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Simple, traditional methods for computation of the e�ciency of spur gears are based on the hypotheses of constant friction
coe�cient and uniform load sharing along the path of contact. However, none of them is accurate.
e friction coe�cient is variable
along the path of contact, though average values can be o�en considered for preliminary calculations. Nevertheless, the nonuniform
load sharing produced by the changing rigidity of the pair of teeth has signicant in�uence on the friction losses, due to the di�erent
relative sliding at any contact point. In previous works, the authors obtained a nonuniformmodel of load distribution based on the
minimum elastic potential criterion, which was applied to compute the e�ciency of standard gears. In this work, this model of load
sharing is applied to study the e�ciency of both standard and high contact ratio involute spur gears (with contact ratio between 1
and 2 and greater than 2, resp.). Approximate expressions for the friction power losses and for the e�ciency are presented assuming
the friction coe�cient to be constant along the path of contact. A study of the in�uence of some transmission parameters (as the
gear ratio, pressure angle, etc.) on the e�ciency is also presented.

1. Introduction


e e�ciency of the gear transmissions may have signi-
cant in�uence not only on the direct operating costs and
the operating lives but also on the environmental impact
associated to power loss. 
e e�ciency of involute gears is
usually high, but uncontrolled friction phenomenamay result
in surface defects arising a�er operating periods shorter than
the expected ones. 
ese defects will produce higher losses,
noise, vibrations, and heat generation during the operation,
which may result in the complete failure of the transmission
even.

Classic, simplemodels of e�ciency of spur gears available
in technical literature [1–5] are based on the hypotheses of
constant friction coe�cient and uniform load sharing along
the path of contact. Neither of them is accurate, but the
e�ciency of spur gears is high, and very accurate calculations
were not required in the past. However, the rapidly rising
trend of transmitted power to size ratio may make more
accurate models suitable. In this sense, variations of the
friction coe�cient along the path of contact can be neglected

if average values are considered [2, 3, 5]. Nevertheless, errors
induced for considering uniform load sharing between cou-
ples of teeth in simultaneous contact may be high, especially
if errors are expressed in terms of power losses.

Empirical models for load distribution and constant
friction coe�cient have been used in some studies, as ones of
Michlin andMyunster [6] and Höhn et al. [7]. A preliminary
authors’ study using a nonuniform load distribution model
can be found in [8]. Other models using nonuniform friction
coe�cient models have been reported by Anderson et al. [9–
11], Vaishya and Houser [12], Lehtovaara [13], and Diab et
al. [14]. More complex models using the elastohydrodynamic
lubrication theory to formulate the variation of the friction
coe�cient avoiding the necessity of experimental results have
been developed by Martin [15] and Wu and Cheng [16].
A similar model combined with load distribution models,
including experimental validation, was presented by Xu [17].
Many other studies to compute the power loss based on
experimental data can be found in technical literature [18–
22]. From a theoretical point of view, Velex and Ville [23]
formulate the problem using generalized displacements and
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Figure 1: Geometrical parameters of involute tooth.

incorporate the in�uence of prole modications to propose
analytical formulae of tooth friction power losses in spur and
helical gears.


e authors developed a model of load distribution along
the line of contact based on the minimum elastic potential
(MEP) criterion [24–26] and applied it to the determination
of the e�ciency of spur gears, considering average, constant
values of the friction coe�cient [27–30]. Obtained results
provide values of the e�ciency slightly greater than those
obtained from the traditional models [1–5]. A preliminary
model of e�ciency based on the MEP load distribution and
a very simple model of nonconstant friction coe�cient were
also developed and can be found in [31].

In this work, a similar model for the e�ciency of spur
gears has been developed, considering both standard spur
gears with contact ratio between 1 and 2 and high contact
ratio spur gears, with contact ratio up to 2.7. 
e model is
based on the application of the MEP nonuniform model of
load distribution along the line of contact and assuming the
friction coe�cient to be constant along the path of contact.
Analytical, approximate expressions for the power losses due
to friction, for the transmitted power and for the e�ciency,
are presented. 
e e�ciency has been expressed by a simple,
analytic equation as a function of only three parameters: the
number of teeth on pinion and wheel and the transverse
contact ratio. From this equation, a complete study of the
in�uence of some design parameters (as the number of teeth,
the gear ratio, the pressure angle, the addendummodication
coe�cient, etc.) on the e�ciency is also presented.

