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Analytical Formulas for the Coverage of Tunable

Matching Networks for Reconfigurable Applications
Eyad Arabi, Member, IEEE, Kevin A. Morris, Member, IEEE, and Mark A. Beach, Member, IEEE,

Abstract—Tunable matching networks are essential compo-
nents for agile radio frequency systems. To optimally design such
networks, the total area they cover on the Smith chart needs to be
determined. In this work, the coverage areas of typical matching
networks have been determined analytically for the first time. It
has been found that the coverage area is encompassed by up to
five arcs. Analytical expressions for the centers and radii for these
arcs have been derived. The theoretical analysis is provided for
four typical matching networks and verified by circuit simulation
and measured data. Moreover, a dynamically load-modulated
power amplifier has been designed using the presented theoretical
techniques, which demonstrates a measured improvement in the
power added efficiency of up to 5% in the frequency range of
(0.8 - 0.9) GHz.

Index Terms—Smith chart, tunable matching networks, power
amplifiers, re-configurable, dynamic load modulation

I. INTRODUCTION

RECONFIGURABLE wireless transceivers are becoming

crucial for future systems such as long-term evolution

(LTE) and LTE-advanced. Such systems are required to be

frequency agile to enable optimal utilization of the congested

frequency spectrum. Therefore, these systems require tunable

components like antennas, filters, and matching networks

(MN).

Beside frequency agile systems, tunable MN are being used

heavily for applications such as tunable/wideband antennas

[1], efficiency-enhanced and load-sensitive power amplifiers

(PAs) [2], [3], and range-adaptive wireless power transfer [4].

One of the main parameters the RF designer needs to know

about a tunable MN, is the set of all complex impedances that

can be matched to a specific load (typically 50 Ω). This set

defines what is known as the coverage of the MN.

The Smith chart continues to serve as an indispensable tool

for the analysis and visualization of complex loads and reflec-

tion coefficients [5]. Compared to the complex impedance-

plane, the Smith chart is a superior tool because multiple

quantities can be read directly, such as the complex impedance

and admittance and the reflection coefficient. Therefore, the

coverage of MNs defined in the complex plane of the Smith

chart is of great benefit. This is particularly useful for PAs

because the coverage can be plotted along with other criteria

such as load-pull contours, noise circles, gain circles, etc.

In [6]–[11] the boundaries have been presented using sim-

ulations, which are less legible, do not indicate the limits of
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the tuning elements, and do not provide any physical insight

about the networks. In [12], theoretical formulas have been

presented; however, they provide the coverage for discrete

impedance points (states) and do not give the continuous

coverage, and they are not directly related to the tunable

capacitors commonly used in matching networks. Even though

the formulas in [13]–[15] can produce the coverage for the full

dynamic range, they are presented for the complex rectangular

plane, not the Smith chart and for Π networks only. In this

work, the coverage areas of four of the commonly used net-

works have been thoroughly investigated. Theoretical formulas

have been derived for the loci of the closed boundaries of the

coverage areas. These formulas are derived for the complex

space of the reflection coefficient rather than the impedance

and can, therefore, be plotted directly on the Smith chart. It

is assumed that the MN is connected to a resistive load at

one end, and the reflection coefficient seen looking towards

the other end defines the coverage area as illustrated in Fig.

1 (a). This configuration is different from the one in [6]–[10],

[12] where a resistive load is connected at one end with the

other end conjugately matched to a known impedance. The

configuration used here is particularly suitable for PAs where

conjugate matching is not necessarily required. The theoretical

analysis has been verified by circuit simulation as well as

measured data, which agrees well with the theory.

The theoretical formulas presented here are compact; there-

fore, very practical for use in CAD tools and provide a useful

instrument for the analysis of tunable MN.
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Fig. 1. Illustration of the boundary of the coverage area. (a) Problem
description. (b) Networks with only one tunable element. (c) Networks with
two tunable elements.

II. THEORY

The coverage of a tunable MN can be defined as the set

of all complex impedances that can be matched to a specified

load at a particular frequency. If the MN has only one tunable
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component, its coverage will be a linear path as shown in Fig.

1(a). If the MN has more than one tunable component, then

the coverage is typically an area on the Smith chart as shown

in Fig. 1(b). The boundary of such area will be referred to

here as the coverage boundary and is always a closed path.

In this work, MNs with two tunable elements (C1 and C2)

are analyzed. Nevertheless, the theoretical methods introduced

here can be applied to networks with a higher number of

tunable elements, but the formulas become large and less

practical. The two elements are not necessarily identical and

can take any values between Cmin and Cmax. The load is

assumed to be pure resistive taking a value of Y0 Ω−1.

