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ABSTRACT

This paper presents a theoretical model and an
associated computer program for predicting subsonic
bending-torsion flutter in prcpfans. The model is
based on two-dimensional unsteady cascade strip
theory and three-dimensional steady and unsteady
lifting surface aerodynamic theory in conjunction
with a finite element structural model for the
blade. The analytical results compare well with
published experimental data. Additional para-
metric studies are also presented illustrating the
effects on flutter speed of steady aeroelastic
deformations, blade setting angle, rotational
speed, number of blades, structural damping, and
number of modes.

NOMENCLATURE
a elastic axis location
[A] generalized aerodynamic matrix

torsion contributions of
the m norma! modes about the
reference axis

A1, A2senn, Ap

b blade semi-chord

{F(t)} nonaerodynamic nodal force vector

{Fy} time-independent nonaerodynamic
force vector

fj modal frequency of j-th mode in Hz

(G} generalized motion independent
force vector

h bending deflection

; VT

J mode index, j =1, 2, 3,...

k reduced frequency (wb/V)

[KgJ generalized stiffness matrix
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centrifugal softening matrix in
physical coordinates
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aerodynamic coefficients
defined in Eq. (12)

aerodynamic coefficients defined
in Ref. 13

aerodynamic 1ift
aerodynamic moment

Mach number

physical mass matrix
generalized mass matrix
number of blades

stiffness matrix defined in
Eq. (10)

aerodynamic nodal force
vector

steady-state aero-
dynamic nodal force vector

vector of generalized coordinates

amplitude of motion in
generalized coordinates

generalized aerodynamic force
vector

interblade phase angle index,
r=1,2,..., N; also distance
from the axis of rotation

blade length along the reference
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time

vector of blade deflections at
grid points
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Subscripts

0

9

vector of steady state
deflections at grid points

steady state deflections due to
centrifugal Toads

steady state deflections after
the i-th iteration

free stream velocity

relative velocity

modal matrix expressed in terms
of individual bending and torsion
contributions about the reference
axis

bending contributions of m
normal modes of the reference axis

global coordinate system
blade fixed coordinate system
torsional deflection

blade pitch angle at
three-quarter radius

eigenvalue defined in Eq. (10)

perturbation nonaerodynamic nodal
force vector

perturbation aerodynamic nodal
force vector (motion-independent)

perturbation aerodynamic

nodal force vector (motion-
dependent )

vector of vibratory deflections
at grid points measured relative
to {ug}

structural damping ratio in j-th
mode

sweep angle

real part of i-Vy (proportional
to damping)

imaginary part of i\lr(ﬂutter
frequency)

density of air
interblade phase angle
modal matrix

frequency

freguency of j-th mode

rotational speed

steady state value

generalized (modal)

F values at flutter point

Superscripts

differentiation with respect to
time

T transpose

differentiation with respect to
spatial coordinate

INTRODUCTION

The major goals of propfan designs are to
maximize aerodynamic efficiency, minimize noise and
assure structural integrity. The aerodynamic and
acoustic requirements of propfans have resuited in
designs with thin, swept, and twisted blades of low
aspect ratio and high solidity compared to conven-
tional propellers. These blades operate in sub-
sonic, transonic, and possibly supersonic flows.
Furthermore, propfans may have a single rotor with
blades rotating in one direction or two rotors
rotating in opposite directions. The former is
called a single rotation, SR, propfan and the
latter is called a counter rotation, CR, propfan.

The unconventional features of the SR propfan
add complexity to understanding the aeroelastic
phenomena involved and to developing an analytical
aeroelastic model. Since the blades are thin and
flexible, deflections due to centrifugal and aero-
dynamic loads are large. Hence, the aeroelastic
problem is inherently nonlinear, requiring geo-
metric nonlinear theory of elasticity. Also, the
blades are of low aspect ratio with large sweep
and, hence, require three-dimensional steady and
unsteady aerodynamic models for accurate analysis.
The blades have large sweep and twist, which
couples blade bending and torsional motions, and
are plate-like structures because of their low
aspect ratio. These factors require a finite ele-
ment structural model which accounts for centrif-
ugal softening and stiffening effects and possibly
for Coriolis effects. The centrifugal softening
terms are important because of large blade sweep
and flexibility. The propfan rotor has four or
more blades which necessitate the inclusion of
aerodynamic coupling or cascade effects between the
blades. The flexibility of the hub introduces
additional structural coupling between the blades
of a rotor. Furthermore, the aerodynamic and
structural properties of the individual blades may
differ from each other. The presence of these
differences requires explicit consideration of both
structural and aerodynamic mistuning in the analy-
tical aeroelastic model. Additionally, for the CR
propfan, there is aerodynamic interaction between
the blades of the two rotors. Because of these
unique features of both the SR and CR concepts, it
is not possible to directly use the existing aero-
elastic technology of conventional propellers or of
conventional turbofans or of helicopters.

