ratio of two quan-
tities, the derivation splits into two parts. First, the quantity
^ELER& has to be derived@Eqs.~16!–~24!# and, second, the
quantityA^EL

2&^ER
2& @Eq. ~25!#. These two steps lead to the

exact solution for the envelope cross correlation@Eq. ~26!#.
In the second part of this section the exact solution of Eq.
~26! is approximated by a much simpler expression for the
specific case of low SMRs@Eqs. ~27!–~30!#. The resulting
approximation has a simple relation with the waveform cor-
relation @Eqs.~31! and ~32!#.

The envelopes of the waveformsL andR are given by
Eqs.~14! and ~15!:

EL5umeifm1seifsu

5A~m cosfm1s cosfs!
21~m sin fm1s sin fs!

2

~16!

and

ER5umeifm2seifsu

5A~m cosfm2s cosfs!
21~m sin fm2s sin fs!

2.

~17!

Using the fact that cos2 a1sin2 a51 and that
cosa cosb1sina sinb5cos~b2a! we can write an expres-
sion for the product of the envelopes:

^ELER&5K ~m21s2!A12
4m2s2

~m21s2!2
cos2 fL , ~18!

where

f5fs2fm . ~19!

Using the Taylor series

A11x511 (
n51

`

cnx
n, ~20!

with

cn5
1

n! )
k51

n S 322kD , ~21!

we obtain the expression

^ELER&5Km21s21 (
n51

`

cn~24!n

3
m2ns2n

~m21s2!2n21 cos
2n fL . ~22!

Using the facts that the amplitude and phase functions
are pointwise independent, and thatf is uniformly distrib-
uted, and that for positive integersn

E
0

2p

cos2n u du5
~2n21!!!

~2n!!!
2p, ~23!

where n!!5n(n22)(n24)•••2 for n even andn!!5n(n
22)(n24)•••1 for n odd, we get

^ELER&5^m2&1^s2&1 (
n51

`

cn~24!n
~2n21!!!

~2n!!!

3 K m2ns2n

~m21s2!2n21L . ~24!

The denominator for the normalized cross correlation of the
envelopes, from Eq.~1!, reduces rather straightforwardly to

A^EL
2&^ER

2&5A~^m2&1^s2&!22~2^m&^s&^cosf&!2

5^m2&1^s2&, ~25!
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becausef is uniform. Now we can write the cross correla-
tion of the envelope as the ratio of Eqs.~24! and ~25!:

rELER5
^ELER&

A^EL
2&^ER

2&
511

1

^m2&1^s2&

3 (
n51

`

cn~24!n
~2n21!!!

~2n!!!

3 K m2ns2n

~m21s2!2n21L . ~26!

The last factor in Eq.~26! indicates that the cross correlation
of the envelopes depends on the statistics of the masker and
the signal. In the calculations for Figs. 1–4, it has been as-
sumed that the noises have Gaussian waveform statistics.

In Fig. 1, the cross correlationr is plotted for several
M0Sp conditions as a function of the SMR. In all three con-
ditions the masker is a Gaussian noise. The three curves
show the waveform correlation~solid line!, the envelope
cross correlation for a sinusoidal signal~dotted line!, and the
envelope correlation for a Gaussian signal~dashed line!. This
latter condition is an example of the more general case of
two Gaussian noises with a specified waveform correlation
which is discussed in more detail in Sec. IV. The curves are
obtained by calculating Eqs.~13! and ~26!. The expected
value in the series of Eq.~26! is evaluated numerically, using
the probability distribution functions ofm(t) ands(t).

We can see that the envelope cross correlation of a
Gaussian signal~dashed line! differs from the envelope cross
correlation with a sinusoidal signal~dotted line! for SMRs
around 0 dB. This illustrates the dependence of the envelope
cross correlation on the statistics of the signalS(t). Further-
more, the envelope cross correlation with a sinusoidal signal
shows a slightly asymmetrical curve around SMR50 dB. For
a Gaussian signal the~dashed! curve is symmetrical around 0
dB SMR. Because signal and masker are Gaussian noises,
changing the sign of the SMR is equivalent to transforming
theM 0Sp condition into anMpS0 condition. Since the en-
velopes in both conditions are identical, the envelope cross
correlation must also be identical.

The waveform correlation~solid line! varies from 1 for
very small SMRs where the homophasic masker dominates,
to21 for very large SMRs where the antiphasic signal domi-
nates. For the envelope cross correlation we do not observe
negative values. This is due to the fact that the envelopes are
non-negative functions. The cross-correlation value of non-
negative functions is necessarily non-negative@cf. Eq. ~1!#.

In binaural experiments, signal thresholds typically cor-
respond to SMRs in the range210 to230 dB. In addition,
the relevant quantity in detecting the signal in the condition
M0Sp is the changeDr512r in the cross correlation. This
quantity is plotted in Fig. 2 as a function of the SMR for the
same conditions as in Fig. 1. Generally, the change in the
cross correlation becomes smaller with decreasing SMR. The
curves approximate straight lines for small SMRs, a range
most relevant for binaural detection experiments. This sug-
gests that a simple approximation must be possible.

Indeed, when̂s2&!^m2&, Eq. ~26! can be approximated

FIG. 1. The normalized cross correlation as a function of the SMR in the
M0Sp condition with a Gaussian noise masker. The solid line shows the
waveform cross correlation; the envelope cross correlation is shown by the
dotted line for a sinusoidal signal and by the dashed line for a Gaussian
noise signal. Note that from Eq.~13! it follows that thewaveformcross
correlation is only dependent on the SMR and not on the other statistical
properties ofM andS.