The first step of the analysis is to sweep both capacitors

within their limits and observe the area covered by the

matching network. It has been found that the coverage area

is bounded by four arcs. The first two arcs are plotted by

letting C1 ∈ {Cmin, Cmax} and C2 takes all the real numbers

between Cmin and Cmax. The remaining two arcs are plotted

by letting C2 ∈ {Cmin, Cmax} and C1 takes all the real

numbers between Cmin and Cmax. These four arcs are parts

of circles which can be completely plotted by extending the

limits of the capacitors to -∞ and ∞. For lossless networks,

all of these circles are tangent to the |Γ| = 1 circle. The

value of the capacitor at the tangent point can be calculated

by solving for Yin that falls on the |Γ| = 1 circle according

to:

|Γ| =

∣

∣

∣

∣

Y0 − Yin

Y0 + Yin

∣

∣

∣

∣

= 1 (1a)

|Y0 − Yin| = |Y0 + Yin|, (1b)

which is satisfied only when the real part of Yin is either

zero or ∞ corresponding to either an open or a short circuit,

respectively. A short circuit can be achieved by a shunt branch

with zero impedance (if the branch has only a capacitor the

capacitance can be set to ∞). An open circuit, on the other

hand, can be achieved by a series branch with infinitely large

impedance (if the branch has only a capacitor, its value can

be set to zero).

The centers and radii of the four circles can be calculated

from the tangent point and any other point. If the tangent

point is denoted A(xA, yA) and the other point is denoted

B(xB , yB), the center (xc, yc) and radius (Rc) of the circle

can be calculated, as derived in Appendix B, by:

xc =
xA

(

x2
B − x2

A + y2B − y2A
)

2 (−x2
A − y2A + xAxB + yAyB)

, (2a)

yc =
yA

(

x2
B − x2

A + y2B − y2A
)

2 (−x2
A − y2A + xAxB + yAyB)

and (2b)

Rc =
√

(xc − xA)2 + (yc − yB)2, (2c)

respectively.

The four circles for a hybrid network are plotted in Fig. 2

together with the coverage area using the theoretical formulas

presented here and verified by a commercial simulator. It can

be observed that a fifth circle (referred to in the figure as

C ′
2) is also needed to complete the boundary. This circle is

a function of the inductors and transmission lines as well as

the frequency and is referred to here as the auxiliary circle.

For given values of these parameters, impedances inside the

auxiliary circle can not be matched even if the values of the

tunable capacitors extend from -∞ to ∞ [16]. As illustrated

in Fig. 2, the auxiliary circle is traced when C1 is swept while

C2 is assigned a critical value (C ′
2), which resonates with the

transmission line when C2 = Y0/ω tan(θ). Formulas for C ′
2

are derived for various network topologies in the following

section. The auxiliary circle becomes part of the boundary only

if C ′
2 falls within the tuning range of C2. Since the auxiliary

circle defines a forbidden region, the constant circles of C1,min

and C1,max can not intersect with this circle, but only shares a

single point with it and thus the three circles must be tangent.

In the following sections, four different matching networks

are analyzed and the derived formulas to calculate the five

circles are presented.

Circuit simulation Theory

+ +C2max

C1max

C2min

C′
2

C1min

Fig. 2. Illustration of the four main circles and the auxiliary circle that
form the boundary of the matching network. The coverage is verified by
a commercial simulator.

A. T-Matching Network

A lumped T-type MN is illustrated in Fig. 3(a). To ana-

lyze this network as mentioned in the previous section, the

coordinates of the points of the C1 and C2 circles need to be

calculated.
1) C1 variable and C2 constant: For the first case, C2 ∈

{Cmin, Cmax} while C1 can take any real number between

these two limits. To plot the complete circle, however, we will

let C1 ∈ R≥0. The first point to be calculated is the point at

which this circle is to the outer circle (|Γ| = 1). This point

is referred to as point A and corresponds to C1 = 0. Using

this value, the input admittance (Yin) becomes infinite, and

the real and imaginary parts of the input reflection coefficient

(Γin) are

xA1 = 1 and (3a)

yA1 = 0. (3b)

For the second point (point B), C1 is assumed to take an

infinitely large value, which corresponds to an RF short circuit.