As a part of the overall NASA single rotation
propfan technology program, a series of 0.61 m
(2 ft) diameter geometrically scaled models were
tested in wind tunnels and on a NASA acoustic
research aircraft. The tests and results are
summarized in Ref, 1. The published literature on
the CR concept is very limited. However, the
benefits of the CR concept are discussed in Ref. 2,




The present paper addresses the aeroelastic aspects
of the SR propfan only.

Classical flutter of a SR propfan occurred
unexpectedly during a previous wind tunnel perform-
ance experiment on a model (designated SR-5) with
ten highly swept titanium blades. Reference 3
presented experimental data of the SR-5 model and
correlated the data with theory. In Ref. 3, the
aerodynamic model is based on two-dimensional
unsteady cascade theory with a correction for blade
sweep and the structural model is an idealized
swept beam for each blade. References 4 and 5
refined the analytical model of Ref. 3 by using
blade normal modes calculated from a finite-element
plate model for the blade, and correlated the
refined analytical results with the data of the
SR-5 model. The correlation between theory and
experiment in Refs., 3 to 5 varied from poor to
good.

Additional subsonic wind tunnel flutter data,
obtained by testing a composite propfan model,
SR3C-X2 (Fig.l), were presented in Ref. 6. A
three-dimensional steady and unsteady aerodynamic
theory for propfans with subsonic leading edge was
presented in Ref. 7, and the theory was applied for
predicting flutter for one test case of the wind
tunnel model of Ref. 6.

The specific objectives of the present inves-
tigation are: (1) to develop a modal flutter ana-
lysis method which uses both two-dimensional and
three-dimensional steady and unsteady aerodynamics;
(2) to conduct parametric studies to ascertain the
effect of steady airloads on frequencies, modes and
flutter speed, and the effect of number of blades,
blade setting angle and blade structural damping on
flutter speed; (3) to validate analytical models by
correlating analytical and measured flutter speeds
of the SR3C-X2 propfan model; and (4) to examine
the Timitations of two-dimensional unsteady aero-
dynamic theory for propfan flutter analysis. To
accomplish the objectives, a computer program
ASTROP (Aeroelastic Stability and Response of Pro-
pulsion §ystems) was developed. ASTROP was started
with two-dimensional unsteady aerodynamic theory
corrected for blade sweep. This version is desig-
nated ASTROP2. Subsequently, it was enhanced by
including three-dimensional steady and unsteady
aerodynamics in a version called ASTROP3. ASTROP
can use COSMIC NASTRANS or any other finite ele-
ment code to calculate blade steady state deflec-
tions, mode shapes, and frequencies. Presently,
COSMIC NASTRAN is used. This paper describes the
analytical method and the ASTROP code and presents
paremetric results which are believed to be useful

for propfan designers and other investigators in
the field.

The present work has been extended in Ref. 9
to include the effects of both structural and aero-
dynamic mistuning on propfan flutter.

ANALYTICAL FORMULATION

The coordinate system used for developing the
equation of motion of a rotating propfan blade is
shown in Fig. 2. The propfan rotates about the
X-axis which is aligned with the freestream direc-
tion. The Y-axis is aligned along the blade pitch-
axis and the Z-axis is perpendicular to the X-Y
plane. Also shown in Fig. 2 are undeflected and
deflected positions of an arbitrary blade strip

normal to the reference line. The finite-element
model of the blade is shown in Fig. 3. The aero-
elastic equation of motion of the blade can be
written as

[M] (U + [Kgd {uy + [K(tu)] (w
= {P(Lur,t)} + (F(thr (1)

where {u} vrepresents the blade deflections at

the grid points, [M] is the mass matrix, [K¢] the
centrifugal softening matrix, [K{(u)}] the non-—
linear stiffness matrix, {P({u} t)} the equivalent
aerodynamic nodal force vector, and (F(t)) the
equivalent nonaerodynamic force vector. Because of
the large deflections and the consequent need for
the geometric nonlinear theory of elasticity in
which the strain and displacement relations are
nonlinear, the stiffness matrix [K({u})] is a
function of nodal displacements and, hence, is non-
linear. The level of the geometric nonlinear
theory of elasticity used herein as well as in
NASTRAN, is the one in which elongations and shears
are negligible compared to unity. This explicit
consideration of geometric nonlinear theory of
elasticity provides the additional geometric dif-
ferential stiffness due to centrifugal stiffening
terms. The displacement dependent centrifugal
softening terms are included in the matrix [Kg],
which is linear. The rotation also introduces
Coriolis forces, but they are shown to be neglig-
ible for thin propfan blades in Ref. 10. Hence,
they are not included in the present formulation.