2. Load Distribution Model

References [24, 25] present in detail the model of load
sharing of minimum elastic potential energy. It is based
on the assumption that the load sharing among couples of
teeth in simultaneous contact provides a minimum elastic
potential energy. It has been obtained by computing the total
elastic potential energy, considering all the pairs of teeth
in simultaneous contact, with an unknown fraction of the
load acting on each one, and minimizing its value by means
of variational techniques. In this section, the model will be
brie�y described.


e elastic potential energy of a spur tooth � can be
expressed as the sum of the bending component ��, the
compressive component ��, and the shear component ��:

� = �� + �� + ��. (1)

All the components can be computed from the equations
of the theory of elasticity and some geometrical parameters
of the tooth which have been represented in Figure 1. 
e
application of those equations to the geometry of the involute
teeth results in:

�� = 6�2cos2���� ∫��
��

(	� − 	)2�3 (	) �	,
�� = 12 �2sin2���� ∫��

��

�	� (	) ,
�� = 12 �2cos2���� ∫��

��

�	� (	) ,
(2)

where � is the normal load between both teeth, �� the load
angle, � the face width, � the modulus of elasticity of the
material, � the transverse modulus of elasticity, and �(	)
the tooth chordal thickness at the section described by 	,
being 	 the coordinate along the tooth centerline from the
gear rotation center. 	� and 	� are the values of coordinate	 corresponding to the embedded section (dened by the
points of both sides of the prole at the root circle) and to
the load section (dened by the intersection of the line of
action of the load—i.e., the normal to the prole at the contact
point—and the tooth centerline), respectively. Finally,  is
the shear potential correction factor, which accounts the
nonuniform distribution of the shear stresses on the section,
according to the Colignon’s theorem. For rectangular section,
this factor takes the value  = 1.5.

To describe the contact point, the prole parameter � is
dened as [24, 25]

� = � �2� = �2�√ �2��2	 − 1, (3)
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where � is the involute rotation angle, � the number of teeth,�� the radius of the contact point, and �	 the base radius. Note
that the di�erence of � parameters corresponding to contact
at the outer point of contact and at the inner point of contact
is equal to the transverse contact ratio �
. Similarly, the
di�erence of � parameters corresponding to two contiguous
teeth in simultaneous contact is equal to 1.

According to this, the elastic potential energy of a tooth
can be expressed as a function of the prole parameter of its
load point (or contact point), � = �(�). Of course, this is
valid both for the pinion tooth and for the wheel tooth, so
that �1 = �1 (�) ,

�2 = �2 (�2) , (4)

where subscripts 1 and 2 denote the pinion and the wheel,
respectively (for simplicity, the pinion prole parameter will
be denoted by �, without subscript).
e sum of the curvature
radii of both transverse proles at the respective contact
points is constant along the line of action and equal to
the distance between the tangency points of the operating
pressure line and both base circles of pinion and wheel,
which provides a relation between pinion and wheel prole
parameters:

� + �2 = �� = �1 + �22� tan��� , (5)

where ��� is the operating transverse pressure angle (the
pressure angle at the pitch cylinder) and �� the distance
between both tangency points divided by the base radius and
the angular pitch of the pinion.
e potential energy of a pair
of teeth in contact �� will be the sum of those of the pinion
and the wheel, which, according to (5), may be expressed as a
function of the pinion prole parameter �:�� = �1 + �2 = �� (�) . (6)

Finally, twomore parameters are dened [24, 25]: the unitary
potential �, which is the elastic potential for unit load and
face width, and the inverse unitary potential V, which is the
inverse of �:

� (�) = ��2�� (�) ,
V (�) = 1� (�) ,

(7)

being � the load carried by the pair of teeth. Both the unitary
potential and the inverse unitary potential of a determined
pair of teeth can be computed from the above equations by
numerical techniques of integration. 
e result for standard
teeth is always a function of � similar to that in Figure 2.

For spur gears, the elastic potential energy is computed
considering all the pairs of teeth in simultaneous contact,
with an unknown fraction of the load acting on each one,
and minimizing its value by means of variational techniques
(Lagrange’s method). 
e load at each pair results in [24, 25]

� (�) = V (�)∑�1−1�=0 V� (��)�, (8)
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Figure 2: Example of unitary potential � and inverse unitary
potential V for spur gears (obtained by numerical integration of the
equations of the elasticity).

where �(�) and V(�) are the load and the inverse unitary
potential of tooth � when contact occurs at the point cor-
responding to �, F is the total transmitted load, and it is
assumed V(�) = 0 outside the interval of contact �inn ≤ � ≤�inn + �
, where �inn is the prole parameter corresponding to
the inner contact point of the pinion. According to this, the
load sharing ratio �(�) (or the fraction of the load supported
by the considered pair of teeth) is given by

� (�) = � (�)� = V (�)∑�1−1�=0 V� (��) = V (�)∑�1−1�=0 V (� + (� − �)) ,
(9)

while the load per unit of length �(�), for spur gears, can be
expressed as

� (�) = �� � (�) . (10)


e load sharing model presented in (9) can be only
calculated by using computational methods and numeri-
cal integration techniques to compute the elastic potential
energy, whose domains are dened by the geometry of the
involute and the trochoid of pinion and wheel. Equations for
active and root proles can be found in [25]. To perform
these calculations, a powerful automated numerical and
symbolic computation system is required, and all the above
equations have been implemented in MATHEMATICA [32].

is allows computing the load sharing for any spur gear
pair numerically. However, to develop an analytical model
of e�ciency, an analytic function for the inverse unitary
potential is required [27].