FIG. 2. Change in the normalized cross correlation as a function of the SMR
in theM 0Sp condition with a Gaussian noise masker. The solid line shows
the waveform cross correlation; the envelope cross correlation is shown by
the dotted line for a sinusoidal signal and by the dashed line for a Gaussian
noise signal.
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by a much simpler equation, because the probability of find-
ing s2!m2 at a specific instant of time is close to unity. In
this case, the following approximation can be made at most
instants of time:

m2ns2n

~m21s2!2n21'
s2n

m2n22'
s2n

m2n221s2n22 , ~27!

for n.1 ~for n51, the fraction is approximately equal tos2!.
For the rare cases thats2@m2 or s2'm2, the approximation
of the fraction in Eq.~27! is not valid. This is, however, of
little influence on the expected value of Eq.~27!, because the
fraction has only a limited magnitude under these circum-
stances and contributes little to the expected value. Therefore
the expected value can be written as

K m2ns2n

~m21s2!2n21L ' K s2n

m2n221s2n22L , ~28!

for n.1 ~for n51, the expected value is approximately
equal to^s2&!. By substituting Eq.~28! into Eq. ~26! we can
write

rELER'12
1

^m2&1^s2& S ^s2&1
3

4 K s4

m21s2L 1••• D .
~29!

Of the terms within the parenthesis in Eq.~29!, only the first
is needed for a good approximation. All further terms have
successive expected values which are negligible with respect
to the preceding values. Using Eqs.~8! and~9!, the envelope
correlation as derived in Eq.~26! reduces to

rELER'12
^S2&

^M2&1^S2&
5

^M2&

^M2&1^S2&

'
^M2&2 1

2^S
2&

^M2&1 1
2^S

2&
. ~30!

In contrast to the exact formula, the envelope cross cor-
relation is in this approximation only dependent on the SMR
and not on the statistics ofS andM .

BecausêM2&@^S2&, we know thatrELER in Eq. ~30! is
nearly one, differing only byDrELER ' ^S2&/^M2&. A similar
statement can be made for the waveform correlationrLR in
Eq. ~13!, for which we findDrLR'2^S2&/^M2&. This leads
to the following relation:

2DrELER'DrLR
. ~31!

A different way to express this relation is

ArLR5~12DrLR!1/2'12 1
2DrLR

'12DrELER5rELER. ~32!

Equation~32! indicates that at low SMRs, the envelope cross
correlation is approximately equal to the square root of the
waveform correlation.

In Table I the accuracy of the approximation in Eq.~30!
is shown for the two cases of a sinusoidal and a Gaussian
noise signal. For an SMR of28 dB or less the approxima-
tion of the envelope cross correlation differs 5% or less from
the exact value. Thresholds obtained in a binauralM0Sp

condition with a sinusoidal signal and a narrow-band masker,
both at 4 kHz, typically correspond to an SMR of212 dB or
less~cf. Zurek and Durlach, 1987!. In this case, the approxi-
mation in Eq.~30! is accurate to within 1%. When we com-
pare the result of Eq.~30! with the waveform correlation@Eq.
~13!#, we can conclude that in order to achieve the same
amount of change in interaural correlation for the waveform
as for the envelope, the signal level in the latter condition has
to be 3 dB higher than in the former. This agrees with the
results of numerical simulations published by Kohlrausch
et al. ~1995!.

III. NORMALIZED CROSS COVARIANCE OF THE
ENVELOPES

In this section, the cross covariancer ELER of the enve-
lopes of the two waveformsL andR as defined in Sec. I is
calculated using Eq.~2!. First it will be shown that the only
unknown quantity iŝ EL&5^ER&. This quantity is then cal-
culated in Eqs.~33!–~36!. In the second part of this section,
approximations are derived for low values of the SMR@Eq.
~37!–~40!#. The last part of this section shows how the en-
velope cross covariance is related to the waveform correla-
tion for low SMRs@Eqs.~41!–~44!#. For the case of a masker
with a flat temporal envelope~e.g., a sinusoid!, the approxi-
mation needs more elaborate derivations. These are given in
Appendix A and are discussed in Eqs.~45!–~48!.

It is easy to see that̂EL&5^ER&, ^EL
2&5^ER

2&, and
^(EL2^EL&)

2&5^(ER2^ER&)2&. With this knowledge we
can write Eq.~2! slightly differently:

r ELER5
^ELER&2^EL&

2

A^EL
2&^ER

2&2^EL&
2
. ~33!

In order to evaluate the cross covariance, we need to
know ^ELER&, A^EL

2&^ER
2&, and ^EL&. The first two terms

have been derived in the previous section@cf. Eqs.~24! and
~25!#. The average value,^EL&, can be expressed using Eq.
~16!, which is the general expression for the envelope:

^EL&5KAm21s2A11
2ms

m21s2
cosfL . ~34!

Using the Taylor series of Eq.~20! we can expand the second
square root:

^EL&5K Am21s21 (
n51

`

cn2
n

mnsn

~m21s2!n21/2 cos
n fL .

~35!

TABLE I. Maximum SMRs for several error margins in the approximation
of the normalized cross correlation of the envelope for theM 0Sp condition
with a noise masker. The second column applies to the case that the signal is
a sinusoid and the third column applies to the case that the signal is a noise.
The noises are assumed to have Gaussian waveform statistics.

