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Analytical Formulas for Artificial Dielectrics with

Non-Aligned Layers
Daniele Cavallo, Member, IEEE, and Cantika Felita

Abstract— In this work, we present analytical models to
describe artificial dielectric layers (ADLs), when a lateral shift
between layers is present. The alternate lateral displacement be-
tween layers is an important parameter to engineer the desired ef-
fective electromagnetic properties of the equivalent homogeneous
material realized with the ADLs. More specifically, the equivalent
dielectric constants that can be realized by alternatively shifting
the layers are higher compared to the aligned case. Closed-form
expressions are derived for the equivalent layer reactance that
includes the higher-order interaction between shifted layers. The
given analytical formulas can be used to derive an equivalent
circuit model that describes the scattering parameters of a plane
wave impinging on a slab composed by an arbitrary finite number
of metal layers. To aid the design of artificial dielectric slabs, the
effective permittivity and permeability tensors are also retrieved
from the scattering parameters.

Index Terms— Artificial dielectric, equivalent circuit, scatter-
ing from grids.

I. INTRODUCTION

A
RTIFICIAL dielectrics (ADs) were introduced in [1] as

a low-weight replacement to real dielectric materials, for

realizing microwave lenses [2]. After their introduction, ADs

have been extensively studied and used for decades in radar

applications. An AD consists of a large-scale model of an

actual dielectric, obtained by embedding conducting structures

in a host material according to a regular pattern. The electric

field scattered by the metallic inclusions, when added to the

incident field, creates an effective equivalent delay [3]. At the

frequencies for which the periodicity of the pattern is much

smaller than the wavelength, the structure can be assigned

equivalent parameters that describe a homogeneous dielectric.

The effective electric parameters can be engineered by varying

the size of the metal obstacles and their spatial density.

This work relates to a specific type of anisotropic ADs,

which are realized as a cascade of planar layers made of

sub-wavelength metal patches, as depicted in Fig. 1. Such

structures are also referred to as artificial dielectric layers

(ADLs).

Recently, ADLs have been employed as superstrates to

improve the radiation performance of planar antennas, both in

the microwave [4], [5] and the terahertz [6] frequency range.
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Fig. 1. Two-dimensional side view and three-dimensional prospective view
for artificial dielectric slabs with (a) aligned layers and (b) with layers alter-
natively shifted in both x and y to increase the effective relative permittivity.

In these works, ADLs were exploited to enhance the front-to-

back ratio of integrated antennas without supporting surface

waves, with a consequent increase of gain and efficiency.

Several efficient numerical approaches can be employed

to describe the scattering from ADL slabs [7]–[12]. These

methods account for the higher-order interaction between

layers, which cannot be neglected due to the electrically small

inter-layer distance. A simplified analysis based on closed-

form expressions was introduced in [13], [14], valid for the

specific geometry in Fig. 1 in the low-frequency regime (sub-

wavelength patches). However, while [14] only contemplates

the case of aligned layers (arranged as in Fig. 1(a)), in this

work we generalize the analysis to include the effects of

alternate shifts, as shown in Fig. 1(b). This new configuration

is very relevant for the design of ADLs, because the shift

significantly increases the effective permittivity of the slab

with respect to the aligned case.

The reason for the enhancement of the permittivity can be

qualitatively explained by sketching the electric field distri-

bution within two ADL structures, with and without shift,

under normal plane-wave illumination. When a plane wave is

impinging on the ADL structure, the electric field within the

periodic unit cell can be represented with the vector field lines

in Fig 2. In the aligned case, the field is mainly concentrated in

the gaps between adjacent coplanar patches (Fig. 2(a)). On the

contrary, the field in the shifted case is also distributed within

the areas between parallel subsequent layers (Fig. 2(b)). Such

behavior introduces an additional capacitance compared to the

aligned setup, resulting in a higher equivalent permittivity.