If we dene a new parameter  of the prole points as  =� − �inn, the interval between contact at the inner point of
contact and the next tooth contacting at the inner point of
contact is given by 0 ≤  ≤ 1, and the complete meshing
interval of a tooth is given by 0 ≤  ≤ �
.
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Figure 3: Typical shape of the graph of inverse unitary potential
V( ).


e inverse unitary potential v can be expressed as a
function of this new parameter  . 
is expression can be
accurately approximated by equation [25]:

V ( ) = cos [�0 ( − �
2 )]
�0 = 1

√(1/2) (1 + �
/2)2 − 1 .
(11)

Function V( ) has a maximum at the midpoint of the interval
of contact (denoted by  � = �
/2).Wewill do V( ) = 0 outside
the interval of contact 0 ≤  ≤ �
.

Figure 3 shows the typical aspect of function V( ) for
standard teeth. Note that, according to (9), the amplitude
of V( ) has no in�uence on the load distribution, so a
normalized function V( ), with a maximum value equal to 1,
may be considered for calculations, as one given by (11) and
represented in Figure 3. According to this, the load sharing
ratio for spur gears can be obtained by replacing (11) in (9),
which yields the following result for transverse contact ratio�
 between 1 and 2:

� ( ) = cos [�0 ( − �
/2)]
cos [�0 ( − �
/2)] + cos [�0 ( + 1 − �
/2)]

for 0 ≤  ≤ �
 − 1
� ( ) = 1 for �
 − 1 ≤  ≤ 1
� ( ) = cos [�0 ( − �
/2)]

cos [�0 ( − 1 − �
/2)] + cos [�0 ( − �
/2)]
for 1 ≤  ≤ �


(12)

which has been represented in Figure 4(a). Similarly, the load
sharing ratio for high contact ratio spur gears is given by

� ( ) = (cos [�0 ( − �
2 )])
× (cos [�0 ( − �
2 )] + cos [�0 ( + 1 − �
2 )]

+ cos [�0 ( + 2 − �
2 )])−1
for 0 ≤  ≤ �
 − 2

� ( ) = (cos [�0 ( − �
2 )])
× (cos [�0 ( − �
2 )] + cos [�0 ( + 1 − �
2 )])−1

for �
 − 2 ≤  ≤ 1
� ( ) = (cos [�0 ( − �
2 )])

× (cos [�0 ( − 1 − �
2 )] + cos [�0 ( − �
2 )]
+ cos [�0 ( + 1 − �
2 )])−1

for 1 ≤  ≤ �
 − 1
� ( ) = (cos [�0 ( − �
2 )])

× (cos [�0 ( − 1 − �
2 )] + cos [�0 ( − �
2 )])−1
for �
 − 1 ≤  ≤ 2

� ( ) = (cos [�0 ( − �
2 )])
× (cos [�0 ( − 2 − �
2 )] + cos [�0 ( − 1 − �
2 )]

+ cos [�0 ( − �
2 )])−1 for 2 ≤  ≤ �

(13)

which has been represented in Figure 4(b).

As seen in Figure 4, the load sharing ratio R( ) presents a
linear variation with the prole parameter  , with di�erent
slope at any interval, according to the number of teeth in
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Figure 4: Typical shape of function �( ): (a) for 1 < �
 < 2; (b) for 2 < �
 < 3.

simultaneous contact. 
e limits of each interval can be
known from the fractional part of the transverse contact ratio,�
. 
e values of R( ) at the limits of these intervals depend
on the contact ratio; however, this dependence is very slight
for standard tooth height and center distance, and we can
consider constant values to be used for any spur gear, as
induced errors are very small [24, 26]. For standard contact
ratio gears, these constant values are

�12≈�42≈0.33, �22≈�32≈ 0.66, �21 = �31 = 1,
(14)

while for high contact ratio gears,

�13≈�63≈0.25, �23≈ �53≈0.30, �33≈�43≈0.45,
�22≈�52≈0.40, �32 ≈�42 ≈ 0.60.

