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We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels

with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five

coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as

the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating

region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature

and its derivative at the location that separates both regions. We also derive a simplified version of this analytical

expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analytical

expressions agree well with experimental data found in the literature for a large variety of cases and substantially

improve the results obtained from a previous well-known analytical expression.
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I. INTRODUCTION

A wide variety of systems in classical and interdisciplinary

physics are modeled by reaction-convection-diffusion equa-

tions with wave front solutions that propagate at a constant

velocity [1]. Several techniques have been developed in order

to estimate such a speed, even for highly nonlinear reaction

terms such as those found in combustion phenomena [2].

Simple burning processes of premixed gaseous fuels may

follow a single one-dimensional reaction-diffusion equa-

tion for the gas temperature from which analytical estimates

of the flame front speed may be derived [3]. These expressions

have been recently generalized for more elaborate models

described by coupled reaction-convection-diffusion equations

for the gas temperature and fuel density by means of reducing

the system to a single one-dimensional reaction-convection-

diffusion equation [4].

Flaming combustion of solid fuels, however, is a sub-

stantially more complex process involving several two-

dimensional coupled reaction-convection-diffusion equations

in two major steps [5]. The first one consists of an endothermic

chemical process where the solid loses weight and releases

volatiles. The second one is an exothermic chemical process

where the flammable gases of the volatiles react with atmo-

spheric oxygen and produce combustion. The leading edge of

the flame acts as the heat source for preheating and pyrolyzing

the solid and also as the heat source for igniting the fuel gas

mixture, which allows the flame front to propagate [6].

Here we study the flame spread in the downward com-

bustion of thin solid fuels. These types of solids correspond

to those with a characteristic thermal length larger than its

half-thickness δs . A well-known analytical expression for

estimating the flame front velocity for this problem in a

quiescent environment and in the limit of high activation

energies for chemical reactions was derived by deRis [7], being

vdeRis =
π

4

λg

csδsρs∞

(Tf − Tv)

(Tv − T∞)
, (1)

where Tf , Tv , and T∞ are the flame, vaporization, and room

temperatures, respectively, with λg as the gas mixture conduc-

tivity evaluated at the reference temperature (Tf + T∞)/2, cs

is the solid specific heat, and ρs∞ is the density of the virgin

solid material.

Equation (1) was derived from reaction-convection-

diffusion equations by assuming a flame touching the surface

with no fuel in front of it and no oxidizer behind it, a

vaporizing solid at constant temperature, an Oseen flow, a

unit Lewis number, and by neglecting buoyancy effects and

conduction through the solid phase [8]. The flame front speed

of deRis’ model Eq. (1) produced results that reasonably

agree with experimental data and combustion simulations [8].

However, Bhattacharjee et al. [9] have recently shown that

Eq. (1) (excluding the π/4 term) may follow from a simplified

theory based on an energy balance applied to a control volume

of the solid phase only. This opens a question: may we derive

an analytical expression for the flame front speed focusing on

the gas phase instead of on the solid one? Such an expression

will, in principle, include some relevant effects ignored in

Eq. (1) like the chemical kinetic ones for the gas phase. Our

purpose has been to investigate the feasibility of deriving such

an expression.

More precisely, the procedure for obtaining this expression

has consisted of reducing the system of coupled reaction-

convection-diffusion equations for gas temperature, oxygen

mass fraction and fuel mass fraction, and of reaction-diffusion

equations for solid temperature and solid density of the

combustion models in Refs. [10,11] into a single reaction-

convection-diffusion equation for the gas temperature. This

simplification is obtained and follows from assuming a

combustion process divided into two zones (see Fig. 1). In

the preheating one, the solid density is almost constant and

no vaporization occurs, whereas in the pyrolyzing region, the

solid temperature reaches a constant value corresponding to the

vaporization temperature Tv . The flame leading edge touches

the surface at the location between both regions. Consistent

with the previous assumption, we employ a flame model based
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FIG. 1. Thin solid fuel combustion model employed in the present

paper. The flame front velocity v propagates downward (towards

negative x).

on a simplified one-dimensional vertical structure where no

oxidizer is found below the flame and no fuel above it [12].

The reaction-convection-diffusion equation is solved for

both zones and the condition of matching the gas temperature

and its derivative at the flame leading edge leads to the

analytical expression for the flame front velocity. We also

derive a simplified version of this analytical expression based

on an order of magnitude analysis. Results from our analytical

expressions are compared with experimental data found in the

literature for a large variety of cases and clearly improve the

predictions obtained after applying Eq. (1).

The structure of the paper is as follows. In Sec. II we

describe the combustion model. In Sec. III we develop the

method for deriving the analytical expressions for the flame

front speed. In Sec. IV we carry out a comparison of the results

obtained from our expressions with both experimental data and

Eq. (1). Finally, we summarize the conclusions of the present

work in Sec. V.