Besides this qualitative explanation, a rigorous analysis is

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
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Fig. 2. Electric field distribution for a plane wave propagating through the
ADL slab for (a) aligned and (b) misaligned layers. In the first case, the
electric field is mainly concentrated in the gaps between coplanar patches. In
the second case the field is also strong in the vertical gaps between subsequent
layers, resulting in a higher capacitive loading.

presented here, that provides closed-form expressions for the

equivalent reactance of the layers, also valid for non-aligned

cases. The reactances are then included in a simple analyt-

ical transmission-line model that describes the propagation,

reflection and transmission of a plane wave impinging on

an artificial dielectric slabs, for generic oblique incidence.

This information can be used to derive the permittivity and

permeability tensors of the artificial dielectric slabs using

the method described in [15]. The variation of the effective

constitutive tensors as a function of the different geometrical

parameters of the ADLs is highlighted.

The main advantage of the formulation derived in this paper

is the improved design flexibility. In fact, to tailor the equiv-

alent dielectric constant in ADL slabs with aligned layers,

one can vary geometrical parameters such as the inter-layer

distance and the gap width between patches. However, these

parameters cannot be freely changed, as they are typically

limited by the technological constraints of the manufacturing

process. On the contrary, the shift between layers represents

an additional important degree of freedom that can be used

for the design, as it greatly extends the ranges of permittivity

values that can be synthesized, given a specific fabrication

technology.

II. INTEGRAL EQUATION FOR SHIFTED ADLS

The analysis of ADLs with aligned layers was presented in

[14]. In this section, we generalize the formulation to account

for the shift between layers, omitting some of the steps of the

method that are similar to [14].

A. Problem Definition and Equivalence Principle

Let us consider an ADL medium composed by an infinite

number of layers spaced along z by distance dz and numbered

with consecutive integer indexes nz , as shown in Fig. 3(a).

The odd layers (nz = [... − 3,−1, 1, 3, ...]) are shifted with

respect to the even layers (nz = [...,−2, 0, 2, ...]) by sx
and sy along x and y, respectively, as depicted in Fig. 3(b).

We assume that a plane wave is traveling in the negative z-

direction within the ADL medium, with electric and magnetic

field indicated by ei(x, y, z) and hi(x, y, z), respectively (Fig.

4). By applying the equivalence theorem, we can define three

surfaces S1, S0 and S−1 as shown in Fig. 5(a), denoting

Fig. 3. Definition of the geometrical parameters characteristic of the shifted
ADLs: (a) cross section and (b) top view.

Fig. 4. Aperture fields on three layers of an infinite cascade of ADLs.

Fig. 5. (a) original problem and (b) equivalent problem with unknown
magnetic current distributions.

with ‘1’ and ‘2’ the two regions above and below the layer

located at z = 0. The volume bounded by the surfaces

can be filled with a perfect electric conductor (P.E.C.), as

shown in Fig. 5(b), according to the Schelkunoff’s version

of the equivalence principle [16], so that only equivalent

surface magnetic currents mnz
(x, y) are present in the regions

corresponding with the gaps between patches in the initial

problem. The equivalent magnetic currents are related to the

aperture electric field as

m(ρ,z=nzdz±ǫ)=∓ẑ×ei(ρ,z=nzdz±ǫ)=±mnz
(ρ) (1)
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Fig. 6. Application of image theorem for (a) Region 1 and (b) Region 2,
defined in Fig. 5.

where ρ = xx̂ + yŷ and ǫ is a vanishingly small distance. It

is evident from (1) that the two magnetic current distributions

above and below the layer nz = 0 are equal and opposite,

since the normal unit vector changes sign and the tangential

electric field is continuous in the gap.