Linearization of Equations

Equation (1) is generally nonlinear and is
valid for calculating stalled and unstalled flutter
speed, forced response, aeroelastic performance,
steady-state deflections, frequencies and mode
shapes. An appropriate solution method is to
directly integrate in time domain, but it is compu-
tationally inefficient. Common practice is to
perturb it about a steady-state configuration by
writing

{ur = {ug} + {au(t)h

(P{ur,t) = (P({ugth)

+ {aP({aud,t)} + {(aP¥(t)}
{F(t)} = {Fot * {aF(t)

where {ug}, {P({ug}), and are the steady
state values of {u}, {P({u}, t?}, and {F(t)},
respectively. The quantities {au(t)}, {aP({au},t)},
and {aF(t)} are perturbations from {ug},
{P({ug})}, and {Fo}, respectively. The perturbat1on
aerodynamic force is split into motion dependent
({aP({au},t)}) and motion independent ({aP¥(t)})
parts for convenience in forced response analysis.
Substituting Eq. (2) into the nonlinear Eq. (1)
Teads to two sets of equations: one steady-state
equation for {ug} and another for the
perturbation variable fau(t)}. These are

ﬁKs] + [K({uo})]] {ug} = {P({ug})y + (Fy} (3)
M) (a1 + ks + [K(uo)T] cou(e)

= (AP({au},t)} + (aAPYW(t)} + {aF(t)) (4)



Steady-State Configuration and Vibration Analysis

The steady-state configuration for a given
rotational speed and Mach number is obtained by
solving the nonlinear Eq. (3). The stiffness
matrix [K({ug})] includes elastic stiffness and
differential stiffness due to centrifugal stiffening
loads and steady-state aerodynamic loads. Once the
steady-state deflection and the effective total
stiffness are known from Eq. {3}, the vibration
frequencies and mode shapes are calculated by
solving

[M] (ali(t)) + ﬁxs] " [K({uo})jﬂ au(t)y =0 (5)

which leads to the generalized mass matrix [Mg],
the modal matrix [¢], and the modal frequenciés ¥j.

Flutter and Forced Response by the Modal Method

The general vibratory motion can be expressed
as a superposition of the contributions of the
various normal modes:

(au(t)y = [o] (q) (6)

Substituting Eq. (6) into Eq._(4) and post-
multiplying the result by [¢]' Teads to

EMgd (@ + [Kgl (@) = [A] (@} * &(t))  (7)

where \
[Mgd = [01T M] [e]

2 .
o= ML w.l (1 + 2ig.
Kggs = Mgjs @5 | irg) >  (8)

[A] tq} = [e]T (aP(au,t))
G(t)y = (01T [(aF(t)) *+ @aP¥(t))] J

The order of Eq. (7) denends on the number of
modes included in Eq. (6). This number is
determined by performing numerical experiments,
which will be explained later. The structural
damping in each mode is introduced through the
damping ratio c¢j where the modal index
j=12,3. . . The generalized aerodynamic
matrix is represented by [A] for each interblade
phase angle for simple harmonic motion of the
blade. The motion independent aerodynamic and
nonaerodynamic forces are represented by
{G(t)} for each interblade phase angle. This
is included for completeness in the formulation,
but no results on forced response will be presented
in this paper. For simple harmonic motion the
flutter eigenvalue problem can be rewritten from
Eq. (7) after setting {G(t)} = (0} as

[P1 (ap} = v [Mg] 1go) (9)

where
{q} = {gq) efot
[P] = BKql - [A]

i‘f;_= iw=u *iv

Flutter occurs when p > 0.

(10)

ASTROP COMPUTER CODE

The ASTROP code is based on the normal mode
method and is for flutter, forced response, and
whirl flutter analysis of propulsion systems.
Only the flutter part of the code that uses two-
dimensional subsonic unsteady aerodynamics
(ASTROP2) and three-dimensional subsonic steady and
unsteady aerodynamics (ASTROP3) are used in the
present investigation. Both versions of the code
are written in FORTRAN. Data transfer between
NASTRAN and aerodynamic codes in ASTROP is made
through interfacing subroutines. This code is
operational on a CRAY-XMP computer.