II. COMBUSTION MODEL

The combustion model follows those employed in

Refs. [10,11] for performing numerical simulations of the

downward burning process of a thin solid fuel. The governing

equations for the solid phase assume a one-step reaction that

follows a first-order Arrhenius law for the pyrolysis process,

being

csρs

∂Ts

∂t
=

∂

∂x

(

λs

∂Ts

∂x

)

−
∂Jsy

∂y

−
∂ρs

∂t
[L + (cs − cg)(Ts − T∞)], (2)

∂ρs

∂t
= −Aρs(e

−Es/RTs − e−Es/RT∞ ), (3)

where Ts is the solid temperature, t is time, x is the coordinate

parallel to the solid surface, and y is positive when pointing

toward the gas phase. We assume that the flame propagates

toward negative x (see Fig. 1). In Eqs. (2) and (3), Jsy is

the solid phase heat flux in the y direction, λs is the solid

conductivity, cg is the gas specific heat, L is the latent heat

of vaporization, R is the universal gas constant, and A and Es

are the preexponential factor and the activation energy for the

solid phase pyrolysis reaction, respectively.

Equations for the gas phase are [10,11]

cgρg

∂T

∂t
+ cgρgux

∂T

∂x
+ cgρguy

∂T

∂y

=
∂

∂x

(

λg

∂T

∂x

)

−
∂Jgy

∂y
+ qω, (4)

ρg

∂YO

∂t
+ ρgux

∂YO

∂x
+ ρguy

∂YO

∂y

=
∂

∂x

(

ρgDO

∂YO

∂x

)

+
∂

∂y

(

ρgDO

∂YO

∂y

)

− f ω, (5)

ρg

∂YF

∂t
+ ρgux

∂YF

∂x
+ ρguy

∂YF

∂y

=
∂

∂x

(

ρgDF

∂YF

∂x

)

+
∂

∂y

(

ρgDF

∂YF

∂y

)

− ω, (6)

where T is the gas temperature, YO is the oxygen mass fraction,

YF is the fuel mass fraction, ρg is the gas density, DO is the

oxygen mass diffusivity, DF is the fuel mass diffusivity, u is

the background flow velocity, q is the heat of combustion per

unit mass of fuel, f is the stoichiometric oxidizer to fuel mass

ratio, Jgy is the gas phase heat flux in the y direction, and ω is

the gas phase reaction rate

ω = Bρ2
gYOYF (e−Eg/RT − e−Eg/RT∞ ), (7)

where, following Ref. [4], the last term within the parentheses

has been included in order to assure ∂T /∂t = 0 at room

conditions (T = T∞) in a quiescent environment. In Eq. (7),

B is the preexponential factor and Eg is the activation energy

of a one-step reaction that follows a second-order Arrhenius

law for the gas phase combustion.

Let us now reduce the number of partial differential

equations (PDEs) in the gas phase by expressing both oxygen

and fuel mass fractions in terms of the gas temperature [i.e.,

YO = YO(T ) and YF = YF (T )] that substituted into Eq. (7)

will allow us to express Eq. (4) as a function of T and Jgy only.

For doing so, we assume a steady one-dimensional vertical

flame model similar to that analyzed in Ref. [12] for the

propagation of downward flame fronts in thin solid fuels with

background flow at rest (i.e., ux = 0) and constant transport

coefficients, gas density, and mass flux of volatiles
•
m = ρguy .

Then, Eqs. (4)–(6) become

cg

•
m

dT

dy
= λg

d2T

dy2
+ qω, (8)

•
m

dYO

dy
= ρgDO

d2YO

dy2
− f ω, (9)

•
m

dYF

dy
= ρgDF

d2YF

dy2
− ω, (10)

where the heat flux in the y direction is Jgy = −λgdT /dy.
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The time derivative terms in Eqs. (4)–(6) may be expressed

in terms of the s = x + vt coordinate attached to the flame

front, where v is the (positive) flame front speed. For simplicity,

these terms plus the heat and mass diffusivity ones in the

s direction have been ignored in the vertical flame model

(8)–(10). This strong assumption has been proven to yield

reasonable spread rates in the study of downward flame fronts

in thin solid fuels based on the deRis analysis for nonunity

Lewis numbers [12].

For the one-dimensional vertical flame model, the boundary

conditions are [12]

YOo = 0, (11)

ρgDF

dYF

dy

∣

∣

∣

∣

y=0

= •
m (YFo − 1) , (12)

dT

dy

∣

∣

∣

∣

y=0

= constant, (13)

at y = 0 (solid surface), with YOo = YO(y = 0) and YFo =
YF (y = 0), and

YOt = YO∞, (14)

YF t = 0, (15)

Tt = T∞, (16)

at y = yt , where YOt = YO(y = yt ), YF t = YF (y = yt ), and

Tt = T (y = yt ), with yt a distance far enough from the flame

that both oxygen mass fraction and temperature are equal to

the room values YO∞ and T∞, respectively.

Note that, consistent with the assumption of a flame leading

edge touching the surface with a vaporizing solid behind it,

YO = 0 for y < yf and YF = 0 for y > yf , yf being the flame

height where T (y = yf ) = Tf . For simplicity we assume here

a constant value for yf , although in the real combustion process

it is, indeed, a function of s (see, e.g., [13]). Thus, the solutions

of Eqs. (8)–(10) that satisfy the above boundary conditions are

T =

⎧

⎪

⎨

⎪

⎩

Tf − λg
•
mcg

(e
•
mcgyf /λg − e

•
mcgy/λg ) dT

dy

∣

∣

∣

y=0
for 0 � y < yf

Tf − (Tf − T∞) (e
•
mcgy/λg −e

•
mcgyf /λg )

(e
•
mcgyt /λg −e

•
mcgyf /λg )

for yf < y � yt ,
(17)

YO =

⎧

⎨

⎩

0 for 0 � y < yf

YO∞
(e

•
mcgy/λg −e

•
mcgyf /λg )

(e
•
mcgyt /λg −e

•
mcgyf /λg )

for yf < y � yt ,
(18)

YF =
{

1 − e
•
mcg(y−yf )/λg for 0 � y < yf

0 for yf < y � yt ,
(19)

where, for simplicity, we have assumed a unit Lewis number

Le [i.e., DO = DF = αg , where αg = λg/(ρgcg) is the gas

mixture heat diffusivity].