Due to the periodicity along z, we can impose Floquet

boundary conditions, i.e. the magnetic currents on the layers

at nz = 1 and nz = −1 are related by a phase shift:

m1(ρ) = m−1(ρ)e
jkzs2dz (2)

where kzs is an unknown equivalent wavenumber describing

the propagation along z. By applying the image theorem, we

can replace the problem in Fig. 5(b) with an infinite sum

of current contributions for the Region 1 and the Region 2,

as depicted in Fig. 6. Hence, imposing the continuity of the

transverse magnetic field at the layer at z = 0 leads to the

following integral equation:

∑

nzeven

∞
∫

−∞

∞
∫

−∞

4m0(ρ
′)g(ρ−ρ

′, nzdz, z=0)dρ′ =

∑

nzodd

∞
∫

−∞

∞
∫

−∞

2(ejkzs2dz + 1)m−1(ρ
′)g(ρ−ρ

′, nzdz,z=0)dρ′

(3)

where ρ = xx̂+yŷ and ρ
′ = x′x̂+y′ŷ are the observation

and the source points, respectively. The function g represents

the free-space dyadic Green’s function, which relates the

magnetic field to a magnetic source.

B. Approximation on the Magnetic Current Distribution

Unlike the case of aligned layers in [14], the periodic cell

is now a combination of two layers rather than one, thus we

cannot relate the magnetic current m0 to m−1 using Floquet

boundary conditions. However, to simplify the formulation

and enable a closed-form solution for the equivalent layer

Fig. 7. Normalized magnitude and phase of magnetic current distribution
on the two orthogonal slot axes (red dashed line in the inset), comparing
CST [17] with the approximation in (4): TE incidence along (a) x- and (b)
y-slots, and TM incidence along (c) x- and (d) y-slots. The dimensions of
the ADLs are dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz = 0.012λ0,
sx = sy = 0.5dx, with λ0 being the wavelength at the calculation frequency.
All figures refer to plane-wave incidence at θ = 60

◦ and φ = 60
◦.

reactance, we assume that the magnetic currents on the two

layers are approximately equal in amplitude and differ only

from a spatial displacement and a phase term:

m−1(ρ
′) ≈ m0(ρ

′ − s)e−jkρs·se−jkzsdz (4)

where s = sxx̂ + syŷ is the vector indicating the shift and

kρs = kxsx̂+kysŷ is an unknown wave vector describing the

transverse propagation between adjacent layers.

The approximation in (4) implies that the the field propa-

gation from one layer to the next is dominated by a lossless

guided phenomenon. To assess the error given by this assump-

tion, Fig. 7 shows the normalized magnitude and the phase of

the magnetic current on the two orthogonal slots (gaps between

patches) on different layers. The magnetic current is observed
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Fig. 8. Description of the CST models used to simulate a semi-infinite
cascade of layers. A lossy ADL with the same geometrical parameters is
implemented so that the transmitted wave experiences low reflection.

on the slots’ axes, indicated by the dashed red lines in the

inset of Figs. 7(a) and 7(b). The geometrical parameters are

set as dx = dy = 0.0785λ0, wx = wy = 0.01λ0, dz =
0.012λ0, sx = sy = 0.5dx, with λ0 being the wavelength at

calculation frequency. Transverse electric (TE) and transverse

magnetic (TM) plane-wave illuminations from θ = 60◦ and

φ = 60◦ are considered. The results are obtained with CST

[17], performing the simulations as described in Fig. 8: a semi-

infinite cascade of layers is replicated by considering a lossy

section of ADLs that implements a low-reflection boundary

condition for the transmitted wave. For all considered cases

in Fig. 7, the approximation (4) reproduces well the real

current distribution on the odd layers. The value of kzs to

be used in (4) was derived from the simulated phase shift

between the currents on two consecutive odd layers (∆φ),

which according to (2) is equal to (2kzsdz). The propagation

constants kxs and kys in (4) are instead selected as the one

of the incident plane wave in the ADL host medium, i.e.

k0 sin θ cosφ andk0 sin θ sinφ, respectively.

The amplitude drops of the current that can be observed in

Fig. 7 in correspondence of the junctions are due to the fact

that we are plotting the current only on the slot axis, while

the transverse distribution widens in the junction. This effect

can be observed from the vector magnetic current and the

magnitude of the electric field simulated with CST in Fig. 9.