Error in rELER

SMR forM 0Sp

S sinusoid S noise

, 1% <211 dB <212 dB
, 5% < 28 dB < 28 dB
,10% < 26 dB < 26 dB
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Because the amplitude and phase functions are pointwise
independent, we can write

^EL&5^Am21s2&

1 (
n51

`

c2n4
nK m2ns2n

~m21s2!2n21/2L ~2n21!!!

2n!!
.

~36!

Here, the odd terms of the series in Eq.~35! are omitted since
they are equal to zero. With this expression we know all
terms needed for the cross covariance as defined in Eq.~33!.

In Fig. 3, the cross covariance is shown for the same
conditions as in Fig. 1 as a function of the SMR. In contrast
to the observation for the cross correlation, the cross covari-
ance of the envelope forM0Sp with a sinusoidal signal and a
noise masker~dotted line! is negative for positive SMRs.
This can be understood if we consider that the sign of the
cross covariance is determined by the similarity of the enve-
lope variations in both ears. When a noise dominates the
stimulus~dotted line at small SMRs and dashed line at small
negative and at high positive SMRs!, the envelope variations
in both ears will be large and similar to the noise envelope
which yields a cross covariance close to 1. When a sinusoid
dominates the stimulus~dotted line at high SMRs!, the varia-
tions will be much smaller, but tend to be out of phase be-
tween the two ears. This results in a negative cross covari-
ance.

In Fig. 4, the quantityDr512r is plotted as a function
of the SMR for the same conditions. We can see that the
curves for the envelope cross covariance are generally higher

than the curves for the waveform correlation. This is the
opposite result from what was found for the envelope cross
correlation~cf. Fig. 2!. Again the curves approximate straight
lines for small SMRs. This suggests that a simple approxi-
mation must be possible just as was derived previously for
the cross correlation of the envelope.

We first derive an approximation for the case that the
masker envelope is not constant, which is equivalent to
^m2&2^m&2Þ0. When^m2&2^m&2@^s2&, the first term of
the series in Eq.~36! gives a good approximation. The same
line of reasoning can be followed here as was used for the
cross correlation@cf. Eq. ~26!#. We use the fact that

^Am21s2&5^m&1e1 , ~37!

with e1!^m& ande1 of the order̂ s
2/(m1s)&. Furthermore,

we denote the series in Eq.~36! ase2, and we know thate2 is
of the order^s2/(m1s)& and thuse2!^m&. This results in
the following expression for the mean of the envelope:

^EL&5^m&1e11e2 . ~38!

Evaluating Eq.~24!, taking into account the first term of the
series, yields

^ELER&5^m2&1e3 , ~39!

with e3!^s2&!^m2&2^m&2. Since, in addition, the termse1
and e2 are both of the order̂s2/(m1s)&, the cross covari-
ance of the envelopes can be written as

FIG. 3. The normalized cross covariance as a function of the SMR in the
M0Sp condition with a Gaussian noise masker. The solid line shows the
waveform cross covariance; the envelope cross covariance is shown by the
dotted line for a sinusoidal signal and by the dashed line for a Gaussian
noise signal.

FIG. 4. Change in the normalized cross covariance as a function of the SMR
in theM 0Sp condition with a Gaussian noise masker. The solid line shows
the waveform cross covariance; the envelope cross covariance is shown by
the dotted line for a sinusoidal signal and by the dashed line for a Gaussian
noise signal.
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r ELER5
^ELER&2^EL&

2

A^EL
2&^ER

2&2^EL&
2

5
^m2&1e32~^m&1e11e2!

2

^m2&1^s2&2~^m&1e11e2!
2

'
^m2&2^m&2

^m2&2^m&21^s2&
. ~40!

In Table II the accuracy of the approximation in Eq.~40!
is shown for the two cases of a sinusoidal signal and a
Gaussian noise signal.

Becausêm2&2^m&2@^s2&, we find thatr ELER is close
to one, differing only by

Dr ELER'
^s2&

^m2&2^m&2
. ~41!

For the waveform covariance we can show that
Dr LR'2^s2&/^m2&. Therefore we find

gDr LR'Dr ELER, ~42!

with

g5
^m2&

2^m2&22^m&2
. ~43!

Equation ~42! can be reformulated using the fact that
Dr LR!1:

r LR
g 5~12Dr LR!g'12gDr LR'12Dr ELER5r ELER.

~44!

In these approximations the value of the cross covari-
ance depends on the statistics of the maskerM , which is not
the case for the approximation for the cross correlation of the
envelope@cf. Eq. ~30!#. When we consider a Gaussian noise
as maskerM , with ^m2&51 we know that̂ m&25p/4. This
gives a value for the exponentg'2.3, a value that was found
by Bernstein~1991! in numerical simulations.

When the maskerM has a flat envelope, the approxima-
tion of Eq. ~40! does not hold. In this case,
^m2&5^m&25m2. In Appendix A this specific case is evalu-
ated by also taking into account the second term of the series
in Eqs.~24! and ~36!. This leads to a different expression:

gDr LR'11r ELER, ~45!

with

g5
1

2

~1/2!^s2&2~7/32m2!^s4&1~1/16m2!^s2&2

~1/2!^s2&2~1/32m2!^s4&2~1/16m2!^s2&2
.

~46!

When we take the example ofM being a sinusoidal masker
andS being a Gaussian noise we find~see Appendix A!

1
4Dr LR'11r ELER. ~47!