From Eqs. (17)–(19), both oxygen and fuel mass frac-

tions may be expressed in terms of the dimensionless gas

temperature

θ =
(T − T∞)

(Tf − T∞)
, (20)

being

YO = YO∞ (1 − θ ) for y > yf , (21)

YF = cg(Tf − T∞)

•
m

λg
dT
dy

∣

∣

∣

y=0

ln(1 + Bc)

Bc

(1 − θ ) for y < yf ,

(22)

since
•
m(1 − YFo) = −ρgDF dYF /dy|y=0 = •

m ln(1 + Bc)/Bc

[7], where Bc follows:

Bc =
YO∞q

Lf
−

cg (Tv − T∞)

L
, (23)

being the adiabatic mass-transfer number first introduced by

Spalding [14] and used by Emmons [15] and later by deRis [7]

in order to linearize the boundary condition at the surface.

We point out that our combustion model shown in Fig. 1

assumes gas phase variables independent of the y coordinate.

This is equivalent to work with uniform values for the gas phase

in the y direction (except for the vertical heat flux Jgy) that

may be also understood as averaged values for the y coordinate

in the gas phase. This approach for the gas phase is similar to

the control volume analysis developed in Ref. [9] for the solid

phase that finally led to Eq. (1). Note that we have obtained

above the relationships YO = YO (θ ) (21) and YF = YF (θ )

(22) for a vertical thin sheet flame model that implicitly rejects

the coexistence of oxidizer and fuel for y �= yf . However,

when dealing with a single control volume in the y dimension

and, hence, with θ , YO and YF uniform values for the gas

phase in the y direction, nonzero values of both oxygen and

fuel mass fractions in region II of Fig. 1 are expected. In what

follows we assume that the functions YO = YO (θ ) (21) and

YF = YF (θ ) (22) reasonably explain the behavior of YO and

YF in region II of Fig. 1 when working with y uniform values

and, for the sake of convenience, variables YO,YF ,θ , and T

will stand for such a y independent values in our simplified

combustion model. Indeed, the YO = YO (θ ) and YF = YF (θ )
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dependences (21) and (22) reasonably follow those extracted

from the contour plots shown in Refs. [10,11,16] in the analysis

of the downward spread rate of thin solid fuels by means of

performing detailed numerical simulations.

Thus, the reaction-rate term ω for the gas phase in Eq. (7)

is a function of the θ variable only, being

ω =
Bρ2

gYO∞cg(Tf − T∞)

L

ln(1 + Bc)

Bc

(1 − θ )2
(

e−EgR
−1[θ(Tf −T∞)+T∞]−1 − e−EgR

−1T −1
∞

)

for sv � s � sc, (24)

where we have assumed that all of the heat flux at the surface

coming from the gas phase is used to vaporize the solid [i.e.,
•
mL = λgdT /dy|y=0 in Eq. (22)]. Of course this assumption

gives us a value of ω greater than the actual one so our method

is expected to predict a spread rate of the flame front higher

than that observed. In Eq. (24) sv is the position of the flame

leading edge that coincides with the starting point of solid

vaporization, whereas sc is the position of the complete burning

of the solid.

Equation (24) substituted into Eq. (4) leads to a reaction-

convection-diffusion equation as a function of T only (or,

equivalently, θ ) that is coupled to the solid-phase Eqs. (2) and

(3) by means of the y-heat flux at the surface Jgy and the

mass flux of volatiles
•
m. These last two terms are expressed

in terms of the simple behavior for the solid phase shown in

Fig. 1. Indeed, this procedure is the opposite to that carried

out in Ref. [9] for obtaining Eq. (1) since Bhatacharjee et al.

used a simplified description of the gas phase as a boundary

condition for the control volume of the solid phase.

Based on the results obtained from detailed numerical

simulations for the burning rate of downward thin solid

fuels shown in Refs. [10,11,16,17], the solid phase in these

types of experiments may be divided into two main regions.

Region I in Fig. 1 is ahead of the flame front and corresponds to

the preheating zone (s < sv). In this zone the solid temperature

increases due to the heat transfer from both gas and solid

phases, although the last contribution is expected to become

of primary importance for thick solid fuels only [18]. In

region I the solid density does not vary since vaporization

is not reached. On the other hand, region II is behind the flame

and the solid is vaporizing (sv � s � sc). For simplicity we

assume a constant value for the vaporization temperature Tv in

region II, whereas the solid density decreases due to the release

of volatiles and the formation of char. Note that we may add

a third region such as sc < s, irrelevant for our study since it

corresponds to the burn out of the solid fuel with char releasing.

We parametrize the solid fuel density as a function of the

distance from the flame leading edge position sv as

ρs =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρs∞, s < sv,

(sc−s)

(sc−sv )
ρs∞, sv � s � sc,

0, sc < s,

(25)

where sc − sv corresponds to the characteristic length of

the vaporizing region and ρs∞ is the density of the virgin

solid at room temperature. This linear behavior of ρs in

terms of s reasonably reproduces the results obtained in

Refs. [10,11,16,17] employing numerical simulations.