Under the approximation in (4), and assuming that the dis-

tance dz between layers is electrically small so that e±jkzsdz ≈
1± jkzsdz , the integral equation in (3) becomes, after a few

algebraic steps

∑

nzeven

∞
∫

−∞

∞
∫

−∞

4m0(ρ
′)g(ρ−ρ

′, nzdz, z=0)dρ′−

∑

nzodd

∞
∫

−∞

∞
∫

−∞

4m0(ρ
′−s)e−jkρs·sg(ρ−ρ

′, nzdz,z=0)dρ′≈0 .

(5)

Fig. 9. Vector magnetic current density and electric field magnitude
in correspondence of the junction, obtained with CST. The electric-field
magnitude (proportional to the magnetic current) drops in the junction due to
the widening of the magnetic current.

III. SOLUTION OF THE INTEGRAL EQUATION AND

EQUIVALENT CIRCUIT

The approximated integral equation in (5) is written only

in terms of the unknown magnetic current distribution on the

layer nz = 0. This condition allows to solve the equation with

a procedure similar to the one described in [13], [14].

A. Expansion of the Magnetic Current and Admittance Matrix

In the low-frequency regime, for which the ADL period is

small compared to the wavelength, the current can be expanded

with four entire-domain basis functions:

m0(ρ) =

4
∑

p=1

apfp(ρ) (6)

where ap are unknown coefficients, and the basis functions

are defined as in [13]:

f1(ρ) = e−jkx0xΠwy
(y)x̂, f3(ρ) = bd,x(x)Πwy

(y)x̂

f2(ρ) = e−jky0yΠwx
(x)ŷ, f4(ρ) = bd,y(y)Πwx

(x)ŷ . (7)

The longitudinal part of the functions f1 and f2 describes

the linear phase progression of the magnetic current, induced

by the incident plane wave, with wavenumbers kx0 and ky0
along x and y, respectively. The functions f3 and f4 repre-

sent anti-symmetric profiles, defined in [13](Eq. (13)), that

characterize the magnetic current distribution at the junction

between orthogonal slots. The transverse distribution on the

slots is assumed to be constant, hence defined by the function

Πw(ξ) = 1/w for ξ ∈ [−w/2, w/2] and 0 elsewhere.

An expansion similar to (7) was used in [13], where only

three unknowns were considered by imposing a3 = a4 to

satisfy the Kirchhoff’s law at the junction. However, such

condition can be assumed for a single layer, but it is not valid

in general for a multi-layer cascade, since also z-components

of the electric field (between adjacent layers) are supported by

the structure.

By substituting (6) in (5) and by applying Galerkin projec-

tion, we can define an admittance matrix Y which satisfies

the homogeneous system of equations

Ya = 0 (8)

where a = (a1, a2, a3, a4)
T is the vector of unknown

coefficients.
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B. Equivalent Reactance of ADLs

For deriving an equivalent model that describes the scat-

tering of a plane wave impinging on the ADL structure, it is

convenient to evaluate the admittance in the spectral domain,

as described in Appendix A.

For the sake of simplicity and for enabling analytical solu-

tions, we assume that the geometrical parameters are the same

along x and y (sx = sy = s, dx = dy = d, wx = wy = w).

The latter assumption refers to geometries with azimuthal

invariance (scattering of a plane wave is independent of φ),

for which TE and TM modes are decoupled. More general

geometries can be still analyzed with the formalism of this

paper, but they result in more complex equivalent networks

that couple TE and TM modes and do not lend themselves to

simple closed-form representations.