If both masker and signal are sinusoids with different fre-
quencies we find~see Appendix A!

1
16Dr LR'11r ELER. ~48!

IV. ENVELOPE CORRELATION BETWEEN GAUSSIAN
NOISES

If the maskerM and the signalS are Gaussian noises,
the two waveformsL andR are Gaussian noises, too, with a
waveform correlation between 1 and21 ~cf. Figs. 1 and 3!.
Another way of creating partially correlated noises uses three
independent source waveforms~‘‘three generator case,’’
Licklider and Dzendolet, 1948; Jeffress and Robinson,
1962!. A derivation of the general relation between envelope
and waveform correlation for Gaussian noises follows.

If we have two Gaussian noisesL and R with
^L2&5^R2&, we can rewriteL and R as the sum and the
difference of two independent noisesM 8 andS8:

L5 1
2~L1R!1 1

2~L2R!5M 81S8, ~49!

R5 1
2~L1R!2 1

2~L2R!5M 82S8. ~50!

Indeed, it is not difficult to see thatr M8S8 5 0. Because the
new waveformsM 8 andS8 are Gaussian distributed and un-
correlated, we conclude that we have independent wave-
forms and we can use these in the same way as the wave-
formsM andS as defined in Eqs.~5! and ~6!. The relative
intensity ofS8 andM 8 ~SMR8!, which is not known before-
hand, can be calculated from their waveform correlation with
the help of Eq.~13!. This leads to

12rLR
11rLR

5SMR85
^~S8!2&

^~M 8!2&
5

^~s8!2&

^~m8!2&
. ~51!

Now the general case of two partially correlated Gauss-
ian noises can be translated to anM0Sp condition with a
Gaussian signal and masker. The problem revolves about ob-
taining the probability distributions of the functionsm8 and
s8. Once these are known it is possible to apply all equations
that were derived for the cross correlation and the cross co-
variance of the envelope. Because the waveforms ofS8 and
M 8 are Gaussian distributed, their envelope functionss8 and
m8 have a Rayleigh distribution. Without loss of generality
we can set̂ (m8)2&51. This specifies the exact distribution
of m8 and also the distribution ofs8, because the value of
^(s8)2&/^(m8)2& is given by Eq.~51!. Knowing these distri-
butions, the envelope cross correlation and the envelope
cross covariance can be calculated@cf. Eqs. ~26!, ~33!, and
~36!#.

TABLE II. Maximum SMRs for several error margins in the approximation
of the normalized cross covariance of the envelope for theM 0Sp condition
with a noise masker. The second column applies to the case that the signal is
a sinusoid and the third column applies to the case that the signal is a noise.
The noises are assumed to have Gaussian waveform statistics.

Error in r ELER

SMR forM 0Sp

S sinusoid S noise

, 1% <215 dB <214 dB
, 5% <212 dB <211 dB
,10% <211 dB <29 dB
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V. MULTIPLIED NOISE

A special type of noise to which the derivations in the
previous sections are not generally applicable is multiplied
noise. Multiplied noise is generated by multiplying a low-
pass noise by a sinusoid. It is often used in experiments if a
narrow-band noise with variable center frequency is needed
~as, e.g., in psychophysical tuning curves; Johnson-Davies
and Patterson, 1979! or if comodulated noise bands at differ-
ent center frequencies must be generated~e.g., Mooreet al.,
1990!.4

A special case arises when the signalS(t) is a sinusoid
~with some phase offset ofq! with the same frequency as the
sinusoid that was used to obtain the multiplied noise. In this
situation, the phase differencef(t), as defined in Eq.~19!, is
not uniformly distributed, but is eitherq or q1p.5

For the pure waveform correlation, this nonuniform
phase is of no importance and thus Eq.~13! is also valid for
multiplied noise. For the envelope correlation, however, the
cos2n f factor in Eq.~22! cannot be reduced to (2n21)!!/
(2n)!!.

We can fixf(t) at a valueq if we use the low-pass
noise itself instead of the Hilbert envelope as the amplitude
functionm(t). The distribution of such an amplitude func-
tion allows for both positive and negative function values.
Assuming this fixed phase valueq, we will find cosq back
in the final expression for the normalized cross correlation of
the envelopes:

rELER511
1

^m2&1^s2& (
n51

`

cn~24!n

3cos2n q K m2ns2n

~m21s2!2n21L . ~52!

In the derivation, we needed either^m& or ^s& to be zero in
order for Eq.~25! to be valid since herêcosf&Þ0.

In Fig. 5, the cross correlation of the envelope for an
M0Sp condition with multiplied noise as masker and a sinu-
soidal signal is plotted as a function of the SMR with the
phase angleq as parameter. In addition the waveform corre-
lation is shown by the solid line. The phase angleq has a
marked effect on the envelope cross correlation. Forq50,
the values for the cross correlation are smallest. They are
also smaller than those for the conditions with a Gaussian
noise masker~cf. Fig. 1!. This allows a test of the hypothesis
that signal detection is based on envelope correlation cues,
becauseM0Sp thresholds should be lower for a multiplied-
noise masker, withq50, than for a Gaussian noise masker.

As in the previous section, it is possible to find an ap-
proximation for small SMRs. When̂m2&@^s2&, the first
term of the series in Eq.~52! is sufficient for a good approxi-
mation. Using Eqs.~8! and ~9!, the cross correlation of the
envelopes can be written as

rELER'
^M2&2^S2&12^S2&sin2 q

^M2&1^S2&
. ~53!