On the other hand, the mass flux of volatiles
•
m follows

from [17]

•
m =

∫ δs

0

dy

(

−
∂ρs

∂t

)

≃ −δsv
dρs

ds
, (26)

where the last approximation applies a uniform density of the

solid in the y direction in agreement with the thin solid fuel

assumption so ρs(x,y,t) = ρs(x,t) = ρs(s) with s = x + vt

and ∂ρs/∂t = vdρs/ds.

Substituting Eq. (25) into (26) we obtain

•
m =

⎧

⎪

⎨

⎪

⎩

0, s < sv,

aδsv
2 ρs∞

αs
, sv � s � sc,

0, sc < s,

(27)

where the characteristic length of the vaporizing region

sc − sv corresponds to the thermal length for the solid phase

αs/v [19] [i.e., (sc − sv) ≃ αs/v]. Note that in Eq. (27) we

have included the constant parameter a with the aim of

taking into account some of the errors we may encounter

when adopting the approximation (26) and that for the

characteristic length of the vaporizing region. The analysis of

the results obtained from numerical simulations in Ref. [17]

for δs = 0.15 × 10−3, 0.3 × 10−3, 0.5 × 10−3, and 0.7 × 10−3

m produces a ratio [
∫ •

mds/(sc − sv)]/(δsv
2ρs∞/αs) equal

to 0.182, 0.241, 0.259, and 0.236, respectively, whose mean

value (=0.229) does not coincide with the expected a = 1

value. Unless otherwise stated, we apply a = 0.229 in what

follows. Section IV includes a discussion on the implications

of using a = 1 in Eq. (27).

Finally, the y heat flux from the gas phase into the solid

phase follows the parametrization applied by Ref. [19], with

an exponential decay of the heat flux ahead of the flame

(region I) and a constant value behind it (region II),

Jgy |y=0 =

⎧

⎪

⎨

⎪

⎩

−J0e
(s−sv )/l, s < sv,

−J0, sv � s � sc,

0, sc < s,

(28)

where J0 is a positive constant and l is the characteristic

thermal length for the decaying of the heat flux ahead of

the flame. Unless otherwise stated, we assume here that

l = αg/U with αg the gas mixture thermal diffusivity and

U (≈0.3 m s−1) the induced flow velocity due to density

variations near the flame when the background flow is
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initially (and at the boundaries) at rest [11]. Note that αg/U

corresponds to the characteristic thermal length in the gas

phase [19]. In Sec. IV we also investigate the implications of

using different values of l.

We point out that Jg0
= Jgy |y=0 is negative (i.e., heat goes

toward the solid) since the gas phase temperature is assumed

to be greater than the vaporization temperature in region II.

No value of the heat flux from the gas to the solid is assumed

for sc < s since char has been released.

The divergence of the vertical heat flux in the gas phase zone

is approximated as −∂Jgy/∂y ≈ −(Jgδy − Jg0)/δy = Jg0
/δy ,

where δy is a characteristic thermal length for the gas phase

such as |Jgδy | ≪ |Jg0|, where Jgδy = Jgy |y=δy . From Eq. (28)

this leads to

−
∂Jgy

∂y
=

⎧

⎪

⎨

⎪

⎩

− J0

δy
e(s−sv )/l, s < sv,

− J0

δy
, sv � s � sc,

0. sc < s.

(29)

III. FLAME FRONT SPEED

Let us now derive an analytical expression for the flame

front speed from the combustion model described in the

preceding section. For the sake of convenience we define the

dimensionless variables t ′, x ′, v′ and parameters γ and β as

γ =
Tf − T∞

Tf

, β =
γE

RTf

, (30)

t ′ = t
Bρgγ

2

β
, x ′ = x

(

Bρgγ
2

αgβ

)1/2

, (31)

v′ = v

(

β

αgBρgγ 2

)1/2

. (32)

A. Region II

We first analyze region II since it will allow us to

introduce the maximum temperature that will be employed

to renormalize the equations. For region II the substitution of

Eqs. (30)–(32) into Eq. (4) leads to

v′ dθ

ds ′ =
d2θ

ds ′2 −
β

Bρgγ 2

1

ρgcg(Tf − T∞)

J0

δy

− cgδsv
2 ρs∞

αs

β

Bρgγ 2

1

ρgcg(Tf − T∞)

J0

λg

+
β

Bρgγ 2

1

ρgcg(Tf − T∞)
qω, (33)

where s ′ is the dimensionless coordinate attached to the flame

front that satisfies s ′ = x ′ + v′t ′, with v′ being the positive

dimensionless flame front velocity (the front propagates

downward in Fig. 1). Note that in Eq. (33), ω follows Eq. (24)

and we have made use of the
•
m = ρguy definition with

cg

•
m∂T/∂y ≈ cgδsav2ρs∞J0/(αsλg) since ∂T /∂y ≈ J0/λg in

region II.

Let us define the parameters

F =
β

Bρgγ 2

1

ρgcg(Tf − T∞)

J0

δy

, (34)

G = cgδs

ρs∞

αs

δy

λg

αgBρgγ
2

β
, (35)

H =
β

Bρgγ 2

qω

ρgcg(Tf − T∞)
, (36)

that substituted into Eq. (33) yield

v′ dθ

ds ′ =
d2θ

ds ′2 − F (1 + Gv′2) + H, (37)

which is the one-dimensional reaction-convection-diffusion

equation for the single variable θ that will allow us to determine

the flame front speed.