(15)


e rst subscript denotes the contact point; the second one
the number of pairs in simultaneous contact. As the total load
is constant, it is veried for 1 < �
 < 2:

�12 + �32 = 1, �22 + �42 = 1, (16)

and, for 2 < �
 < 3,
�13 + �33 + �53 = 1, �23 + �43 + �63 = 1,

�22 + �42 = 1, �32 + �52 = 1. (17)

According to this, the load sharing ratio for standard spur
gears, given by (12), can be also computed from

� ( ) =
{{{{{{{{{{{

13 (1 +  �
 − 1) for 0 ≤  ≤ �
 − 1
1 for �
 − 1 ≤  ≤ 113 (1 + �
 −  �
 − 1) for 1 ≤  ≤ �
.

(18)

Similarly, the load sharing ratio for high contact ratio spur
gears, given by (13), can be also computed from

� ( ) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0.25 + 0.05�
 − 2 for 0 ≤  ≤ �
 − 2
0.40 + 0.203 − �
 ( − �
 + 2) for �
 − 2 ≤  ≤ 1
0.45 for 1 ≤  ≤ �
 − 10.60 − 0.203 − �
 ( − �
 + 1) for �
 − 1 ≤  ≤ 2
0.30 − 0.05�
 − 2 ( − 2) for 2 ≤  ≤ �
.

(19)

A study of the accuracy of the above presented model of load
distribution for conventional spur gears can be found in [25,
26]. A wider study involving conventional and high contact
ratio gears has been reported in [33]. In all the considered
cases, accuracy of (12) and (13) for the load sharing ratio is
high enough for strength and load capacity calculations.

3. Model of Efficiency


e transmitted energy from contact at the inner point of
contact of a spur pinion tooth to contact at the same point
of the next tooth (i.e., Δ� = Δ = 1) is given by

?� = ��	1 2��1 . (20)

Similarly, the total mechanical (load-dependent) energy lost
during a small rotation of the pinion can be expressed as
the average friction coe�cient @, multiplied by the normal
load acting on the tooth and by the relative sliding. All these
parameters depend on the contact point and consequently
can be expressed as a function of �. References [27–29]
present the development of the model for spur and helical
gears. Following the same procedure we obtain for the energy
loss [8],

�?� = @�� (�) �	1�	2 (�	1 + �	2) 2��1
AAAAAAAAtan��� − 2��1 �

AAAAAAAA ��. (21)
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Figure 5: Function ��(�
, �,  ): (a) conventional spur gear with �
 ≤ ��
 ≤ 1; (b) high contact ratio spur gear with 1 ≤ ��
 ≤ �
 − 1.

Integrating along the complete meshing cycle and taking into
account that the friction coe�cient is assumed to be constant
along the path of contact, we obtain

?� = @��	1�	2 (�	1 + �	2) 2��1 ∫
�inn+��

�inn
� (�) AAAAAAAAtan��� − 2��1 �

AAAAAAAA ��,
(22)

and from (20) and (22) the following expression is obtained
for the e�ciency B:
B = 1 − ?�?� = 1 − @�	1 + �	2�	2 ∫�inn+��

�inn
� (�) AAAAAAAAtan��� − 2��1 �

AAAAAAAA ��
(23)

which can be written as a function of the gear ratio C, as
B = 1 − @ (1 + 1C)∫�inn+��

�inn
� (�) AAAAAAAAtan��� − 2��1 �

AAAAAAAA ��. (24)

Equation (24) may be simplied if expressed as a function
of  . Moreover, if �
1 is the contribution to the contact ratio
of the approach interval (from contact at the inner point of
contact to the operating pitch point) and � the ratio between�
1 and �


�
1 = �12� tan��� − �inn,
� = �
1�
 ,

(25)

the e�ciency will be given by

B = 1 − 2�@( 1�1 + 1�2)∫��
0

� ( ) AAAA − ��
AAAA � . (26)

Equation (26) has been obtained from an average friction
coe�cient, constant along the path of contact. For simplicity,
we will denote the function under the integral as ��:

�� (�
, �,  ) = � ( ) AAAA − ��
AAAA . (27)

Function ��(�
, �,  ) depends on three dimensionless vari-
ables and has the typical shape shown in Figure 5.
e integral
of �� will be denoted by D�� and it will depend on two
dimensionless variables:

D�� (�
, �) = ∫��
0

�� (�
, �,  ) � . (28)

According to this, the e�ciency of spur gears is nally
described by

B = 1 − 2�@( 1�1 + 1�2) D�� (�
, �) . (29)

D�� is the area under curve �� in Figure 5 (grey area), and
can be only computed by means of numerical integration
techniques. From (23) and Figure 5, the interval of integration
should be divided for numerical integration taking into
account the di�erent possible locations of the point  =��
, belonging to the interval of two pair-tooth contact or
belonging to the interval of single pair-tooth contact (for high
transverse contact ratio gears, belonging to the interval of
three pair-tooth contact or belonging to the interval of two
pair-tooth contact).


e main problem is the calculation of D��. Once calcu-
lated, the e�ciency can be immediately known with (29),
but the mathematical problem is not simple. Fortunately,
function D�� depends on two parameters only, which suggests
the possibility to nd an approximate, accurate enough
equation for D��(�
, �) suitable for calculations. Next section
deals with the search of such approximate equation.