Using this assumption, the real and imaginary values of Yin

can be calculated as:

ℜ{Yin} =
Y0

(

ω2LC2

)2

(ω2LC2)
2
+ (Y0ωL)

2 (4a)
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and

ℑ{Yin} =
ωL

(

−ω2C2
2 − Y 2

0 + Y 2
0 ω

2LC2

)

(ω2LC2)
2
+ (Y0ωL)

2 , (4b)

from which the real and imaginary values of Γin are:

xB1 =
− (ℜ{Yin})

2
+ Y 2

0 − (ℑ{Yin})
2

(ℜ{Yin}+ Y0)
2
+ (ℑ{Yin})

2 and (5a)

yB1 =
−2Y0ℑ{Yin}

(ℜ{Yin}+ Y0)
2
+ (ℑ{Yin})

2 , (5b)

respectively.

The coordinates of points A and B can be directly used in

equation (2) to calculate the centers and radii of the circles.

Two circles are obtained: one for C2 = Cmin and another for

C2 = Cmax.

C1 C2

L1 L2 Z0, θ

L

L C1 C2

C1 C2C1 C2

(a) (b)

(c) (d)

Y2, Γ2

Yin

Γin

Yin

Γin

Yin

Γin

Yin

Γin

Fig. 3. Schematics of the four topologies analyzed in this work. (a) T-type. (b)
Π-type. (c) Ladder-type. (d) Hybrid Π. Γin = x+ jy is the input reflection
coefficient and Yin is the input admittance.

2) C1 constant and C2 variable: For this case C1 ∈
{Cmin, Cmax} while C2 ∈ R≥0. The first point in this case

corresponds to C2 = 0, which gives the following values of

the real and imaginary of Γin

xA2 =
Y 2
0

(

1− ω2LC1

)2
− (ωC1)

2

Y 2
0 (1− ω2LC1)

2
+ ω2C2

1

(6a)

yA2 =
−2ωY0C1

(

1− ω2LC1

)

Y 2
0 (1− ω2LC1)

2
+ ω2C2

1

. (6b)

This point has a unity magnitude regardless of the value of C1

and, therefore, always lies on the outer circle. For the second

point, the assignment: C2 = ∞ is used and the real and

imaginary values of Γin are:

xB2 =
Y 2
0

(

1− 2ω2LC1

)

+ ω2
(

Y 2
0 L

2 − C2
1

)

Y 2
0 (1− 2ω2LC1)

2
+ ω2 (Y 2

0 L+ C1)
2 (7a)

and

yB2 =
ωY0

(

Y 2
0 L− C1

) (

1− 2ω2LC1

)

− ωY0

(

Y 2
0 L+ C1

)

Y 2
0 (1− 2ω2LC1)

2
+ ω2 (Y 2

0 L+ C1)
2 ,

(7b)

respectively. These two points can be used in equation (2) to

calculate the centers and radii of the circles of C1 = Cmin

and C1 = Cmax.

3) Auxiliary Circle: The T-type network can match

impedances up to a maximum resistance. The first derivative

of the real part of the input impedance with respect to C2

can be used to determine the value of C2 that provides this

resistance as derived in Appendix B-B, and given by:

C ′
2 =

1

ω2L
. (8)

The necessary condition for the auxiliary circle to be part of

the boundary is for this value to fall within the limits of C2:

Cmin < C ′
2 < Cmax. (9)

The auxiliary circle itself can be plotted by using the value

of C2 defined in (8) with the formulas of section II-A1

In Fig. 4-(a), an illustration of the boundary of a T-type MN

is illustrated for L = 10nH and frequencies of 0.5 GHz, 1.2

GHz, and 2.5 GHz. The complete circles are also included for

the case of 1.2 GHz.

(a) (b)

(c) (d)

0.5 GHz 1.2 GHz 2.5 GHz

C1,max

C1,min

C
′

2

C1,minC2,min

C2,minC2,max

C1,max C2,max

C
′

2

C1,max

C
′

2

C1,max

C1,min C2,min

C1,min C2,maxC1,min

Fig. 4. Illustration of the boundary at three different frequencies with the
values: Cmin=0.5 pF, Cmax=15 pF, θ=50, Z0=50 Ω, LT =10 nH, LΠ=6.2
nH and L1=L2 = 13 nH. (a) T-Network. (b) Π-Network. (c) Ladder Network.
(d) Hybrid-Π Network.
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B. Π-Type Matching Network

A typical Π-Type MN is illustrated in Fig. 3(b). It consists

of an inductor between two shunt capacitors. The analysis of

this network can be performed by the same method used in

the previous section.

1) C1 variable and C2 constant: For this case, the coordi-

nates of the first point are calculated by putting C1 = ∞. At

this case the input of the MN appears to have a zero impedance

and, therefore, the real and imaginary values of Γin are

xA1 = −1 and (10a)

yA1 = 0 (10b)

respectively.