We assume that the wave front arisen from Eq. (37) reaches

extremum values of the dimensionless temperature θ for those

points where dθ/ds ′ = 0. Of course, this condition cannot be

satisfied for θ → 0 since the minimum temperature value that

can be attained in region II is θv = (Tv − T∞)/(Tf − T∞).

In the limit θ → 1, H = 0 but F �= 0 in Eq. (37), which

implies dθ/ds ′|θ→1 �= 0. Therefore, we expect that θ reaches

a maximum temperature θmax that satisfies

H (θmax) = F (1 + v′2G) (38)

and, from Eq. (37), dθ/ds ′|θ→θmax
= 0. Since F, G, and v′

are positive values and H � 0 for 0 � θ � 1 with H → 0

for both θ = 0 and θ = 1 limits, we will obtain θmax < 1.

This condition implicitly assumes Tmax < Tf in the gas phase,

which may be explained from the essentially y-averaged

feature of the variables in our simple model. Indeed, the

actual temperature distribution in the y direction in region

II of Fig. 1 does not correspond to a uniform Tf value since

the flame occupies a thin slab at y = yf . Therefore, we expect

to use T < Tf when working with a single temperature for the

whole y dimension. We point out that Eq. (38) involves the

unknown dimensionless flame front speed v′, so its solution

requires an iterative process that we will explain below. In

addition, Eq. (38) may have more than one root. In this case,

the maximum value is θmax(<1).

Let us now work with the new dimensionless temperature

θ ′ =
θ

θmax

, (39)

so region I and II ranges from 0 < θ ′ < 1 with dθ ′/ds ′|θ ′→1 =
0.

By substituting Eq. (39) into Eq. (37) we obtain

d2θ ′

ds ′2 − v′ dθ ′

ds ′ − K(1 + v′2G) + I = 0, (40)

where K = F/θmax and I = H/θmax.

As it has been extensively applied in other works dealing

with variational techniques for determining the wave front

velocity [20], we now work in the phase space p = dθ ′/ds ′,
so Eq. (40) reads

p
dp

dθ ′ − v′p − K(1 + v′2G) + I = 0. (41)
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Let us integrate Eq. (41) from θ ′(s ′ = s ′
v) = θ ′

v to θ ′ = 1

(i.e., for all region II), giving
(

p2
1 − p2

v

)

2
− v′ (p1 + pv)

2
(1 − θ ′

v)

−K(1 + v′2G)(1 − θ ′
v) + I ′ = 0, (42)

where p1 = p(θ ′ = 1), pv = p(θ ′ = θ ′
v),I ′ =

∫ 1

θ ′
v
Idθ ′, and

the integration of the term
∫ 1

θ ′
v
pdθ ′ has been approximated

by using a mean value of p for the θ ′
v � θ ′ � 1 interval. This

leads to
∫ 1

θ ′
v
pdθ ′ = (1 − θ ′

v)(p1 + pv)/2. Note that this type

of approach has been successfully applied in the derivation of

the flame front speed in gaseous fuels [21].

Since θmax is such that p1 = p(θ ′ = 1) = dθ ′/ds ′|θ ′→1 =
0, the solution for pv in Eq. (42) is

pvII = −
v′

2
(1 − θ ′

v) +
1

2

√

v′2(1 − θ ′
v)2 − 4K(1 + v′2G)2(1 − θ ′

v) + 8I ′, (43)

where the subscript II indicates that pv has been obtained from

solving the equations in region II.

B. Region I

Equation (4) for region I in dimensionless variables (30)–

(32) reads

cgρg(Tf − T∞)
Bρgγ

2

β

∂θ

∂t ′

= (Tf − T∞)
Bρgγ

2

αgβ

∂

∂x ′

(

λg

∂θ

∂x ′

)

−
∂Jgy

∂y
, (44)

that in terms of θ ′ and s ′, with Eq. (29) for expressing the heat

flux divergence, is

d2θ ′

ds ′2 − v′ dθ ′

ds ′ = Ke(s ′−s ′
v )/l′ , (45)

where l′ = l
√

Bρgγ 2/(αgβ) is the dimensionless characteristic

thermal length of the gas phase.

The solution of Eq. (45) with the condition θ ′ → 0 for

s ′ → −∞ leads to

θ ′ = c1e
v′s ′ +

Ke(s ′−s ′
v )/l′ l′

(−v′ + 1/l′)
, (46)

where the constant of integration c1 is chosen such as θ ′ = θ ′
v

at s ′ = s ′
v .