ASTROP2

The input to ASTROP2 and the steps involved
for solving the flutter problem are shown in the
form of a flow chart in Fig. 4. The input consists
of blade geometry described by the grid point coor-
dinates in the XYZ system (Fig. 2) and the modal
information--frequencies, mode shapes, and general-
ized masses. For calculating modal information,
the equivalent anisotropic material properties for
each element are generated by using a preprocessor
code COBSTRAN (Ref. 11). The main step, which is
No. 3 in Fig. 4, is the calculation of the general-
ized aerodynamic matrix [A] by using normal modes
and an aerodynamic strip representation of the
blade. The blade is divided into a series of
discrete aerodynamic strips of constant properties,
and one of these strips is shown in Fig. 2. Each
swept strip has two motions, plunging and pitching
about an arbitrary reference line. The 1ift and
moment equations for each section are obtained by
extending the unsteady equations for a swept wing
generated in Ref. 12 to a linear cascade case.

This extension was implemented for the first time
in Ref. 3. The 1ift and moment expressions per
unit span are

) (11)

11 1 v

gL el |11 127 16|
" - Tog | ).
a

o1 Tpp -
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The definitions of the unsteady coefficients 1y,
Thes €tc. are the same as those in Ref. 13 and
these are calculated by using the theory presented
in Ref. 14 for each interblade phase angle. For
each strip the quantities h and a are expressed
in terms of normal modes and normal coordinates,
and the gap-to-chord ratio, sweep angle, and
stagger angle are calculated from the steady-state
configuration.

The effective Mach number for each strip is
obtained from the relative velocity and the sweep
angle. Then, the generalized aerodynamic force
vector can be expressed in terms of 1ift, moment,
normal modes, and normal coordinates as

S
2 T [W].
Q) = nouw j Wl [L] {EH}N) = [A] (@} (13)

0
where

(14)

{:} - [W] (@) J

The coefficients of the matrix [A] in Eq. (13) are
obtained by numerical integration using Gaussian
Quadrature. The user can choose either the unde-
flected blade position or the deflected position

due to centrifugal loads to calculate blade proper-
ties such as stagger, sweep, and gap-to-chord ratio
for each strip.

Then the flutter problem described in Eq. (10)
is solved in step 4 of Fig. 4. Then, steps 2 to 4
are repeated until the conditions in steps 5 and 6
are met. Finally, the critical flutter variables
are extracted in step 7. The main limitations of
the analytical model used in the code are: (1) the
validity of aerodynamic strip theory for propfans;
(2) the validity of the sweep correction in the
presence of cascade effects; (3) the arbitrariness
of the reference 1ine; and (4) the approximation
involved in calculating « and its derivatives
along the reference line from the normal modes.

ASTROP3

This version of the code consists of three
branches. The blade steady-state pressures, gen-
eralized unsteady aerodynamic forces and stability,
and forced response due to yawed-flow are calcula-
ted in branches one, two, and three, respectively.
Only the first two branches are shown in the form
of a flow chart in Fig. 5 because forced response
is not addressed in the present paper. This is an
expanded and modified version of the code described
in Ref. 7. The structural model is again based on
a finite element approximation. The aerodynamic
analysis is based on three-dimensional subsonic
compressible 1ifting surface theory in which blade
stall and transonic shock waves are not included.

The input to ASTROP3 and the solution proce-
dure are almost the same as those for ASTROP2.
However, the effect of steady three-dimensional
airloads is included in calculating the steady-
state configuration and the differential stiffness
in steps 3 to 6 of Fig. 5. This feature also pro-
vides the steady aeroelastic performance at each
iteration of the nonlinear solution of Eg. (3).
The performance results can be printed in step 6
of Fig. 5.

The iterative-interaction process, steps 4
to 6, is continued until the deflection from the
(i + 1)tN jteration is equal to that from the
i th iteration. Then, the frequencies and mode
shapes are calculated in step 7.

The generalized aerodynamic coefficient
matrix, A, is calculated in step 9 by using the
procedure outlined in Ref. 7. The eigenvalue
problem in step 10 is repeated until the flutter
conditions in steps 11 and 12 are met. The entire
procedure is repeated for each interblade phase
angie and the critical flutter variables are
printed in step 13.

RESULTS AND DISCUSSION

The propfan flutter research model, Fig. 1,
SR3C-X2, is analyzed. The blades are made from
graphite-ply/epoxy-matrix material. There are
eight blades on the propfan. The geometric mid-
chord sweep is 45° at the tip and the tip diameter
is 0.61 m (2 ft). The blade mass ratio is approx-
imately 33. The model has been tested for flutter
at various rotational speeds, freestream Mach
numbers, and blade setting angles. Details on the
model and flutter data can be found in Ref. 6.