Under the condition sx = sy , it can be demonstrated

(Appendix B) that the system of linear equations (8) is reduced

to the following simpler problem

YTETM aTETM = 0 (9)

where

aTETM = (a1 cosφ+ a2 sinφ,−a1 sinφ+ a2 cosφ)
T . (10)

The admittance matrix YTETM is a 2 × 2 diagonal matrix

that can be split in two terms, i.e. YTETM = YTL + YADL,

as shown in Appendix B, leading to the equivalent circuit

representation depicted in Fig. 10. The first contribution repre-

sents the propagation of the plane wave (fundamental Floquet

wave) and can be represented as equivalent transmission lines,

with characteristic impedance Z0TE = ζ0/ cos θ and Z0TM =
ζ0 cos θ for the TE and TM modes, respectively, where k0, ζ0
are the free-space wavenumber and impedance. The second

term is the equivalent admittance of one layer embedded in

the infinite ADL cascade and can be approximated as

YADL ≈

[

jB∞(1− sin2 θ
2 ) 0

0 jB∞

]

. (11)

The equivalent layer susceptance in the presence of the shift

is given by:

B∞ ≈
jk0d

ζ0π

∑

m 6=0

|sinc(πmw
d
)|2

|m|
·

(

− cot(−j2π|m|dz

d
) + ej2πm

s
d csc(−j2π|m|dz

d
)
)

(12)

where m are the indexes of the Floquet modes. The analytical

expression in (12) accounts for the higher-order coupling

between layers and thus remains valid even for inter-layer

distances much smaller than the wavelength. It can be noted

that the formula remains valid also for the aligned case sx =
sy = 0.

While (12) is derived for an infinite number of layer, also the

semi-infinite case is relevant to describe the effect of truncation

in a finite cascade of layers. The susceptance of the first layer

in a semi-infinite cascade is given by

Fig. 10. (a) Plane wave impinging on a cascade of four ADLs with alternate
shifts and (b) equivalent circuits for TE and TM components.

Bsemi-∞ ≈
jk0d

2ζ0π

∑

m 6=0

|sinc(πmw
d
)|2

|m|
·

(

−j − cot(−j2π|m|dz

d
) + ej2πm

s
d csc(−j2π|m|dz

d
)
)

. (13)

C. Equivalent Transmission-Line Model

From eq. (11), one can express the reactance of a layer

embedded in a periodic multi-layer environment as follows:

Z∞,TM =
−j

B∞
, Z∞,TE =

−j

B∞(1− sin2 θ
2 )

Zsemi-∞,TM =
−j

Bsemi-∞
, Zsemi-∞,TE =

−j

Bsemi-∞(1− sin2 θ
2 )

.

(14)

These values of the equivalent reactance can be incorporated

in an equivalent circuit that describes the propagation of

a generic plane wave in the ADL medium. For example

the cascade of four layers in Fig. 10(a) under plane-wave

illumination can be represented as the equivalent transmission

lines are shown in Fig. 10(b) for the TE and TM components.

The infinite solution is used to represent the inner layers,

whereas the semi-infinite formula is employed to characterize

the edge layers, to account for the truncation.

To validate the formulas and assess the accuracy of the

approximations, we show in Fig. 11 the reflection and trans-

mission coefficients for TE and TM plane-wave incidence

(at θ = 60◦) on a cascade of five layers, and for different

values of the shifts. CST simulations are also reported for the

same structures and show good agreement with our analytical

transmission-line model.

D. Convergence Properties of the Floquet Sums

The sums in eqs. (12) and (13) contain an infinite number of

terms. In practice, these sums are truncated to a finite number

of Floquet modes m ∈ [−M,−M + 1, ...,−1, 1, 2, ...,M ].
To assess the convergence properties we define a relative

difference between partial sums as follows:

∆ =
|B∞(M)−B∞(M − 1)|

|B∞(M)|
(15)
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Fig. 11. Amplitude and phase of the reflection and transmission coefficients
of a plane wave incident on a cascade of 5 layers: (a) TE, θ = 60

◦, s =

0.25d; (b) TM, θ = 60
◦, s = 0.25d; (c) TE, θ = 60

◦, s = 0.5d; (d)
TM, θ = 60

◦, s = 0.5d. The geometrical parameters are d = 0.0785λ0,
w = 0.01λ0, dz = 0.012λ0, with λ0 being the wavelength at 5 GHz.

where B∞(M) represents the expression in (12) with the

Floquet sum truncated from −M to M modes. This con-

vergence parameter of the susceptance B∞ is shown in Fig.