FIG. 5. The normalized cross correlation as a function of the SMR for the
waveform forM0Sp ~solid line!, the envelope for multiplied noise forM 0Sp

with M a multiplied noise~low-pass Gaussian noise multiplied by a sinu-
soid! and S a sinusoid, withq50 ~dotted line!, q5

1
8p ~dashed line!,

q5
1
4p ~long-dashed line!, andq5

3
8p ~dashed–dotted line!.

FIG. 6. Change in the normalized cross correlation as a function of the SMR
for the waveform forM 0Sp ~solid line!, the envelope for multiplied noise
for M0Sp with M a multiplied noise~low-pass Gaussian noise multiplied by
a sinusoid! andS a sinusoid, withq50 ~dotted line!, q5

1
8p ~dashed line!,

q5
1
4p ~long-dashed line!, andq5

3
8p ~dashed–dotted line!.
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This leads to the interesting result that forq50, the envelope
correlation is approximately equal to the pure waveform cor-
relation. On the other hand, forq51

2 p, the envelope corre-
lation is equal to unity for all SMRs@cf. Eq. ~52!#. The
change in cross correlation of the envelopes is shown in Fig.
6 for several values ofq. The waveform decorrelation~solid
line! is larger than any of the envelope decorrelations. For
small SMRs andq50, the difference between the two dis-
appears.

For the cross covariance, apart from the expression for
^ELER&, the expression for̂EL& as shown in Eq.~36! is also
slightly different. The reason for this is again thatf is not
uniformly distributed, as was discussed above for the cross
correlation.

This results in an expression for^EL& which depends on
cosq:

^EL&5^Am21s2&

1 (
n51

`

c2n4
nK m2ns2n

~m21s2!2n21/2L cos2n q. ~54!

In Fig. 7 the cross covariance of the envelope for mul-
tiplied noise is plotted as a function of the SMR with the

phase angleq as parameter. In the range from 0 to12 p, with
increasingq, the curves shift to the right at all SMRs.

When ^m2&@^s2&, the following approximation can be
made for the cross covariance:

r ELER'
^m2&2^umu&222^s2&cos2 q

^m2&2^umu&2
. ~55!

The change in cross covariance of the envelope is shown
in Fig. 8. In contrast to what we found for the cross correla-
tion ~cf. Fig. 6!, the change in cross covariance for the wave-
form is not always larger than for the envelope.

When the maskerM has a flat envelope~e.g., a sinusoid!
and when the level ofM is much higher than that ofS, the
approximation in Eq.~55! does not hold. In this case, ap-
proximations for the cross covariance are relatively difficult
to derive because both the expected value of the product of
the envelopes and the product of the expected value of the
squared envelopes are approximately equal to the product of
the means of the envelopes. Such an approximation is pre-
sented here for a signal that is a multiplied noise. Because
the basic steps in the derivation of this equation are exactly
parallel to that of Appendix A, only the result is presented:

r ELER'
2^s2&cos2 q1~^s4&2^s2&2!„1/4m22~1/m2! cos2 q1~1/2m2! cos4 q…

^s2&cos2 q1~^s4&2^s2&2!1/4m2 . ~56!

FIG. 7. The normalized cross covariance as a function of the SMR for the
waveform forM0Sp ~solid line!, the envelope for multiplied noise forM 0Sp

with M a multiplied noise~low-pass Gaussian noise multiplied by a sinu-
soid! and S a sinusoid, withq50 ~dotted line!, q5

1
8p ~dashed line!, q

5
1
4p ~long-dashed line!, andq5

3
8p ~dashed–dotted line!.

FIG. 8. Change in the normalized cross covariance as a function of the SMR
for the waveform forM 0Sp ~solid line!, the envelope for multiplied noise
for M0Sp with M a multiplied noise~low-pass Gaussian noise multiplied by
a sinusoid! andS a sinusoid, withq50 ~dotted line!, q5

1
8p ~dashed line!,

q5
1
4p ~long-dashed line!, andq5

3
8p ~dashed–dotted line!.
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VI. OVERVIEW OF THE RESULTS AND DISCUSSION

In the previous sections the envelope correlation for
various conditions was examined. The results can be summa-
rized as follows.

The decisive factors determining the envelope correla-
tion are

~1! the kind of correlation measure that is used: normalized
crosscorrelation or normalized crosscovariance;

~2! the statistics of the Hilbert envelopes,m and s, of the
homophasic maskerM and the antiphasic signalS, re-
spectively@in the case of multiplied noise, the relevant
statistics is not that of the Hilbert envelope but it is the
statistics of the temporal waveform of the low-pass noise
~cf. Sec. V!#; and

~3! the statistics of the phase difference betweenM andS.
This can be either uniform~Gaussian noise! or constant
~e.g., for multiplied noise!.

The approximations that are derived in the previous sec-
tions indicate a principal difference between the cross corre-
lation and the cross covariance of the envelope at small
SMRs, a level region most interesting for dichotic detection
experiments. The cross correlation doesnot depend on the
statistics of the masker and the signal while the cross co-
variance does depend on the masker statistics. When the
masker has a flat envelope, the cross covariance depends on
the statistics of the signal.

Given the amount of equations that were derived in this
paper, an overview of the results is bound to be complicated.
In Appendix B we have combined all relevant equations into
one scheme.