From Eq. (46), the phase space variable in region I pI =
dθ ′/ds ′ reads

pI = θ ′v′ + Kl′e(s ′−s ′
v )/l′ . (47)

C. Matching conditions at the flame leading edge

The flame spread rate is obtained after applying matching

conditions for θ ′ and p for both regions at the flame leading

edge. This technique has been also employed for deriving

analytical expressions for the burning velocity of flame fronts

in gaseous fuels [21,22] and in more general systems modeled

by reaction-convection-diffusion equations [23]. At the flame

leading edge, θ ′ = θ ′
v and

pvI = pvII, (48)

so from Eqs. (43) and (47) at θ ′ = θ ′
v we obtain a second order

algebraic equation on v′, whose positive solution is

v′ = −
1

2

(1 + θ ′
v)Kl′

[θ ′
v + 2KG(1 − θ ′

v)]
+

√

[

1

2

(1 + θ ′
v)Kl′

[θ ′
v + 2KG(1 − θ ′

v)]

]2

+
[2I ′ − 2K(1 − θ ′

v) − K2l′2]

[θ ′
v + 2KG(1 − θ ′

v)]
. (49)

In Eq. (49) K = F/θmax is a function of the absolute value

of the heat flux at the surface J0 in region II. Consistent with the

assumptions adopted for solving the one-dimensional vertical

flame model, we accept that the y-heat flux is entirely devoted

to vaporize the solid. This implies that
•
mL = λg ∂T /∂y|y=0

= J0 and, from (27), (34), and the text below (40), we have

K =
δs

θmax

aLρs∞

ρgcg(Tf − T∞)δy

αg

αs

v′2. (50)

Note that Eq. (50) is a function of v′ that substituted into

Eq. (49) leads to an implicit equation for v′. The iterative

procedure implemented for obtaining the solution is as follows.

For a fixed value of θ ′
v (the temperature at the flame leading

edge s ′
v), we find the roots of Eq. (38) by taking into

consideration that, for any trial value of θmax, the velocity

v′ satisfies Eq. (49) within a 10−5 relative error.

Finally, we have realized that common values of the

parameters for the downward burning of thin cellulosic-type
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TABLE I. Values of the main gas and solid phase parameters. M is the molar mass of the gas mixture. For other values see the text.

Name Symbol Ref. [11] Ref. [17] Unit

Preexponential factor B 106/M 9.02 × 107/M m3 kg−1 s−1

Activation energy Eg 87 200 112 860 J kg−1 mol−1

Heat of combustion per unit mass of fuel q 1.674 × 107 1.672 × 107 J kg−1

Solid conductivity λs 0.1255 0.105 W m−1 K−1

Solid specific heat cs 1260 1460 J K−1 kg−1

Density of solid virgin material ρs∞ 750 650 kg m−3

Vaporization temperature Tv 618 700 K

Latent heat of vaporization L 753 × 103 418 × 103 J kg−1

fuels imply θ ′
v ≪ KG, l′ ≪ G, K ≪ I ′, and K2l′2 ≪ I ′ with

θ ′
v ≪ 1. Under these conditions and by defining K ′ = K/v′2,

Eq. (49) reduces to

v′
a =

(

I ′

K ′G

)1/4

, (51)

which is the approximate explicit expression for the dimen-

sionless flame front speed v′.

IV. RESULTS AND COMPARISON TO EXPERIMENTS

We investigate the validity of Eqs. (49) and (51) by

comparing with available experimental data for thin cellulosic-

type fuels in cases that differ in oxygen concentration, fuel

thickness, and inert gas type.

Values of the basic parameters for both gas and solid

phases required by our analytical expressions are not provided

in the experimental works cited here and, therefore, we

have extracted them from previous studies that developed

numerical simulations of the downward flame propagation of

thin cellulosic-type fuels. We have noted that values of the

solid phase parameters found in the literature do not differ in

excess since they can be obtained experimentally by simple

techniques. This is not the case for the kinetic constants

of the gas phase chemical reaction since, indeed, the actual

combustion reaction is more complex than a single-step second

order Arrhenius type one. Gas chromatography analyses have

revealed that pyrolysis of cellulose releases several volatiles

that certainly react in a multistep way [24].

Nevertheless, the single-step second order gas phase re-

action has been widely used in the numerical simulation

of combustion of cellulosic-type fuels, where the kinetic

constants have been either adopted from data of well-known

fuels such as methane [25] or chosen to produce flame

front speeds consistent with experimental data [10]. These

procedures for determining the gas phase kinetic values do

not necessarily produce identical results as it may be seen in

Table I that summarises the values of the main gas and solid

phase parameters employed in Refs. [11,17] for simulating

the downward flame propagation of thin cellulosic-type fuels.

We point out that other authors assume values of the kinetic

constants that are within the range of values shown in Table I

[26].

Here we have performed our analysis by taking both sets of

values in Table I into consideration. Therefore we expect that

the analytical results corresponding to the (unknown) values

of the kinetic constants that better represent the actual gas

phase reaction in terms of a single-step second order one will

lie within the range of values obtained when applying the two

sets of parameters shown in Table I.

In agreement with [27], transport coefficients for the gas

phase as well as the gas density value have been evaluated at

the reference temperature (Tf + T∞)/2, where Tf is the flame

temperature that here follows the adiabatic flame expression

[12]

Tf = T∞ +
q

cg

YO∞

f

[

1 −
BcL

q ln (1 + Bc)

]

. (52)

Thermal conductivities and specific heats of gases as a

function of temperature follow from Ref. [28]. Gas mixture

properties apply the classical ideal gas formulas [29]. All

results assume a Lewis number equal to 1 and a dimensionless

temperature θv = (Tv − T∞)/(Tf − T∞), with θ ′
v = θv/θmax.