12, for different geometrical parameters, as a function of the

number of Floquet modes. It can be noted that the convergence

is slower for small wx, while smaller dz lead actually to

faster convergence. Despite the differences, all cases show

rapid convergence for realistic design parameters, resulting in

∆ < 1% with only 10 modes or less.

IV. RETRIEVAL OF THE EFFECTIVE PARAMETERS

From the scattering parameters calculated using the equiv-

alent circuit in Fig. 10(b), one can retrieve the effective

permittivity and permeability, using the formalism introduced

in [15]. Since the ADL is an anisotropic material, the equiva-

Fig. 12. Convergence characteristics, defined as in (15), of the susceptance
B∞ as a function of the number of Floquet modes: (a) dz = 0.01λ0 and
three values of wx = wy are considered; (b) wx, wy = 0.01λ0 and three
values of dz are considered. The other parameters are dx = dy = 0.2λ0 and
sx = sy = 0.45dx.

Fig. 13. Relevant components of the relative permittivity and permeability
tensors, as a function of the shift: (a) and (b) refer to dz = 0.012λ0, with
λ0 being the wavelength at 5 GHz and three different values of w; (c) and
(d) refer to w = 0.01λ0 and three different values of dz . For all figures, the
ADL is composed of 5 layers embedded in a medium with εr,host = 1, with
d = 0.0785λ0.

lent medium is characterized by permittivity and permeability

tensors

ε = ε0





εx 0 0
0 εy 0
0 0 εz



 , µ = µ0





µx 0 0
0 µy 0
0 0 µz



 . (16)

The variation of the εx and µz as a function of the shift is

reported in Fig. 13. The curves are shown for different values

of the slot width (w) and for different values of the inter-

layer distance (dz). When sx = sy , because of the square

symmetry of the structure, the condition εx = εy is satisfied

and the material is uniaxial. It is also evident that, for ADLs

hosted in vacuum, we obtain εz = 1, because the z-component

of the electric field does not interact with the horizontal

patches. It can be noted that the permittivity components εx
and εy increase with the shift, because of the raised mutual
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Fig. 14. Graphical interpretation of the diamagnetism of ADLs. In the case
of TE incidence, the induced electric field distribution on a layer is compatible
with loops of electric current on the metal patches, which in turn generate a
magnetization field opposite to the magnetic field of the incident plane wave.

capacitance between layers. Moreover, smaller values of dz
lead to larger variation of permittivity as a function of the

shift. Thus, for small inter-layer distances, very wide ranges

of permittivity values can be synthesized by only varying the

shift.

An opposite behavior is observed for the permeability

component µz , which decreases as a function of the shift.

Strong diamagnetic effects are occurring in the case of TE

incidence, for which the incident magnetic field has a non-

zero z-component. Indeed, in this case, the patches support

loop currents that produce a magnetic field (magnetization)

opposite to the incident one (see Fig. 14). Therefore, the total

magnetic field inside the ADL is reduced compared to the

external one (i.e., µz < 1). The other components of the

permeability tensors are µx = µy = 1.

Regarding the dispersion of ADLs, it can be pointed out

that, under the assumption of sub-wavelength patches, the ef-

fective parameters are essentially constant with the frequency.

Dispersive behavior occurs at higher frequencies, when the

patches become comparable to the wavelength. However,

the formulas derived in the paper are valid only under the

assumption of sub-wavelength patches, which is valid in most

practical ADL designs.

V. CONCLUSIONS

We derived closed-form formulas for the analysis of artifi-

cial dielectric layers (ADLs). The expressions of the equivalent

reactance of each layer include the effect of an arbitrary

diagonal shift between odd and even layers. The higher-

order interaction between layers is rigorously accounted for

in analytical form. The reactances can be embedded in an

equivalent circuit that provides the scattering parameters for

generic plane-wave incidence and for an arbitrary number

of layers. The results given by our method were validated

with simulations performed with commercial electromagnetic

solvers. From the scattering parameters, the permittivity and

permeability tensors can also be derived.