At the end of this rather mathematical paper, we would
like to mention some psychoacoustic implications and ques-
tions for future research that evolve from the derivations.
Throughout this paper, we only considered the condition
M0Sp . All statements about the relation between envelope
correlation~and statistics! and the SMR are equally valid for
the conditionMpS0 . Conditions that are not currently cov-
ered are those with a monaural signal (M0Sm ,MpSm). We
hope to be able to extend the mathematical derivations in the
future to these conditions also, since they are of particular
interest for the topic of comodulation masking release.

Models of binaural hearing that are based on the inter-
aural correlation of the waveform will in general predict no
influence of masker and signal statistics. From the deriva-
tions in this paper it is evident, however, that signal statistics
do influence the interaural correlation of the envelopes. This
provides a way to reexamine the assumption that an interau-
ral correlator is a central building block of binaural process-
ing.

One direct application of the analytical solutions of the
present paper is the comparison of binaural masking level
differences~BMLDs! at low and at high signal frequencies.
It has long been known that the BMLD decreases signifi-
cantly for signal frequencies above 500 Hz. One of the pos-
sible sources for this decrease is the loss of phase locking in
the neural responses. On the basis of the expressions derived
in the previous sections we can predict how much the BMLD
should change due to a loss of fine-structure information.

Using the cross-correlation measure@Eqs.~13! and~30!#, we
find a 3-dB lower BMLD when only the envelope of the
stimuli is available for calculating the interaural correlation.6

Since the decrease in BMLD toward high frequencies is
much larger than this value~cf. Zurek and Durlach, 1987;
Kohlrauschet al., 1995! additional sources such as a reduced
sensitivity for interaural differences at high frequencies have
to be assumed~Koehnkeet al., 1986!.

We shortly want to address the question whether wave-
forms and their Hilbert envelopes are a good approximation
for the internal representation of low- and high-frequency
stimuli. If we reduce the transformation properties of the
inner hair cell to a half-wave rectification, followed by a
low-pass filter, we can calculate the properties at the hair cell
output, assuming narrow-band input stimuli. At signal fre-
quencies that are high compared to the cutoff frequency of
the low-pass filter, the hair cell output approximates the Hil-
bert envelope of the input. At signal frequencies that are low
compared to the cutoff frequency, we just get the rectified
version of the input signal. The spectrum of this rectified
stimulus contains the original input spectrum, the spectrum
of the Hilbert envelope, plus higher frequency mirror com-
ponents.

We thus can conclude that the Hilbert envelope is a rea-
sonable description of high-frequency stimuli as they are
coded at the level of the inner hair cell. For low-frequency
stimuli, on the other hand, it is not generally correct to derive
predictions on the interaural correlation from the~nonrecti-
fied! waveforms. Numerical simulations reveal that for rec-
tified waveforms, the normalized cross correlation and the
normalized cross covariance are not generally the same and
that, in addition, the statistics of the signal influence the cor-
relation value. Because this issue lies outside the main focus
of this paper, it is discussed in Appendix C.

From Sec. III it can be deduced that a sinusoidal masker
which is higher in level than a Gaussian signal gives nega-
tive values for the cross covariance of the envelope@cf. Eq.
~45! and Fig. 3#.7 The cross covariance will approach21 for
low levels of the signal~increasing SMR in Fig. 3!. If we
assume that the diotic sinusoid alone has a cross covariance8

of 1 there is a large change in the cross covariance for the
sinusoid combined with a low-level noise. According to this
line of reasoning the change in cross covariance increases
with decreasing noise level. Such a result is against expecta-
tion because the noise must eventually become undetectable.
When applying the cross-covariance measure to a flat enve-
lope ~sinusoidal! masker, it is therefore essential that some
kind of system noise is introduced. For the masker-alone
condition, the interaural cross covariance would be identical
to the cross covariance of the system noise. When a signal is
added to the masker at decreasing SMRs, the system noise
will eventually start to dominate and determine the interaural
cross covariance.

The use of the interaural correlation as a decision param-
eter in a detection process not only requires estimates of the
mean values of correlation and covariance, but also of the
standard deviations of these estimates. A detailed knowledge
of the influence of stimulus parameters like bandwidth and
duration on the standard deviation of correlation estimates
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would allow a prediction of correlation jnd’s and BMLDs.
So far, it has been assumed in BMLD experiments that the
parameter’s bandwidth and duration influence the relevant
decision statistics in the same way in diotic and dichotic
conditions. This, however, has not been tested for the statis-
tics of the interaural cross correlation in comparison to, e.g.,
the ~diotic! energy increment. Further investigations have to
show whether the slight increase of the BMLD with decreas-
ing signal duration~e.g., Blodgettet al., 1958; Kohlrausch,
1986! and the still puzzling observation of a wider ‘‘effective
critical band’’ in dichotic masking conditions~e.g., Zurek
and Durlach, 1987! indicate a particular property of our hear-
ing system or whether they are just a consequence of the
statistics of the stimulus.
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APPENDIX A

When a sinusoid or a frequency modulated sinusoid is
used as a masker and when this masker has a much higher
level than the signal, Eq.~40! cannot be used as an approxi-
mation, sincêm2&5^m&2. Consequently, it is not appropri-
ate to neglect the residual termse1, e2, ande3, since they are
not small with respect tôm2&2^m&2.

Therefore, even though we assumed^m2&@^s2&, we
need to take more terms into account in our approximation,
in particular, terms withs4 factors. The first three terms of
Eq. ~24! can be evaluated to

^ELER&5^m2&1^s2&2 K m2s2

m21s2L 2
3

4 K s4m2L . ~A1!

We need to expand the third expected value of this equation
sinces4 factors will be created in this way. The following
Taylor expansion can be used:

1

~11x!k
511 (

n51

`
1

n!
k~k11!•••~k1n21!~2x!n.