4. Approximate Equation for Function D��
4.1. Standard Spur Gears, 1 ≤ �
 ≤ 2. For numerical
calculation of the integral of ��(�
, �,  ), the interval [0, �
]
should be divided in three subintervals according to the three
segments of �( ), and one of them should be divided in two
ones due to the location of��
. It should be taken into account
if this point  = ��
 is located inside the interval of single-
pair tooth contact �
 ≤ ��
 ≤ 1, as the case represented in
Figure 5(a), or inside any of two intervals of two-pair tooth
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Figure 7: D��(�
, �) for 1 < �
 < 2: (a) analytical and numerical values; (b) numerical and approximate values.

contact, 0 ≤ ��
 ≤ �
 or 1 ≤ ��
 ≤ �
. However, as functionD��(�
, �) is symmetric respect to � = 0.5, the last two
cases yield the same results. Figure 6 represents the domains
of existence of three cases mentioned above, for theoretical
ranges of values of � and �
.

Figure 6 also represents the values of �
 and �, for around
one thousand di�erent cases of spur gears with transverse
contact ratio between 1 and 2, considering values of the design
parameters insidewide enough ranges. It can be observed that
all the obtained values of � are always contained in a thin
interval around � = 0.5 ± 0.1, which means the majority of
the cases corresponding to ��
 inside the central interval of
single-pair tooth contact, that is, �
 ≤ ��
 ≤ 1. Only for
values of �
 very close to 2, ��
 may shi� to the intervals
of two-pair tooth contact, but this is less usual. According

to this, the development of the model will be simplied by
considering only the case �
 ≤ ��
 ≤ 1.


e limits of the four intervals of function D��(�
, �) are
known, as shown in Figure 5(a), as well as the equation
of ��(�
, �,  ) in each interval, as seen in (18) and (27).
Calculating the four integrals and the sum of all of them, a
relatively simple analytic expression for D��(�
, �) is obtained,
which has been represented in Figure 7(a):

D�� (�
, �)= 12 + 12 �
(1 − 2�)2 − � + �2 + �2
(49 − � + �2) .
(30)

For unusual cases of spur gears with 0 ≤ ��
 ≤ �
 or1 ≤ ��
 ≤ �
 (always with �
 ≈ 2) an analytic expression of
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function D��(�
, �), similar to one given by (30) for the other
case, could be obtained by following identical procedure.


e values of the load sharing ratio � at singular points
given by (14) are not exact, but they are slightly in�uenced
by the fractional part of the contact ratio. 
is in�uence is
not strong and however may induce a small error in the
determination of D��(�
, �). Obviously, (16) is always veried.

Nevertheless, it can be checked that the values ofD��(�
, �) represented in Figure 6, which have been computed
by means of numerical techniques, do t accurately with
function represented in Figure 7(a), which has been obtained
from the analytic expression given by (30), for the considered

range of values.
e�2—factor for the cases considered in the
above mentioned study is greater than 0.9999.

As said above, all the values of D��(�
, �) are located in a
very thin interval of �, and accurate enough approximations
of D��(�
, �) can be obtained by considering only the in�uence
of �
 and neglecting the in�uence of �. 
is can be observed
in Figures 6 and 7, in which for a given value of �
 the interval
of values of D��(�
, �)—corresponding to the variation of�—is very thin. According to that, the following linear
approximation was obtained by linear correlation of the
above thousand mentioned points:

D�� approx1 (�
, �) ≈ D�� approx1 (�
) = (231�
 − 42) ⋅ 10−3.
(31)

Of course, better accuracy is obtained if a parabolic correla-
tion is used:

D�� approx2 (�
, �) ≈ D�� approx2 (�
)
= (231�2
 − 503�
 + 537) ⋅ 10−3. (32)

Figure 7(b) shows the comparison between the numerical
values of function D��(�
, �) computed by numerical integra-
tion and the values given by the linear approximation of (31).
Relative errors of approximate values of D��(�
, �) given by
(31) are always included in the interval ±2%, as shown in
Figure 8(a).