The presented analysis is functional to simpler and more

flexible designs of ADLs, since the shift is a key parameter to

achieve the desired effective constitutive properties.

APPENDIX A

SPECTRAL DOMAIN EXPRESSION OF THE ADMITTANCES

In this appendix we define the self and mutual admittances

in the spectral domain, to allow for closed-form solution of the

integral equation (5). The Fourier transforms of basis functions

in (6) are given by

F1(kxm, kym) = dxδ(mx)sinc(kymwy/2)x̂

F2(kxm, kym) = dyδ(my)sinc(kxmwx/2)ŷ

F3(kxm, kym) = Bd,x(kxm)sinc(kymwy/2)x̂

F4(kxm, kym) = Bd,y(kym)sinc(kxmwx/2)ŷ . (17)

where kxm = kx0 − 2πmx/dx and kym = ky0 − 2πmy/dy
are the Floquet wavenumbers with indexes mx and my re-

spectively, Bd is the Fourier transform of the doublet function

and it is given by eq. (39) in [13], and δ is the Kronecker

delta-function.

The terms of the admittance matrix are computed in the

spectral domain as

Yqp = −
1

dxdy

∑

mx

∑

my

F∗
q(−kxm,−kym)G(kxm, kym)·

Fp(kxm, kym)S(kxm, kym) (18)

where ‘p’ and ‘q’ are the indexes of the basis and the test

functions, respectively. Assuming that the ADLs are hosted

in a homogeneous medium, in (18) we used the following

property of the spectral dyadic Green’s function G:

G(kxm, kym, nzdz) = G(kxm, kym)e−jkzm|nz|dz (19)

and we included all the sums on the nz indexes in the

following term:

S(kxm, kym)=
∑

nzeven

e−jkzm|nz|dz−

ej(kxm−kxs)sxej(kym−kys)sy
∑

nzodd

e−jkzm|nz|dz . (20)

From (39) and (40) in Appendix C, we can also express

S(kxm, kym) in closed form as

S(kxm, kym) = −j cot(kzmdz)+

j csc(kzmdz)e
j(kxm−kxs)sxej(kym−kys)sy . (21)

APPENDIX B

SIMPLIFIED ADMITTANCE MATRIX

The admittance matrix Y in (8) can be simplified by

assuming, as in [13], that Bd,x(kx0) and Bd,y(ky0) are ap-

proximately 0. Such a condition applies because the projection

of a progressive phase distribution (plane wave) onto an

anti-symmetric function is negligible for electrically small

periods. This assumption allows to neglect some terms of the

admittance matrix Y13 ≈ Y31 ≈ Y24 ≈ Y42 ≈ 0. We also note

that the self admittances Y44 and Y33 are equal, since the odd

functions f3 and f4 are identical for dx = dy and wx = wy .

With the previous hypotheses, we can then derive a reduced

admittance matrix as
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Yr =

(

Y11 −
Y41 Y14 Y33

Y 2

33
−Y34 Y43

Y12 +
Y32 Y43 Y14

Y 2

33
−Y34 Y43

Y21 +
Y41 Y23 Y34

Y 2

33
−Y34 Y43

Y22 −
Y32 Y23 Y33

Y 2

33
−Y34 Y43

)

(22)

which satisfies the relation

Yr

(

a1
a2

)

= 0 . (23)

To investigate the ADL structure under TE and TM plane-

wave incidence, it is convenient to project the equations on

the TE and TM vectors. This can be done by introducing the

rotation matrix

R =

(

cosφ sinφ
− sinφ cosφ

)

. (24)

Pre-multiplying both the left and right hand sides of (23)

by R and noting that RTR is equal to the identity matrix I,

we can write

RYr R
T R

(

a1
a2

)