For the second point, C1 is assigned a value of zero and

the real and imaginary parts of the input admittance (Yin) are

ℜ{Yin} =
Y0

(

1− ω2LC2

)

+ ω2Y0LC2

(1− ω2LC2)
2
+ (ωY0L)

2 (11a)

and

ℑ{Yin} =
ωC2

(

1− ω2LC2

)

− ωY 2
0 L

(1− ω2LC2)
2
+ (ωY0L)

2 (11b)

respectively. The real and imaginary parts of the reflection

coefficient (xB1 and yB1) can be calculated from Yin using

(5).

2) C1 constant and C2 variable: For the first point of this

case, C2 is assigned a value of ∞ (RF short circuit). The real

and imaginary parts of Γin are calculated to be

xA2 =
(ωY0L)

2
−
(

1− ω2LC1

)2

(ωY0L)
2
+ (1− ω2LC1)

2 and (12a)

yA2 =
2ωY0L

(

1− ω2LC1

)

(ωY0L)
2
+ (1− ω2LC1)

2 (12b)

respectively. This point has a unity magnitude regardless of

the value of C1. For the second point, C2 is assigned a value

of zero. The real and imaginary parts of Yin are:

ℜ{Yin} =
Y0

1 + (ωY0L)
2 , and (13a)

ℑ{Yin} =
ω
(

C1 − Y 2
0 L+ C1 (ωY0L)

2
)

1 + (ωY0L)
2 , (13b)

respectively. These values can be used to calculate the coor-

dinates of Γin using (5).

3) The Auxiliary Circle: This network can match

impedances up to a maximum conductance. The first derivative

of the real part of the input admittance with respect to C2

can be used to calculate the value of C2 that produces this

conductance as shown in Appendix B-A and given by the

following formula:

C ′
2 =

1

ω2L
. (14)

The condition for the auxiliary circle to be part of the

boundary is the same as the one defined for the T-network in

equation (9), and the auxiliary circle can be plotted by using

the value of C′
2 calculated in (14) with the formulas of section

II-B1.

In Fig. 4-(b), an illustration of the boundary of a Π-type

MN is illustrated for L = 6.2 nH and at frequencies of 0.5

GHz, 1.2 GHz, and 1.5 GHz. The complete boundary circles

are also plotted.

C. Ladder Matching Network

This type of MN is illustrated in Fig. 3(c). It consists of two

L-sections connected in series. The analysis of this network is

presented in the following sections.

1) C1 variable and C2 constant: For this case, C1 is

assigned the values of zero and ∞. When C1 = ∞ the real

and imaginary parts of Γin are clearly given by:

xA1 = −1 and (15a)

yA1 = 0 (15b)

respectively. When C1 = 0, on the other hand, the real and

imaginary parts of Yin are calculated as:

ℜ{Yin} =
ℜ{Y2} (1− ωℑ{Y2}L1) + ωℜ{Y2}ℑ{Y2}L1

(1− ωℑ{Y2}L1)
2
+ (ωℜ{Y2}L1)

2

(16a)

and

ℑ{Yin} =
ℑ{Y2} (1− ωℑ{Y2}L1)− ω (ℜ{Y2})

2
L1

(1− ωℑ{Y2}L1)
2
+ (ωℜ{Y2}L1)

2 ,

(16b)

respectively, where

ℜ{Y2} =
Y0

1 + (ωY0L2)
2 , and (16c)

ℑ{Y2} =
ω
(

C2

(

1 + (ωY0L2)
2
)

− Y 2
0 L2

)

1 + (ωY0L2)
2 . (16d)

ℜ{Yin} and ℑ{Yin} can be used to calculate the real and

imaginary parts of Γin using equation (5).

2) C1 constant and C2 variable: For this case C2 is as-

signed zero and ∞. For C2 = ∞, which is an RF short circuit,

the real and imaginary parts of Γin are given respectively by

xA2 =
(ωY0L1)

2
−
(

1− ω2L1C1

)2

(1− ω2L1C1)
2
+ (ωY0L1)

2 , and (17a)

yA2 =
2ωY0L1

(

1− ω2L1C1

)

(1− ω2L1C1)
2
+ (ωY0L1)

2 . (17b)

This point is on the outer circle of the Smith chart because it

has a magnitude of one regardless of the value of C1. For the

second point, C2 = 0 and the real and imaginary parts of Yin

are given respectively by:
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ℜ{Yin} =
Y0

1 + (ωY0 (L1 + L2))
2 (18a)

and

ℑ{Yin} =
ωC1 − ωY 2

0 (L1 + L2)
(

1− ω2C1 (L1 + L2)
)

1 + (ωY0 (L1 + L2))
2 .