The finite element model of the blade (Fig. 3)
consists of 228 grid points and 388 plate elements.
The hub of the blades is assumed rigid and is not
modeled. Also, all the blades are assumed to be
aerodynamically, geometrically, and structurally
identical. Consequently, it is adequate to model
one blade and to analyze each interblade phase
angle independently. The effects of nonidentical
blade properties are addressed in Ref. 9.

Frequencies and Mode Shapes

Figure 6 shows the variation of the SR3C-X2
blade natural frequencies with rotational speed in
vacuum. The measured bench natural frequency band
of the eight blades is shown for comparison. The
frequencies are calculated with centrifugal loads
(CL) for all rotational speeds and with centrifugal
loads and steady three-dimensional airloads
(CL + AL) at 6100 rpm by the procedure described
in Fig. 5 (steps 1 to 7). Figure 7 shows hologram
photos of the measured modes and the corresponding
calculated modes. The holograms for only the first
two modes are included because it will be shown
Tater that the flutter mode is a combination of the
first two modes. The fringes represent constant
displacement contours, the whitest ones being
nodes. It can be seen from the figure that the
measured and calculated frequencies for the first
mode correlate but the measured frequencies for the
second to 4th mode are lower than the calculated
ones. Alsa, the steady airloads do not have sig-
nificant effect on the frequencies. The first mode
frequency increases with an increase in rotational
speed. This trend is expected because of centrif-
ugal stiffening. The second and third mode
frequencies do not change significantly with rota-
tional speed. It can be seen from the contour
plots that the first mode is primarily flexural but
also has a large degree of torsion and the second
mode is primarily torsion near the tip. The corre-
lation between theory and experiment for the first
two modes is reasonably good and for the higher
modes the correlation is poor. The difference
between the average measured (375 Hz) and the cal-
culated frequency (399 Hz) for the second mode is
attributed to the modeling of the composites and/or
to root effects. Even though the effect of aero-
dynamic loads on frequencies is small, its effect
on deflection, particularly at the tip, is appre-
ciable in some cases and will be discussed later.

Effect of Centrifugal Loads and Steady Airloads on
Blade Steady State Configuration

Figure 8 shows the variation of the blade
steady-state pitch angle at the three-quarter
radius with iteration number from the nonlinear
aeroelastic analysis with rotational speed and Mach
number as parameters. The nonlinear analysis pro-
cedure described in Fig. 5, steps 1 to 6 is used.
The blade angle for iteration '0' corresponds to
the undeflected position (UP); for iteration 'l'
the steady state configuration with centrifugal
loads (CL); for iteration '2' the blade steady-
state configuration with centrifugal loads and the
aerodynamic loads on the configuration obtained in
iteration ‘'1'; for iteration '3' the steady state
configuration with centrifugal loads and aero-
dynamic loads on the configuration from iteration
'2%; and so on. It can be seen from the figure
that the centrifugal loads untwist the blades and
this untwist increases with rotational speed. The

untwist angle at 0.75R for 7400 rpm is approxi-
mately 2 . The aerodynamic loads also untwist the
blade and contribute an additional untwist at 9.75R
for 7400 rpm and M = 0.5 of approximately 0.65 .
The convergence with both centrifugal and aero-
dynamic Toads is accomplished with five iterations.
In other words the aerodynamic loads have to be
updated at least four times in the analysis. The
converged position is designated by CL + AL. In
addition to blade pitch angle change, there is a
change in blade camber, particularly at the blade
tip. These changes have a very significant effect
on blade performance, as well as, on flutter; and
the effect is expected to be even more significant
in transonic flows. Thus, one should include
steady air loads in performance, flutter and forced
response analysis of propfans.