~A2!

We can write

K m2s2

m21s2L 5 K s2

11s2/m2L '^s2&2^s4&K 1

m2L . ~A3!

This results in

^ELER&'m21
1

4m2 ^s4&. ~A4!

When the expected value of the mean of the envelope
@Eq. ~36!# is written with the square-root term expanded in a
Taylor series, we find

^EL&5^m&1 (
n51

` S cnK s2n

m2n21L
1c2n4

n
~2n21!!!

2n!! K m2ns2n

~m21s2!2n21/2L D . ~A5!

When Eq.~A5! is evaluated up to the fourth order ins, this
yields

^EL&'m1
1

4m
^s2&1

1

64m3 ^s4&. ~A6!

Omitting factors with a power ofs higher than 4, the square
of this equation can be written as

^EL&
2'm21

1

2
^s2&1

1

16m2 ^s2&21
1

32m2 ^s4&. ~A7!

When Eqs.~A4! and ~A7! are inserted in Eq.~33! we get a
general approximation which is valid when^m2&@^s2&:

r ELER'
2~1/2!^s2&1~7/32m2!^s4&2~1/16m2!^s2&2

~1/2!^s2&2~1/32m2!^s4&2~1/16m2!^s2&2
.

~A8!

In this last equation, we can see that in the case of a flat
envelope masker that is large with respect to the signal, the
statistics of the signal become important.

We can evaluate the case that the signal is a Gaussian
noise. Using the symboll for the SMR @cf. Eq. ~10!#, we
know that

^s4&
m4 52l 2, ~A9!

based on general rules for Gaussian noise. After some ma-
nipulations of Eq.~A8!, this yields

r ELER'
211 3

4 l

12 1
4 l

. ~A10!

This results in a relation between pure waveform correlation
and envelope correlation; that is,

1
4Dr LR'11r ELER. ~A11!

For the case in which we have a sinusoidal masker and a
sinusoidal signal with different frequencies we get

1
16Dr LR'11r ELER. ~A12!

APPENDIX B

In this appendix a concise overview of all analytical
expressions is presented. First, the equations for the exact
solutions for the envelope correlation are given. In these
equations,Pm(m) andPs(s) denote the probability distribu-
tion functions of the masker and signal amplitude functions,
respectively. The probability distribution function of the
phase difference between the masker and the signal is de-
noted asPf(f). In the second part of the appendix, the
results of the approximations of the envelope correlation are
presented in Table BI.

The exact solutions for cross correlation and the cross
covariance of the envelope are
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cross correlation: r5
A

B
~B1!

and

cross covariance: r5
A2C2

B2C2 , ~B2!

with

A5E m2Pm~m!dm1E s2Ps~s!ds

1 (
n51

`
~24!n

n!
lnF )

k51

n S 322kD G
3E E m2ns2n

~m21s2!2n21 Pm~m!Ps~s!dm ds ~B3!

@cf. Eq. ~24!#,

B5E m2Pm~m!dm1E s2Ps~s!ds ~B4!

@cf. Eq. ~36!#, and

C5E E Am21s2Pm~m!Ps~s!dm ds

1 (
n51

`
4n

~2n!!
lnF )

k51

2n S 322kD G
3E E m2ns2n

~m21s2!2n21/2 Pm~m!Ps~s!dm ds, ~B5!

@cf. Eqs. ~36! and ~54!# where the value ofln depends on
Pf(f). When this distribution is uniform,

ln5(2n21)!!/(2n)!!. When f is a constant equal toq,
ln5cos2n q. In the latter case, Eqs.~B1! and ~B2! are only
valid when one of the functionsm or s has a mean equal to
zero.

The approximations which can be made for the situation
where^m2&@^s2& are summarized in Table BI. In this table,
l is equal to^s2&/^m2&5SMR. In the first two columns the
properties ofm ands are given. The symbolsPm or Ps are
used symbolically to express thatm or s results from a ran-
dom process and that, consequently,m or s is not constant.

We remark here that all entries in Table BI for which the
envelope distribution of the masker is constant~first column!
have a cross covariancer ELER that is negative. All other en-
tries have a positive cross covariancer ELER.

APPENDIX C

In this appendix, we investigate the influence of half-
wave rectification~without subsequent low-pass filtering! on
the values of the cross correlation and the cross covariance.
Because this problem could not be solved analytically, we
present the results of numerical simulations. We considered
conditions of the typeM0Sp with a Gaussian noise masker
and a sinusoidal or a Gaussian noise signal. The noises had a
bandwidth of 50 Hz. Both masker and signal where centered
at 250 Hz and had a duration of 4000 ms. The correlations of
the half-wave rectified waveform are the averages of ten re-
peated simulations.

Table CI shows, as a function of the SMR~first column!,
the cross correlation~identical to the cross covariance! for
the full waveform~second column! and in columns three to
six values for half-wave rectified waveforms. These are the
cross correlation and the cross covariance for a sinusoidal

TABLE BI. An overview of approximations for the cross correlation and the cross covariance of the envelope for the case that^m2&@^s2&.

m s f
DrLR

5Dr LR DrELER
r ELER Description

Pm Ps unif. 2l l
12

^m2&

^m2&2^m&2
l

noise masker,
noise signal

Pm const. unif. 2l l
12

^m2&

^m2&2^m&2
l

noise masker,
sinusoidal signal

const. Ps unif. 2l l S38 ^s4&

^s2&2
2
1

4Dl21
sinusoidal masker,

noise signal

const. const. unif. 2l l
1
8l21 sinusoidal masker,

sinusoidal signal
with different freq.