(18b)

3) Auxiliary Circle: This network can also match

impedances up to a maximum conductance. The value of C′
2

is calculated in Appendix B-C and is given by:

C ′
2 =

1

ω2L1
+

Y 2
0 L2

1 + (Y0ωL2)
2 . (19)

The condition for the auxiliary circle to be part of the

boundary is given by equation (9), and the auxiliary circle can

be plotted by using the value of C′
2 produced in (19) above

with the formulas of section II-C1.

In Fig. 4-(c) the coverage circles together with the associ-

ated boundary are plotted for values of L1 = L2=13 nH, and

frequencies of 0.5 GHz, 1.2 GHz, and 2.5 GHz.

D. Hybrid-Π Matching Network

The last network is a hybrid-Π, which consists of a trans-

mission line with two shunt variable capacitors at its ends

as illustrated in Fig. 3-(d). This network is analyzed in the

following sections.

1) C1 variable and C2 constant: In the first case C2 is

fixed and C1 is a variable. The two points are obtained as in

the previous sections by assigning zero and ∞ to C1. For the

latter the real and imaginary parts of Γin are:

xA1 = −1 and (20a)

yA1 = 0. (20b)

For the second point, C1 is assigned a value of zero. The real

and imaginary parts of Yin are then calculated as

ℜ{Yin} =
Y 2
0 [Y0 − ωC2 tan θ + tan θ (ωC2 + Y0 tan θ)]

(Y0 − ωC2 tan θ)
2
+ (Y0 tan θ)

2

(21a)

and

ℑ{Yin} =
Y0

[

(ωC2 + Y0 tan θ) (Y0 − ωC2 tan θ)− Y 2
0 tan θ

]

(Y0 − ωC2 tan θ)
2
+ (Y0 tan θ)

2 .

(21b)

These values can be used in (5) to calculate the real and

imaginary parts of Γin, which can be used together with the

first point to calculate the centers and radii of the circles

associated with C1.

2) C1 constant and C2 variable: In this case, C1 is fixed

at either C1,min or C1,max while C2 is a variable. The two

circle points can be calculated by assigning zero and ∞ to

C2. When C2 = ∞ the real and imaginary parts of Yin are

given by

ℜ{Yin} = 0, and (22a)

ℑ{Yin} = ωC1 −
Y0

tan θ
, (22b)

where Y0 is the characteristic admittance of the line, which

is also the same as the admittance of the load. Using these

values and equation (5), the real and imaginary parts of Γin

can be directly calculated.

In a similar way when C2 = 0 the real and imaginary parts

of Yin are given by:

ℜ{Yin} = Y0, and (23a)

ℑ{Yin} = ωC1. (23b)

Once more, equation (5) can be used to calculate the real and

imaginary parts of Γin. From these two points, the centers

and radii of the circles associated with C1 can be directly

calculated using the relations in section II.

3) Auxiliary Circle: In this case the maximum conductance

that can be matched is a function of the transmission line

parameters and C2. The value of C2 that gives the maximum

conductance is derived in Appendix B-D and is given by:

C ′
2 =

Y0

ω tan(θ)
, (24)

and the necessary condition for the auxiliary circle to be part

of the boundary is given by (9). The auxiliary circle can be

plotted by using the value of C′
2 calculated in (24) and the

formulas of section II-D1. The coverage for three different

frequencies are illustrated in Fig. 4-(d).

III. IMPLEMENTATION OF THE THEORETICAL RESULTS

A. Connecting the Boundary Area

All five circles of the boundary coverage can be plotted

using the formulas presented in the previous section. Since

these circles intersect at multiple points, it is necessary to

provide a systematic way to identify and connect the arcs of

the boundary area. As illustrated in Fig. 5 (c), four points

can be identified for all the combinations of the maximum

and minimum values of the two capacitors. If the auxiliary

circle is part of the boundary, two more points are required

making a total of six points. To uniquely define any arc, the

starting and ending points together with its center and radius

are not sufficient, and a third point is needed. This point can

be selected arbitrarily as far as it corresponds to capacitances

between the minimum and maximum values. For convenience,

however, the median of the capacitances is chosen. Given this

information, the arcs can be plotted as detailed in Appendix

C.
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B. Design Guidelines

The design and optimization of tunable MNs depends highly

on the application at hand. However, important general rules

can be derived based on the theoretical analysis presented

in this work. The first task in the design is usually the

selection of the most suitable network topology. Apart from

other application-dependent requirements, the main factor in

the selection is the range of capacitance required. The topology

that provides the required coverage using capacitors with the

smallest range should be favored. Also, the network that offers

smaller capacitances should be selected because the quality

factors of variable capacitors is highest at their lowest values.