Effect of Unsteady Cascade Aerodynamics on Blade
Flutter

To illustrate the effect of cascade aero-
dynamics on flutter, the real and imaginary parts
of the eigenvalues of the critical flutter mode of
the SR3C-X2 wind tunnel model are shown in Fig. 9.
These results are obtained by using the procedure
described in Fig. 5 steps 1 to 13 without steady
airloads. After calculating the critical free-
stream Mach number and the critical interblade
phase angle, the eigenvalues for other interblade
phase angles are calculated. Since there are eight
interblade phase angles, o = 360r/8 where the
phase index r = 0,1,. . 7, Fig. 9 may be inter-
preted as a root locus of the interblade phase
angle modes. For comparison the root loci for the
four blade configuration and for the single blade
case are also included in Fig. 9. Because of the
aerodynamic interaction (cascade effect) between
the blades, the single point splits into 4 and 8
for the four and eight blade cases, respectively.
When these points are joined, a rough ellipse is
formed for each case. The destabilizing influence
of the cascade effect is indicated by the length
of the semi-major axis of the ellipse. The results
clearly show that the cascade effect is very sig-
nificant even for the case of four blades. This is
confirmed by the experiment as will be shown in
the tater results. The other point to be noted
from this figure is that the most critical flutter
interblade phase angle for the eight blade case is
225°, which is a three nodal diameter backward
traveling wave in the notation employed herein,
and that for the four blade case it is 180 .

Effect of Freestream Mach Number on Effective
Damping

Figure 10 shows the variation of the real part
of the eigenvalue with freestream Mach number at
2 = 6080 rpm, 80 758 = 61.6°, and o, = 225°.
The real part of the eigenvalue is proportional to
modal damping. The real part of the eigenvalue is
plotted for the critical flutter mode only. For
the case of no structural damping, z = 0, the
real part of the eigenvalue is almost constant for
Mach numbers between 0.3 and 0.4 and starts
increasing rapidly for M between 0.4 and 0.6.

Effect of Structural Damping

As mentioned earlier, structural damping is
introduced into the analysis, Eq. (8), through the
viscous damping ratio. The effect of structural




damping on the real part of the eigenvalues is
also included in Fig. 10. It can be seen from the
figure that a damping ratio of 0.02 in each mode
has increased the flutter Mach number from 0.595
to 0.615. Also, the results show that a structural
damping ratio of 0.04 in each mode increases the
effective damping ratio only to 0.024 for the
critical mode. Thus the effective damping is not
increased by the full amount of the added struc-
tural damping. The effective damping ratio is the
ratio of the real and imaginary parts of the eigen-
value. The value of the damping ratio for compos-
ite blades of the SR3C-X2 model is of the order of
0.02. Since the value of ¢ and the consequent
increase in flutter Mach number for the SR3C-X2
blades are small, all the analytical predictions
in this paper are made with ¢ = 0. Consequently,
the analytical results are slightly conservative.

Comparison of Calculated and Measured Flutter
Boundary

The calculated flutter boundaries for various
steady state configurations and for various per-
turbation cases are compared with measured bound-
aries in Figs. 11 and 12 for 8 and 4 blade cases,
respectively. The flutter boundary is shown as a
variation of freestream Mach number with rotational
speed with blade pitch angle as a parameter. Three
blade pitch angles 61.6°, 56.6°, and 68.4° are con-
sidered for comparison. The steady state configu-
rations that might be used in various degrees of
approximation are: (1) undeflected position, UP,
(2) deflected position with centrifugal loads, CL;
and (3) deflected position with centrifugal and
three-dimensional steady airloads, CL + AL. The
possible perturbation cases are designated by modes
and frequencies and these are: (1) with centrif-
ugal loads, CL; (2) with centrifugal loads and
corrected second mode frequency, CL and
fo = 375 Hz; (3) with centrifugal loads and
three-dimensional airloads, CL + AL; and (4) same
as three with fp = 375 Hz. The case with
f{2) = 375 Hz is included because the measured non-
rotating frequency for the second mode is 375 Hz
and the calculated value is 399 Hz. Since this
frequency, as shown by theory, Fig. 6, is indepen-
dent of rotational speed, the measured value is
used in flutter speed calculations. To minimize
computational time, all these possible configura-
tions are considered only for 8g 758 = 61.6°.

Correlation of calculated and measured flutter

Mach numbers. - Comparing the calculated Mach
numbers for the case in which the UP as the steady
state and the CL as the perturbation state with the
measured ones in Fig. 11(a) for gy 758 = 61.6°,

the correlation between theory and experiment is
very good for @ = 5280 and 6080 rpm. However,

the calcutated Mach number for o = 7320 rpm is
slightly higher than the measured value. A similar
comparison with the same steady and perturbation
states in Fig. 11(b) for gy 758 = 56.6° and in

Fig. 11(c) for Bg.75r = 68.4° "also shows very

good agreement between theory and experiment. The
predicted slope of the flutter boundary line for
all the blade pitch angles agrees well with that
of the experiment. Both theory and experiment show
that for a given rpm the freestream flutter Mach
number decreases with an increase in the blade
pitch angle. For example, when @ = 6000 rpm,

the flutter Mach number is 0.62 for a blade pitch
angle is 56.6° (Fig. 11(b)), and is 0.6 for a
pitch angle is 61.6° (Fig. 11(a)).