Rayl. Rayl. unif. 2l l
12

1

12p/4
l

Gaussian masker
and signal

Rayl. const. unif. 2l l
12

1

12p/4
l

Gaussian masker,
sinusoidal signal

const. Rayl. unif. 2l l
1
2l21 sinusoidal masker,

Gaussian signal
Pm Ps const. 2l 2l cos2 q

12
2^m2&cos2 q

^m2&2^umu&2
l

multiplied noise
masker and signal

Pm const. const. 2l 2l cos2 q
12

2^m2&cos2 q

^m2&2^umu&2
l

multiplied noise
masker,

sinusoidal signal
const. Pm const. 2l 2l cos2 q

2m2 cos2 q1~^s4&/^s2&2^s2&!~
1
42cos2 q1

1
2 cos

4 q!

m2 cos2 q1
1
4~^s

4&/^s2&2^s2&!
l21

sinusoidal masker,
multiplied noise

signal
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signal ~columns 3 and 4!, and the cross correlation and the
cross covariance for a noise signal~columns 5 and 6!. For
almost all SMRs, columns 2–6 show different values for the
correlation. This indicates that~1! the correlation of the
waveform differs from the correlation of the half-wave rec-
tified waveform.~2! The cross correlation and the cross co-
variance are no longer identical if applied to the half-wave
rectified waveform.~3! In the case of the half-wave rectified
waveform, the statistics of the signal~sinusoid versus Gauss-
ian noise! influence the correlation value. Differences be-
tween the correlation estimates of the full waveform and the
half-wave rectified waveform are only negligible in the case
of the cross correlation for SMRs of220 dB or less. These
results show that the formula for the relation between SMR
and correlation@Eq. ~13!# is not generally correct if applied
to half-wave rectified waveforms.

1This condition is usually referred to asN0Sp indicating an in-phase noise
and an out-of-phase signal. However, in the course of this paper we will
also consider the combination of asinusoidalmasker and anoisesignal, for
which the notationN0Sp is ambigious. For the purpose of consistency, we
therefore use the more general notationM 0Sp throughout the paper. For the
same reason, the term signal-to-masker ratio~SMR! will be used instead of
the more common signal-to-noise ratio~SNR!.
2Richard’s statement with respect tor50 is correct for uncorrelated noise
bands~this was also the context of the statement!, but not for the combi-
nation of an in-phase noise masker and an out-of-phase sinusoidal signal
~see Sec. III and Figs. 3 and 4!.
3We want to emphasize that in this paper the term ‘‘envelope’’ is used for the
linear envelope as defined in Eqs.~14! and ~15!. In the terminology of
Lawson and Uhlenbeck~1950!, it is the waveform obtained from a linear
detector. This waveform has to be distinguished from the squared envelope
that results from a square-law detector. In the psychoacoustic literature, the
term envelope with no further qualifications has also been used for the
latter waveform~e.g., Fantini, 1991!.
4We want to emphasize that there are several other ways to generate co-
modulated noise bands, besides using multiplied noise as defined at the
beginning of this section.
5When the low-pass noiseM low(t) is positive, the multiplied noise,
M (t)5M low(t)sinvt, will have a phase that lags byq as compared to
S(t)5sin(vt1q). WhenM low(t) is negative, however, the phase lag will
bef(t)5q1p.
6A similar calculation based on the normalized cross covariance results in an
increaseof the BMLD due to the loss in fine structure.
7In order to see this from Fig. 3, one has to follow the dotted curve~noise
masker plus sinusoidal signal! to positive values of the SMR. Here, we
have a high level out-of-phase sinusoid combined with a low level in-phase

noise, thus a condition of the typeMpS0 ~with the sinusoid as the masker!.
The envelopes of this condition are the same as those forM 0Sp .
8Strictly speaking, its cross covariance is undefined because the masker
envelope, after subtracting the mean, is zero. This observation indicates a
principal problem in applying the cross-covariance measure of the envelope
to sinusoidal signals. In the mathematical derivations we have always ig-
nored on- and offset ramps for the stimulus; this is, however, not correct for
stimuli used in psychoacoustic experiments. If the ramps are taken into
account the cross covariance for a diotic sinusoidal masker will be one.
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TABLE CI. The correlation of the waveform (rW5rW), the cross correla-
tion of the half-wave rectified waveform~rHW!, and the cross covariance of
the half-wave rectified waveform~rHW! are shown for anM 0Sp condition
with a Gaussian noise masker and either a sinusoidal or a Gaussian noise
signal at several SMRs. The values are the averages of ten simulations using
stimuli with a duration of 4000 ms.

Sinusoidal signal Noise signal

SMR rW5r w rHW rHW rHW rHW

0 dB 0 0.273 20.086 0.320 20.002
25 dB 0.519 0.602 0.413 0.624 0.448

210 dB 0.818 0.837 0.761 0.842 0.768
215 dB 0.939 0.942 0.915 0.943 0.917
220 dB 0.980 0.981 0.972 0.981 0.972
225 dB 0.994 0.994 0.991 0.994 0.991
230 dB 0.998 0.998 0.997 0.998 0.997
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