Errors are even lower if computed in terms of the
e�ciency. Figure 8(b) shows the relative error of the e�ciency
computedwith the linear approximation of D��(�
, �) given by
(31). All of them are inside the interval ±3 ⋅ 10−4 (±0.03%).


e parabolic approximation of D��(�
, �), given by (32),
yields even more accurate results. Relative errors of values ofD��(�
, �) are lower than ±1%, as shown in Figure 9(a). 
e
relative errors in the estimation of the e�ciency are reduced

to ±2 ⋅ 10−4 (±0.02%), as shown in Figure 9(b).

4.2. High Contact Ratio Spur Gears, 2 ≤ �
 ≤ 3. In this case,
for numerical calculation of the integral of ��(�
, �,  ) the
interval [0, �
] should be divided in ve subintervals due to
the ve segments of �( ), and one of them should be divided
in two ones due to the location of ��
. It should be taken into
account if this point  = ��
 is located inside one of three
intervals of three-pair tooth contact (0 ≤ ��
 ≤ �
, 1 ≤ ��
 ≤�
 − 1 or 2 ≤ ��
 ≤ �
) or inside one of two intervals of
two-pair tooth contact (�
 ≤ ��
 ≤ 1 or �
 − 1 ≤ ��
 ≤ 2).

Function D��(�, �
) is symmetric with respect to � = 0.5, so
the last two cases yield the same results, as well as the rst and
the third cases above.

Figure 6 represents the domains of existence of ve cases
mentioned above, for theoretical ranges of values of � and�
. Figure 6 also represents the values of D�� as a function
of �
 and �, for around one thousand di�erent cases of spur
gears with transverse contact ratio greater than 2, considering
wide enough ranges of values of the design parameters.

e obtained values of � remain contained in the interval� = 0.5 ± 0.1, which means that the majority of the cases
corresponds to ��
 inside the central interval of three-pair
tooth contact, that is, 1 ≤ ��
 ≤ �
 − 1. As in the previous
case, only in few cases, always for values of �
 very close to 2,��
may shi� to the intervals of two-pair tooth contact, so the
development of the model will be simplied by considering
only the case 1 ≤ ��
 ≤ �
 − 1.


e limits of the six intervals of function D��(�
, �) are
known as well as the equation of ��(�
, �,  ) in each interval.
Calculating the six integrals and the sum of all of them, a
relatively simple analytic expression for D��(�
, �) is obtained:
D�� approx (�
, �) ≈D�� approx (�
)

= 160(55 + 34 (�
 − 2)
+11(�
 − 2)2 − 27�2
� + 27�2
�2) .

(33)

In this case, the values of the load sharing ratio � at singular
points given by (15) are slightly more in�uenced by the
fractional part of the contact ratio than those of the above
case; however, the induced error in the determination ofD��(�
, �) is also very small. Obviously, (16) is always veried.

Also for high contact ratio spur gears, the thousand
cases represented in Figure 6 are included in a thin interval
of �, so an approximate expression for D��(�
, �) can be
found as a function of �
, neglecting the in�uence of �.
Furthermore, this variation with �
 is practically linear, as
shown in Figure 10(a). A very accurate approximation can be
obtained by assuming a linear variation of D��(�
, �) with �
,
with a value of the function of 0.45 for �
 = 0, and a value of
0.95 for �
 = 1. Accordingly,

D�� (�
, �) ≈ D�� (�
) = 12�
 − 0.55 (34)

which has been represented in Figure 10(b). Figure 10(a)
shows how this expression ts with numerical values. Relative
error in the evaluation of D��(�
, �) is always smaller than
3%, as shown in Figure 11(a). Relative error in the evaluation
of the e�ciency is always smaller than 0.03%, as shown in
Figure 11(b).

5. Results

5.1. Standard Spur Gears, 1 ≤ �
 ≤ 2. Figure 12 represents the
computed values of the e�ciency for the set of thousand spur
gears used in previous studies (Figures 6 to 9). Considered
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Figure 8: Relative error of linear approximation of function D��(�
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data included standard pressure angle between 19 deg and
27 deg, 18 to 30 tooth pinion, and gear ratio between 1 and
10. Addendum and dedendum took the values of the ISO and
AGMA standard proportions [34, 35].

Values of the e�ciency computed with the proposed
analytical method are very close to those computed by

numerical methods, yielding an error of 10−4 order, as shown
in Figures 8(b) and 9(b). As said above, this small error
is induced by the load sharing ratio function R( ), whose
values at the singular points depend on the contact ratio.

Nevertheless, an error of 10−4 order in the estimation of the
e�ciency is quite insignicant. Error levels in the estimation
of D��(�
, �) increase a little, but they are never higher than
2%.


e in�uence on the friction losses and the e�ciency of
the number of teeth on pinion and wheel, as well as of the

normal pressure angle, has been also studied. Results have
been represented in Figure 13.