The comparisons made in Fig. 11 for the eight-
blade case with the steady state UP and the pertur-
hation state CL are repeated in Fig. 12 for the
four-blade case. As can be seen, the correlation
between theory and experiment again is very good.
However, the difference between the calculated and
measured flutter Mach numbers for the four-blade
case is slightly greater. It implies that the
theory may be overcorrecting for the aerodynamic
cascade effects for the four-blade case.

Effect of change in steady state configuration
due to centrifugal loads. - Calculated flutter Mach
numbers with the steady state UP and the perturba-
tion CL are compared in Figs. 11 and 12 with the
corresponding calculated ones with the steady and
perturbation states as CL for all the blade pitch
angles. It is evident from the results that the
change in the steady state from UP to the CL does
not have an appreciahle effect on flutter Mach
numbers.

Sensitivity of flutter Mach number to
frequency. - Comparison of calculated flutter Mach
numbers with the steady state UP and the perturba-
tion state as CL with corresponding calculated ones
with the same steady state and the perturbation
state and fp = 375 Hz shows that the flutter
speed is very sensitive to change in the second
mode frequency for all the cases in Figs. 11
and 12, For example, the flutter Mach number is
decreased from 0.6 to 0.55 at o = 6080 rpm
(Fig. 11(a)) when the second mode frequency is
reduced from 399 to 375 Hz. Comparing the calcu-
lated flutter Mach numbers with the steady state
UP and the perturbation state CL, fy = 375 Hz
with the corresponding measured ones in Figs. 11
and 12, one can infer that the calculated Mach
numbers are slightly less than the measured ones
for all the blade pitch angles (Figs. 11(b) to (c))
with eight blades and for the blade pitch angle
56.6 (Fig. 12(b)) with four blades. Furthermore,
the experimental boundary for these cases lies
between the two calculated boundarjes. However,
when the blade pitch angle is 61.6 with four
blades, the experimental boundary agrees well with
the calculated one with the steady state UP and the
perturbation state CL and f» = 375 Hz. Also, as
can be seen in Figs. 12(a) and (b), there is a kink
in flutter boundary, and the kink was predicted in
Fig. 12(b) by taking a smaller step in rotational
speed. The precise reason for the kink is not
known,

Effect of steady air loads on flutter speed. -
Flutter Mach numbers calculated with the CL for
both the steady and perturbation states are com-
pared in Fig. 11(a) with the corresponding ones
with the CL + AL for both the steady and perturba-
tion states. It is evident from the results that
the steady airloads have a significant influence
on flutter speed. The influence increases with
increasing rotational speed. For example, the
increase in predicted Mach number is 0.0l at
Q@ = 5280 rpm, and 0.02 at o = 6080 rpm, and
0.05 at @ = 7370 rpm. Even though the change
in model frequencies due to steady state airloads
is small, there is a significant change in blade
camber and mode shapes at higher rpm. Thus, the
increase in flutter speed at higher rpm due to
steady airloads is attributed to (1) small changes
in modal frequencies, (2) mode shape changes, and
(3) ehange in blade steady state angle and hence




blade stagger angle. The change in flutter Mach
number with steady airloads due to a reduction in
second mode frequency from 399 to 375 Hz in

Fig. 11(a) is the same as that without steady air-
loads. The best theoretical boundary in Fig. 11(a)
is the one for which CL *+ AL 1is the steady state
and CL + AL and f, = 375 Hz is the perturba-
tion state. Comparing the best boundary with the
experimental one, the correlation is very good.

Effect of Number of Modes on Flutter Analysis

The theoretical results presented in Figs. 11
and 12 were obtained by varying the number of modes
from 2 to 6 in the perturbation analysis. There is
no appreciable effect on flutter speed by increas-
ing the number of modes beyond two. In the other
words, the flutter mode is a combination of first
and second natural modes and there is very little
participation of higher modes.

Correlation of Measured and Calculated Flutter
Frequencies

Measured and calculated flutter fregquencies
for the configurations described in Fig. 11(a) are
compared in Fig. 13. In general the calculated
flutter frequency is higher than the measured
value. The correlation between theory and experi-
ment is better when second mode frequency is cor-
rected to 375 Hz and when steady state aerodynamics
are included. Even for this case the calculated
flutter frequencies are approximately 7 percent
higher than the measured ones. A similar correla-
tion was noticed for other blade setting angles
and for four-bladed cases, and they are not shown
herein.