Once a suitable network is selected it can be optimized using

the tool presented in this work with the following steps:

1) Use the formulas in Appendix B to calculate the values

of L or θ to guarantee coverage of the maximum con-

ductance (resistance for the case of the T-NW).

2) Calculate C′
2 using L or θ from the previous step.

3) Ensure that C2,min < C ′
2 < C2,max by re-selecting L and

θ. This will guarantee wide boundary coverage because

C′
2 defines a critical limit.

4) Since the auxiliary circle is included in the boundary

by design, select the value of C2,min (C2,max for the

case of the T-NW) close to C′
2 because values of C2,min

below and above C′
2 result in identical impedances and

therefore duplicate coverage as shown in Fig. 5 (a) and

(b). This condition can be derived for the case of the

Π NW, without loosing generality, by assigning C2 =

C′
2 ± C∆ in equation (33) to give:

ℜ{Yin} =
Y0

(ωL)
2
[Y 2

0 + (±ωC∆)2]
, (25)

which clearly does not depend on the sign of C∆. There-

fore, as far as C2,min < C ′
2, a region on the coverage

area is covered twice as illustrated in Fig. 5 (b) (this area

can also be observed in Fig. 2 as the densely covered

region).

5) After selecting L, θ and C2,min (or C2,max for the case

of the T), the rest of the parameters can be selected

according to the required coverage.

C
′

2 ± C∆

Uncovered
Area

Duplicated

Area

(a) (b) (c)

min
min

min
max

min
max

max
max

med
max

med
min

min
med

med
max

max
aux

min
aux

med
aux

Fig. 5. (a) Coverage area with C2,min=C′

2
. (b) Coverage area with

C2,min < C′

2
. The duplicate area is covered twice for the case of (b), while

the uncovered area is dropped for the case of (a). (c) Illustration of the five
arcs and 11 points of the boundary. Each point is defined by the values of C1

and C2 ∈ {min, max, med, aux}, which refer to the minimum, maximum,
median, and C′

2
, respectively.

IV. MEASUREMENTS AND DISCUSSIONS

To verify the theoretical formulas presented in the previous

sections, prototypes for all four matching networks have been

fabricated and measured. The RT/Duroid R© 5880 substrate has

been used with a thickness of 0.508 mm. The printed circuit

boards were fabricated using Laser etching. For the tunable

capacitor, the varactor BB388 from Infineon has been used.

The fabricated circuits are shown in Fig. 7.

A. Measurements

First, the C-V characteristics of the varactor have been

measured at the frequencies of interest. To take the mea-

surement, a circuit board has been fabricated for the varactor

with one end shorted to the ground. The capacitance has been

extracted from the S11 measurement. In Fig. 6 the capacitance

is plotted against the reverse voltage for various frequency

points. A model provided by the manufacturer has been used

to generate the simulated results presented in the figure.

Since the used varactor is packaged, its capacitance changes

with frequency due to the effects of the package parasitics.

These parasitics originate from the wire-bonds and are mostly

inductive resulting in a self-resonant-frequency, which can be

clearly observed in the figure.
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Sim. 1 GHz
Sim. 1.5 GHz
Sim. 2 GHz

SRF

Fig. 6. Measured and simulated capacitance of the varactor against the bias
voltage at multiple frequencies.

Lumped components in the theoretical analysis presented

in the previous sections are assumed to be ideal, and the

entire networks are assumed to be infinitesimally small. These

assumptions can not be realized in practice as surface mounted

components (SMT) are not ideal, and the circuits have to be

large enough for fabrication and measurement reasons. To ob-

tain results comparable with the ideal theory, the circuits have

been made as small as possible. Moreover, the input/output

connectors and feed lines have been de-embedded from the

measured S-parameters. The parasitic effects of the solder

and small conductive patterns connecting the SMT compo-

nents have not been de-embedded. However, these parasitic

effects are proportional to the frequency and can be reduced

considerably by lowering the test frequency. For this reason,

a relatively low frequency of 500 MHz has been chosen to
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verify the theory. From the good match between the theory

and measurement, it can be concluded that if the circuits are

small enough, and the parasitics reduced (integrated designs),

the theory can also be verified for higher frequencies.