Analytical and experimental values of the flame front veloc-

ity as a function of the initial room oxygen molar concentration

are shown in Fig. 2(a) for an atmosphere with Ar as a diluent

and a cellulosic-type solid with δsρs∞ = 0.040 kg m−2, and

in Fig. 2(b) for an atmosphere with N2 as a diluent and a

cellulosic-type solid with δsρs∞ = 0.0175 kg m−2. Note that

these δsρs∞ values agree with the thin solid fuel assumption

(solid half-thickness δs lower than the characteristic solid

thermal length) that from Ref. [17] is expected to be valid

for δsρs∞ < 1.43 kg m−2.

For a fixed value of oxygen molar fraction at room

conditions (XO2∞ = 0.3), the flame front speed as a function

of δsρs∞ is shown in Fig. 3(a) with Ar as a diluent and in

Fig. 3(b) with N2 as a diluent. We note that from Figs. 2 and

3 and in comparison with Eq. (1), Eq. (49) better explains

the behavior of experimental data extracted from different

authors [12,30–32].

For clarity, Figs. 2 and 3 do not include results obtained

from the approximated expression Eq. (51). This last formula

is compared with Eq. (49) in Fig. 4 for those cases shown in

Fig. 2. Figure 4 reveals that Eq. (51) provides a very good

estimate of Eq. (49) for thin solid fuels, mainly for values of

the oxygen molar fraction XO2∞ > 0.2. For lower values, the

decrease in I ′ may be so large that some of the conditions

stated above Eq. (51) may not be satisfied. On the other hand,

differences between Eqs. (51) and (49) for those cases shown

in Fig. 3 are less than 3.5%.

Let us now analyze the sensitivity of the analytical

expressions to changes in the main physical parameters of
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FIG. 2. (a) and (b) Flame front speed as a function of the oxygen

molar fraction at room conditions for the downward burning of a

cellulosic-type solid with δsρs∞ = 0.040 kg m−2 and Ar as a diluent

(a), and with δsρs∞ = 0.0175 kg m−2 and N2 as a diluent (b). Symbols

correspond to experimental data, whereas deRis’ hatched area is the

classical analytical expression Eq. (1).

both gas and solid phases. For the sake of simplicity we work

with Eq. (51) instead of Eq. (49) that from Eqs. (32), (35), and

(50) reads

va =
(

λs

csδsρ2
s

)1/2 (

λg

cg

q

L

)1/4
(

1

θmax

∫ 1

θ ′
v

ωdθ ′

)1/4

, (53)

where the reaction-rate ω is defined in Eq. (24).

Both Eqs. (1) and (53) depend on the main gas phase prop-

erties λg and cg , solid phase ones cs, δs, ρs , combustion heat

release per unit mass of fuel q, latent heat of vaporization L,

mass fraction of oxygen at room conditions YO∞, vaporization

FIG. 3. (a) and (b) Flame front speed as a function of δsρs∞ for

the downward burning of a cellulosic-type solid with oxygen molar

fraction at room conditions XO2∞ = 0.3 and Ar as a diluent (a) and

N2 as a diluent (b). Symbols correspond to experimental data whereas

deRis’ hatched area is the classical analytical expression Eq. (1).

FIG. 4. Differences of the approximate expression Eq. (51) with

respect to Eq. (49) ε(v) = 100(v′
a − v′)/v′ for those cases analyzed

in Figs. 2(a) and 2(b).

temperature Tv , flame temperature Tf , and room temperature

T∞. Note that in Eq. (53) the dependence of va on YO∞,

Tf , and T∞ is through ω. In Eq. (1) the dependence of v on

cg, q, L,YO∞ is through Tf . For both (1) and (53) expressions,

an increase in λg, q,YO∞,T∞, and Tf leads to an increase in the

flame front velocity (as a priori expected), whereas an increase

in cs , δs , ρs , cg , L, and Tv leads to a decrease in the flame front

velocity (as a priori also expected). However, the sensitivity

of the solution to changes in the parameters may substantially

differ for both (1) and (53) analytical expressions. Thus, for

example, Eq. (1) predicts v ∝ δ−1
s , whereas Eq. (53) proposes

va ∝ δ
−1/2
s as we have shown in Fig. 3.

It is very important to stress, however, that in contrast

with the classical deRis Eq. (1), our analytical expressions

for the flame front speed Eqs. (49) and (53) depend on the

preexponential factor B and activation energy Eg of the gas

phase combustion reaction and on the solid conductivity λs .

Thus, Eqs. (49) and (53) become a function of some relevant

physical parameters that are not taken into account in Eq. (1).

Indeed, the influence of the heat transfer through the solid in the

flame front speed of thin solid fuels has been a controversial

topic. This effect has been included in complex numerical

simulations (e.g., [17]) while being ignored when deriving

Eq. (1) from a simple control volume analysis [9]. Here,

Eq. (53) may shed light into the implications of this parameter

on the flame spread rate.

On the other hand, the discrepancies of the values for the

kinetic constants B and Eg are the main causes of the large

zones shown in Figs. 2 and 3 for our analytical results. Indeed,

the validity of using a single-step second order Arrhenius type

reaction as an approximation for the actual gas phase behavior

has been analyzed in Ref. [33], where multistep chemical

kinetic models for the gas phase reactions are implemented.