Correlation of Measured and Calculated Flutter
Interblade Phase Angles

Another important parameter for propfan
flutter is the interblade phase angle. The meas-
ured and calculated flutter interblade phase angles
are shown for the eight bladed case in Fig. 14.

The interblade phase angle with respect to blade
one is plotted against the blade number. The cal-
culated interblade blade phase angle, Fig. 14(a),
for 8g.758 = 61.6° is 225" which corresponds to

a three nodal diameter backward travelling wave.
The predominant measured value is also 225°. How-
ever, the measured value is slightly off from 225°
for some blades. This is possibly caused by the
slight frequency mistuning that is present in the
rotor. The same type of correlation between theory
and experiment was noticed at other rotational
speeds and, hence, those results are not shown.
However, for b]adg setting of 56.6°, two interblade
phase angles, 180° and 225° are present in the
measured flutter mode as shown in Fig. 14(b). The
frequencies of the two interblade angle modes are
slightly different. Surprisingly, theory also
predicted the presence of the two interblade phase
anglies, and the correlation is extremely good.
Furthermore, comparison of Figs. 14(a) and (b)
shows that the flutter interblade phase angle is a
function of blade setting angle.

For the four bladed rotor the correlation
between the measured and calculated interblade
phase angles is very good. Here, the predominant
interblade phase angle both in experiment and
theory is 180° for all blade setting angles and

rotational speeds considered in Fig. 12. These
results are not shown because of space limitation.

Evaluation of Two-Dimensional Unsteady Aero for
Flutter Prediction

To assess the validity of two-dimensional
aerodynamic theory and the associated sweep correc-
tion, the real part of the eigenvalue of the crit-
ical mode calculated by using both two-dimensional
and three-dimensional theories are compared in
Fig. 15. Also included in this figure is the
measured flutter Mach number. In the ASTROP2 code,
which uses two-dimensional aerodynamics, the refer-
ence line of the blade (Fig. 2(a)) is somewhat
arbitrary. Also, the sweep of each strip depends
on the reference line. In the present calculations
the leading edge is used as reference line. From
the results it is evident that two-dimensional
theory is less accurate than the three-dimensional
theory in predicting flutter Mach number. Corre-
lative studies were also conducted by varying free-
stream Mach number, blade sweep, rotational speed,
and blade setting angle. The correlation varied
from poor to good. In some cases the expected
conservative nature of the two-dimensional theory
did not prevail, possibly because of the arbitrari-
ness of the reference line and the associated aero-
dynamic sweep correction. Hence, it is concluded
that two-dimensional aero theory is adequate for
conducting parametric studies and for initial
design flutter calculations, but three-dimensional
theory should be used for more accuracy.

CONCLUSTIONS

A theoretical model and the associated com-
puter program was developed for predicting subsonic
flutter of propfans. Theoretical results were
correlated with published measured data. These
studies and additional parametric results conducted
lead to the following conclusions:

1. In general, the agreement between theory and
experiment in predicting flutter speeds and
interblade phase angles is very good. However,
the predicted flutter frequencies with three-
dimensional unsteady aerodynamic theory are
slightly higher than the measured ones in all
the cases.

2. The flutter speed predicted by two-dimensional
aero theory is less accurate than that predic-
ted by three-dimensional theory, It can be
used for conducting parametric studies and for
initial designs. However, the final design
calculations should be done with three-
dimensional analysis.

3. The influence of steady-state aerodynamics on
the steady-state configuration, mode shapes,
and flutter is significant in some cases.
Thus, they should be included in the final
design calculations.

4. Both theory and experiment showed that increas-
ing the number of blades on the rotor is desta-
bilizing. This is inferred to be due to a
difference in cascade effects. Thus, the aero-
dynamic cascade effects should be included in
the analysis when the number of blades is four
or more,




5. Both theory and experiment showed that increas-
ing the blade setting angle is stabilizing.
This is inferred to be due to a change in blade
aerodynamic coupling because of change in blade
stagger and a change in blade loading and hence
blade frequencies and modes.

6. For the rotor considered, the flutter mode is
dominated by the first two blade normal modes
and there is strong coupling between the two
modes.

Both theory and experiment showed that under
certain conditions two interblade phase angle
modes with slightly different frequencies may
be present during flutter. Furthermore, the
flutter interblade phase angle is a function
of blade setting angle and number of blades on
the rotor.
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FIGURE 1.- THE SR3C-X2 PROPFAN MODEL IN THE LEWIS 8x6 FT WIND
TUNNEL.
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