T-Network Π-Network

Ladder Network Hybrid Network

Fig. 7. Photographs of the fabricated prototypes.

The measurements of the matching networks have been

performed using a digital power supply (TTi MX100TP) and

a network analyzer (Keysight N5242A) both controlled by a

PC. The DC voltages of the two varactors have been swept

from 2 to 28 V in steps of 0.5 V. The measurement has been

automated, and a total of 2809 points have been measured for

each frequency. The results are compared to the theory for all

matching networks in Fig. 8.

B. Analysis and Discussion

From Fig. 8 (a) a good agreement between theory and

measurements can be observed with the four arcs clearly

identifiable from the measurements. The minor discrepancy is

mainly due to the ideal components assumed in the theoretical

analysis. It can also be observed that the points at the edge of

the chart, which are predicted by the theory, are not obtained

in the measurement. As proofed by equation (1), when the

matched impedance is on or close to the outer circle, its real

part should be either zero or ∞. This condition can only be

satisfied if the matching network is purely reactive, which is

not the case in the fabricated circuits. A slight phase shift can

also be observed which is mainly due to the parasitic effects

of the large, manually-soldered circuit.

For the case of the Π network (Fig. 8-(b)), the same

discussion above applies with a slightly more evident phase

shift. The parasitics on each circuit are different because each

circuit has a different layout. Therefore, the phase change,

which is mainly due to the parasitics, vary from one design to

the other. It can also be observed that the circle of C2,max is

slightly distant from the measured boundary, which indicates

that the value of C2,max has not been estimated correctly.

The maximum value of the capacitance occurs when the bias

voltage is low. In such case, the C-V curve experiences an

infinite slope as shown in Fig. 6 resulting in an uncertainty in

the estimation of the maximum values. Another consequence

of this uncertainty is the difference between the maximum

limits of the two capacitors even if they are identical due to

the effects of the parasitics.

For the case of the Ladder circuit, a very good match

between theory and measurements is achieved as shown in

Fig. 8 (c). The phase shift in this case is very minor.

Measurement Theory Measurement Theory

(a) (b)

(c) (d)

Fig. 8. Measurements of the fabricated prototypes compared with the theory.
(a) T-NW. (b) Π-NW. (c) Ladder NW. (d) Hybrid Π NW.

For the hybrid circuit, the comparison has been made at 1

GHz instead of 500 MHz (Fig. 8 (d)) because the size of the

lumped circuit is small.

On all the measurements, one or two points can be observed

to fall outside of the boundary. These points are found to occur

at the lowest bias voltage where the varactor operates on or

near its self resonant frequency (SRF) as clear in Fig. 6, which

explains the unexpected behaviour.

V. DESIGN EXAMPLE: LOAD MODULATED PA

As an example of the presented design tool, a PA has

been designed with load modulation capability. One of the

challenges of PAs is the deterioration of the Power Added

Efficiency (PAE) as the power is reduced (backed-off) from

its maximum value. This limitation is more serious for applica-

tions with high Peak-to-Average Power Ratio (PAPR), where

the input signal is considerably backed-off for most of the

time. If a tunable MN is used at the output of the PA, the

efficiency at power back-off can be increased by varying the

output impedance presented to the transistor according to the

magnitude of the input signal.

The first step in the design of load-modulated PAs is

to identify the optimal output impedances for various input

powers. If an accurate transistor-model is available, this task

can be achieved by load and source pull simulations. In this

work the GaN HEMT transistor CGH40010F from Cree has

been used, which has a good simulation model. Load pull

simulations have been performed for input power levels from

30 dBm down to 20 dBm (10 dB back-off) at a frequency of

0.8 GHz. The transistor is biased for a class B operation and

the second and third harmonics have been optimized for the
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maximum power level and kept constant for the other power-

values.

The second step is to properly terminate the harmonics.

Since they are kept constant in the previous step, a static

network between the transistor and the tunable network has

been used (Fig. 10). After designing this network, the load-pull

data at the transistor plane has been transformed to the tunable

network plane as shown in Fig. 10. The transformed trajectory

is plotted in Fig. 9 against the coverage of all four network

topologies, where the techniques discussed in section III-B

have been used. As expected, all four networks can provide

the required coverage, but the T-network is chosen due to its

lower capacitance-range (Fig. 9-e) and wider coverage.