= 0 (25)

or

YTETM

(

aTE

aTM

)

= 0 (26)

where we define YTETM = RYrR
T. The admittance matrix

can be written as the sum of two contributions

YTETM = YTL +YADL . (27)

The first term is diagonal and represents the transmission

lines describing the propagation of the plane wave:

YTL =





2j tan(kz0
dz
2
)

Z0TE
0

0
2j tan(kz0

dz
2
)

Z0TM



 (28)

where Z0TE = ζ0k0/kz0, Z0TM = ζ0kz0/k0 are the charac-

teristic impedances of the TE and TM transmission lines repre-

senting the plane-wave propagation; moreover, kz0 = k0 cos θ,

and k0, ζ0 are the free-space wavenumber and impedance,

respectively. For an infinite cascade of ADLs, YTL represents

two pairs of open stubs of length equal to half of the inter-

layer spacing, as shown in Fig. 15. The second matrix in (28),

YADL, is the equivalent admittance of a single layer within

the infinite cascade of ADLs. In the case of different shifts

sx 6= sy , all the elements of this matrix are different from 0,

thus the TE and TM component of the plane wave are coupled.

However, for sx = sy , it can be proved through a number

of algebraic steps that the non-diagonal terms of YADL are

approximately 0 and the matrix can be simplified as follows:

YADL ≈

[

jB∞(1− sin2 θ
2 ) 0

0 jB∞

]

(29)

where we define the slot susceptance as

B∞ ≈
jk0dy
ζ0π

∑

m 6=0

|sinc(πm
wy

dy
)|2

|m|
·

(

− cot(−j2π|m| dz

dy
) + e

j2πm
sy
dy csc(−j2π|m| dz

dy
)
)

. (30)

Fig. 15. Equivalent admittance of one layer of the ADLs embedded in
an infinite cascade: (a) unit cell and (b) equivalent representation of the
admittance matrix.

APPENDIX C

CLOSED FORM SOLUTIONS FOR INFINITE SUMS

The spectral domain integral equation contains a number

of infinite sums over even and odd indexes, embedded in the

function S(kxm, kym) defined in (20). The purpose of this

appendix is to derive closed form expression for these sums

both for infinite or semi-infinite cascades of ADLs.

The semi-infinite sums over even indexes (from 0 to +∞)

and odd indexes (from 1 to +∞) are given by

∞
∑

nz(even)=0

e−jkzm|nz|dz = 1+e−jkzm2dz+e−jkzm4dz + ... (31)

∞
∑

nz(odd)=1

e−jkzm|nz|dz = e−jkzmdz+e−jkzm3dz + ... . (32)

With the change of variable n′
z = nz/2, (31) can be

expressed as

∞
∑

nz(even)=0

e−jkzm|nz|dz = 1 +
∞
∑

n′

z=1

e−jkzm2|n′

z|dz . (33)

By using the following known identities [3]:

∞
∑

n=1

ejnx = −
1

2
+

j

2
cot

x

2
,

∞
∑

x(odd)=1

ejnx =
j

2
cscx (34)

(33) and (32) can be evaluated as

∞
∑

nz(even)=0

e−jkzm|nz|dz =
1

2
−

j

2
cot(kzmdz) (35)

∞
∑

nz(odd)=1

e−jkzm|nz|dz = −
j

2
csc(kzmdz) (36)

The solution for the infinite sums can be derived from the

semi-infinite ones by noting that

∑

nz,even

e−jkzm|nz|dz = 2

∞
∑

nz(even)=0

e−jkzm|nz|dz − 1 (37)

∑

nz,odd

e−jkzm|nz|dz = 2
∞
∑

nz(odd)=1

e−jkzm|nz|dz . (38)
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which leads to
∑

nz,even

e−jkzm|nz|dz = −j cot(kzmdz) (39)

∑

nz,odd

e−jkzm|nz|dz = −j csc(kzmdz) . (40)
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