Results obtained from the proposed analytical method
have been also compared with those obtained by assuming
the load to be uniformly distributed along the line of contact,
that is, considering 50% of the load acting at each pair of
teeth along the intervals of double tooth contact and 100%
of the load along the interval of single tooth contact. 
e
proposedmodel yields slightly greater values of the e�ciency.
In fact, the relative sliding is bigger at points far from the pitch
circle and the load is signicantly smaller at those points, so
computed friction losses are lower. Although the di�erences
are not important when computed in terms of the e�ciency
(around 0.2%–0.4%), they are much more signicant when
expressed in terms of losses (up to 11%), as represented in
Figure 14.
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5.2. High Contact Ratio Spur Gears, 2 ≤ �
 ≤ 3.
Figure 15 represents the computed values of the e�ciency
for a signicant range of high transverse contact ratio spur
gears. To get transverse contact ratio greater than 2, spur gears
were considered with standard pressure angle between 14 deg
and 17 deg, 50 tooth pinion, and gear ratio between 1 and 4.
Addendum and dedendum took the values of the ISO and
AGMA standard proportions [34, 35].

Values of the e�ciency computed with the proposed
analytical method are very close to those computed by

numerical methods, yielding an error of 10−4 order. As in
the previous case, this small error is induced by the singular
points of the load sharing ratio function R( ). Errors in the

estimation of the e�ciency remain at similar levels of 10−4

order, while errors in the estimation of D��(�
, �) increase a
little, but never above 3%.

Also for this case, the in�uence of the number of teeth
on both gears and the normal pressure angle on the friction
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Figure 15: Computed values of the e�ciency B(�
).

losses and the e�ciency have been studied. Results have been
represented in Figure 16.

Results obtained from the proposed analytical model
have been also compared with those obtained by assuming
the load to be uniformly distributed along the line of contact,
that is, considering 1/3 of the load acting at each pair of
teeth along the intervals of three-pair tooth contact and 1/2
of the load along the intervals of two-pair tooth contact. 
e
proposedmodel yields slightly greater values of the e�ciency.

e relative sliding is bigger at points far from the pitch circle
and the load is signicantly smaller at those points, so friction
losses are lower. Once again, di�erences are not important
when computed in terms of e�ciency (around 0.3%) but in
this case are much more signicant when expressed in terms
of losses (up to 50%). 
e representation of these signicant
di�erences of computed losses as a function of the parameter[1/�1 + 1/�2]−1 and the transverse contact ratio �
 may be
interesting. It is given in Figure 17, both for standard and high
contact ratio spur gears.



12 Mathematical Problems in Engineering

100
125

150
175

200

0.015

0.02

0.025

0.03

80

60� 1

�2

�� = 15∘

�� = 14∘

�� = 16∘
�� = 17∘

� �
(J

)

(a)

100
125

150
175

200

0.99

0.992

0.994

0.996

80

60� 1

�2

�� = 15∘�� = 14∘
�� = 16∘

�� = 17∘

�

(b)

Figure 16: In�uence of pressure angle and number of teeth on pinion and wheel: (a) on friction losses; (b) on the e�ciency.
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6. Conclusions

A model of e�ciency for involute spur gears has been
developed from a nonuniform load sharing model, based on
the minimum elastic potential criterion and assuming the
friction coe�cient to be constant along the path of contact.
Both standard and high contact ratio spur gears have been
considered. According to the obtained load sharing ratio,
the e�ciency has been expressed by a very simple, analytic
equation, as a function of the average friction coe�cient, the
number of teeth on pinion and wheel, and the transverse
contact ratio.

In spite of its simplicity, this expression allows to compute
the e�ciency with very small errors, always lower than
0.0003 (0.03% relative error), if compared with numerical

calculations, for a wide range of geometric and operating
parameters. In all the cases, values of the e�ciency are higher
than those obtained from the hypothesis of uniform load
sharing due to the lower load intensity at points with bigger
relative sliding.

Some studies of the in�uence on the e�ciency of several
design parameters have been carried out. It can be checked
that the e�ciency increases for bigger pressure angle, for
balanced specic sliding on pinion and wheel, also if the gear
ratio decreases by increasing the number of teeth on pinion.

ese results are suitable for spur gears with contact ratio
between 1 and 2.7.


e presented model establishes the background of
advanced models considering undercut teeth and vacuum
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gearing e�ects, variable friction coe�cient along the path of
contact, and not load-dependent losses.