Wolverton et al. [33] found that far from the extinction

conditions, multistep kinetic models yield similar spread rates

than those obtained from the single-step one (differences lower

than 10%), although they clearly improve the predictions for
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the flame structure. Near the extinction condition, however,

gas phase kinetics become the main mechanism for controlling

the heat release. In this case, single-step models predict flame

front speeds at least 60% greater than those obtained from

the multistep ones. Indeed, the single-step approximation for

the gas phase used may be the reason why our analytical

expressions fail to predict an extinction point (see, e.g.,

Ref. [33]). From the above, the simplification of the gas

phase reaction in terms of an overall single-step second order

Arrhenius type one appears reasonable when working far from

the extinction.

Finally, we have performed several studies varying some

of the key parameters involved in the assumptions done for

deriving Eq. (49). For example, changes in the characteristic

thermal length l lead to small changes in the flame front speed

in Eq. (49) (decrease smaller than 3% when doubling l for the

cases shown in Fig. 2). We note that this parameter is not taken

into consideration in the approximated expression Eq. (53)

that, similarly to Eq. (1), is independent of the induced flow

velocity U . For large values of U , however, the assumption

of a background flow at rest may not be valid and the

proportionality
•
m ∝ δsv

2ρs∞/αs used in Eq. (27) may not be

fulfilled. In this case, our analysis of the numerical simulation

carried out by Chen [16] reveals that a proportionality
•
m ∝

δsvUρs∞/αs may better represent the mass flux of volatiles

for large values of opposed flow velocities. In this case, we

would expect a higher dependence of the flame spread rate on

U than that obtained from Eq. (49).

We point out that, here, buoyancy effects are only taken into

account through the l parameter since it includes the induced

flow velocity. Due to the small sensitivity of the solution to

changes in l, we conclude that our model is almost independent

of the gravity level, as also observed in Eq. (1) to which we

compare with. In the downward burning of thin cellulosic-type

fuels in a quiescent atmosphere (as in the case here analyzed),

Kumar and Kumar have recently obtained a variation of the

flame front speed below 3% between the normal gravity (1g)

and the zero gravity (0g) cases (although this figure may raise

to 25% when comparing the 1g case with some microgravity

levels) [34]. In view of these results we may accept our model

as a reasonable approximation for the null background flow

case.

We note, however, that even for a moderate nonzero

background opposed flow (15 cm s−1), the flame front speed

for the 0g case may increase more than a 30% in comparison

with the 1g case [34]. In addition, buoyancy effects play a very

important role in the downward combustion with concurrent

background flow as well as in the upward combustion. The

generalization of the present model in order to work in such

regimes is not trivial, being the purpose of our current research.

On the other hand, an increase in the parameter a in Eq. (27)

leads to a decrease in the flame front speed v in order to

produce the same amount of mass flux of volatiles
•
m. Thus,

for example, the velocity v decreases a 52% when increasing

the a value from a = 0.229 till a = 1 for the case with Ar as

a diluent, XO∞ = 0.3 and δsρs∞ = 0.04 kg m−2.

Equation (49) assumes that the heat flux into the solid is

entirely used for vaporizing it. This overestimates the amount

of volatiles since part of the heat flux will be also used for

preheating the solid. Thus, it is expected that |λg∂T /∂y|y=0 >
•
mL, so we may define a factor w(>1) such as |λg∂T /∂y|y=0 =
w

•
mL. In comparison with the case w = 1 analyzed above, the

thin-solid fuel case with Ar as a diluent XO∞ = 0.3, δsρs∞ =
0.04 kg m−2 and w = 2 gives a flame spread rate v 29%

lower.

V. CONCLUSIONS

The present paper deals with wave fronts arisen from

the combustion of thin solid fuels. In comparison with the

combustion of gaseous fuels, these types of processes are

substantially more complex and, therefore, many techniques

successfully developed for gaseous fuels cannot be applied

here for analytically estimating the speed of the flame front.

In the combustion of thin solid fuels, however, there exists

the classical analytical expression for the flame front speed

(1) derived by deRis [7] in a rigourous study that assumed

infinitely fast chemical kinetics. Recently, Ref. [9] has shown

that Eq. (1) may essentially follow from a qualitative analysis

by using a simple control volume approach for the solid phase.

In contrast, our purpose has been to derive an analytical

expression of the flame front speed by focusing on the gas

phase reaction-convection-diffusion equations. This requires

that we (1) model the behavior of the solid phase based on

the information provided by detailed numerical simulations

found in the literature and (2) make use of a one-dimensional

vertical flame model. This allows us to reduce the coupled

system of five reaction-convection-diffusion equations to a

single one-dimensional equation with a single variable (gas

mixture temperature). Finally, the analytical expression for

the flame spread rate is obtained after applying the technique

of matching conditions for the temperature and its derivative

between the two zones of our simple combustion model.

We also derive an approximated version of our analytical

expression expected to be valid for a wide range of physically

realistic conditions. These analytical expressions show the

same qualitative behavior to changes in the main gas and solid

phase parameters than Eq. (1), although quantitative differ-

ences in a sensitivity analysis may appear. More important,

and in contrast with the classical Eq. (1), our expressions are a

function of (1) the preexponential factor and activation energy

of the combustion reaction and (2) the solid conductivity.

A comparison study with experimental data extracted from

the literature under different conditions (solid thickness, oxy-

gen concentration, gas-type diluent) reveals that our analytical

expressions successfully reproduce the observed behavior,

providing better results than the classical Eq. (1). In addition,

our methodology may be implemented in further studies for

including the effect of a nonzero opposed flow velocity of the

background flow, flame leading edge not coincident with the

vaporization front, etc.
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