Nomenclature

Symbols

� : Face width (m)�
: Fractional part of �
�: Modulus of elasticity (N/m2)�: Tooth chordal thickness (m)�: Normal load (N)�: Load per unit of length (N/m)�: Transverse modulus of elasticity (N/m2)C: Gear ratio�: Load sharing ratio�	: Base radius (m)��: Contact point radius (m)�: Elastic potential of the pair of teeth (J)

V: Inverse unitary potential (N/m2)?�: Energy lost by friction (J)?�: Transmitted energy (J)	: Coordinate along the tooth centerline from the gear
rotation center (m)�: Number of teeth��: Load angle (rad)��: Standard pressure angle (rad)��� : Operating transverse pressure angle (rad)�
: Transverse contact ratio�
1: Contact ratio corresponding to the approach intervalB: E�ciency�: Involute rotation angle (rad)�: Ratio between �
1 and �
@: Average friction coe�cient�: Prole parameter : Auxiliary parameter.

Subscripts

1/2: Pinion/wheel
inn: Inner point of contact.
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[7] B. R. Höhn, K. Michaelis, and A. Wimmer, “Low loss gears,”
AGMA Technical Paper 05FTM11, AGMA, 2005.

[8] J. I. Pedrero, M. Estrems, and A. Fuentes, “Determination of the
e�ciency of cylindric gear sets,” in Proceedings of the 4th World
Congress on Gearing and Power Transmissions, Paris, France,
1999.

[9] N. E. Anderson, S. H. Loewental, and J. D. Black, “An analytical
method to predict e�ciency of aircra� gearboxes,” NASA
Technical Memorandum 83716, NASA, 1984.

[10] N. E. Anderson and S. H. Loewenthal, “E�ect of geometry and
operating conditions on spur gear system power loss,” Journal
of mechanical design, vol. 103, no. 4, pp. 151–159, 1981.

[11] N. E. Anderson and S. H. Loewenthal, “E�ciency of nonstan-
dard and high contact ratio involute spur gears,” Journal of
Mechanisms, Transmissions, and Automation in Design, vol. 108,
no. 1, pp. 119–126, 1986.

[12] M. Vaishya and D. R. Houser, “Modeling and measurement
of sliding friction for gear analysis,” AGMA Technical Paper
99FTMS1, AGMA, 1999.

[13] A. Lehtovaara, “Calculation of sliding power loss in spur gear
contacts,” Tribotest Journal, vol. 9, no. 1, pp. 23–34, 2002.

[14] Y. Diab, F. Ville, and P. Velex, “Prediction of power losses due
to tooth friction in gears,” Tribology Transactions, vol. 49, no. 2,
pp. 266–276, 2006.

[15] K. F. Martin, “
e e�ciency of involute spur gears,” Journal of
mechanical design, vol. 103, no. 4, pp. 160–169, 1981.

[16] S.Wu andH. S. Cheng, “Frictionmodel of partial-EHL contacts
and its application to power loss in spur gears,” Tribology
Transactions, vol. 34, no. 3, pp. 398–407, 1991.

[17] H. Xu, Development of a generalized mechanical e	ciency
prediction methodology for for gear pairs [M.S. thesis], 
e Ohio
State University, Columbus, Ohio, USA, 2005.

[18] J. Coy, A. Mitchell, and B. Hamrock, “Transmission e�ciency
measurements and correlations with physical characteristics
of the lubricant,” NASA Technical Memorandum ADA149179,
NASA, 1984.

[19] C. Naruse, S. Haizuka, R. Nemoto, and K. Kurokawa, “Studies
on frictional loss, temperature rise and limiting load for scoring
of spur gears,”Bulletin of the JSME, vol. 29, no. 248, pp. 600–608,
1986.

[20] M. Yoshizaki, G. Naruse, R. Nemoto, and S. Haizuka, “Study
on frictional loss of spur gears (concerning the in�uence of
tooth form, load, tooth surface roughness, and lubricating oil),”
Tribology Transactions, vol. 34, no. 1, pp. 138–146, 1991.



14 Mathematical Problems in Engineering

[21] T. T. Petry-Johnson, Experimental investigation of spur gear
e	ciency [M.S. thesis], 
e Ohio State University, Columbus,
Ohio, USA, 2007.

[22] T. T. Petry-Johnson, A. Kahraman, N. E. Anderson, and D. R.
Chase, “An experimental investigation of spur gear e�ciency,”
Journal of Mechanical Design, vol. 130, no. 6, Article ID 062601,
10 pages, 2008.

[23] P. Velex and F. Ville, “An analytical approach to tooth friction
losses in spur and helical gears-in�uence of prole modica-
tions,” Journal of Mechanical Design, vol. 131, no. 10, Article ID
101008, 10 pages, 2009.

[24] J. I. Pedrero, M. Artés, and A. Fuentes, “Modelo de distribución
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