C2,min C1,max C2,max

C1,min Auxiliary LP Data

C1,min

C1,max

C2,

max

C2,

min

(a) (b)

(c) (d)

(e)

30
dBm18

dBm
Π

h-Π

Ladder

T

Fig. 9. The coverage of all the networks and the load-pull trajectory (beyond
the static NW) of the OMN for input power of 18-30 dBm. (a) T-NW. (b) Π
NW. (c) Ladder NW, (d) Hybrid-Π NW. (e) Cost comparison.

V2V1

L

Vgs

Vds

Rs

CsInput Matching
Network

static
output
MN

tunable
Network

plane

Fig. 10. Schematic of the load-modulated power amplifier with varactors in
anti-series configurations.

Vgs Vds

V1

V2

Input

Matching

Network

Tunable

Matching

Network

Static Output

Matching Network

Fig. 11. Photographs of the fabricated power amplifier.

A. Results and Discussion

A prototype amplifier has been fabricated as shown in

Fig. 11. The MTV4090 tuning varactor has been used due

to its high power handling capability. To increase the power

handling even more, the tunable capacitors have been im-

plemented as multiple varactors connected in an anti-series

configuration as shown in Fig. 10 and 11.

The PAE is measured at 0.8 and 0.9 GHz for the full

dynamic range of the tunable network (V1 and V2 between 5

and 70 V). All the measurement has been taken below the 2

dB compression point to maintain a constant gain between 13

and 15 dB. Any measurement resulting in a gain below 13 has

been dropped. The results are shown in Fig. 12 where it can

be observed that the amplifier achieves a maximum efficiency

of 60% and 5 % improvement in the PAE at 10 dBs of power

back-off for the case of 0.9 GHz and 2% for the case of 0.8

GHz.

The presented design demonstrates relatively low efficiency

improvement, which is due to the losses of the varactors,

the package parasitics, and the manual soldering. However, it

demonstrates the benefit of the presented theoretical analysis

and design guidelines in the design and optimization of tunable

PA.
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Fig. 12. Measured power added efficiency of the dynamically load modulated
power amplifier against the output power at 0.9 GHz and 0.8 GHz. The input
power is swept from 20 to 28 dBm and the measured gain is steady at (13-15)
dB.

VI. CONCLUSION

In this work, analytical formulas for the coverage area for

four typical matching networks have been derived for the

Smith chart for the first time. These theoretical formulas have

been validated by circuit simulation and measured results,

which agree very well with the theory. The MNs analyzed

in this work all have two tuning components (capacitors) and

are lossless. Also, only perfect matching is considered. The

findings of this work can be extended further by including
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the effects of imperfect matching as well as the losses. Nev-

ertheless, the formulas presented here are compact, therefore,

suitable for circuit simulators and can be plotted directly on the

Smith chart, which enables rapid design of tunable systems.

As an example, a load-modulated power amplifier has been

designed and tested using the theoretical tools presented in

this work.

APPENDIX A

DERIVATION OF THE CENTER AND RADIUS OF AN INNER

TANGENTIAL CIRCLE

A(xA,yA)

(0,0)

B(xB ,yB )

C(xC ,yC )
1

2

3

R
C

RC

(xA − xC )

(yA − yC)

y
B

xB

xC

y
C

D(xD ,yD)

A(xA,yA)

B(xB ,yB )

C(xC ,yC )

RCθA

θB

(a) (b)

Fig. 13. (a) Illustration of a circle tangential with the Γ = 1 circle. (b)
Illustration of an arc defined by three points together with the center and
radius.

In this section the center and radius of a circle tangent

to the |Γ| = 1 circle are derived. The circles are illustrated

in Fig. 13-(a), where the tangent point is denoted A(xA,yA)

and the center is denoted C(xC ,yC). Point B(xB ,yB) is any

other point on the circle. Triangle 1 and 2 on Fig. 13-(a) are

similar, therefore, the ratio of their corresponding sides are in

proportion, thus

xC

xA − xC

=
yC

yA − yC

xC =
xA

yA
yC . (26)

Evaluating the value of the radius RC from triangles 1 and 3

and equating them gives:

(xA − xC)
2 + (yA − yC)

2 = (xB − xC)
2 + (yB − yC)

2

(2xB − 2xA)xC + (2yB − 2yA) yC

= x2
B + y2B − x2

A − y2A.
(27)

Substituting form (26) in (27) gives

(

2xAxB

yA
−

2x2
A

yA
+ 2yB − 2yA

)

yC

= x2
B + y2B − x2

A − y2A.

(28)

Multiplying through by yA and re-arranging to get yC as

yC =
yA

(

x2
B + y2B − x2

A − y2A
)

2 (−x2
A − y2A + 2xAxB + 2yAyB)

, (29)

and substituting in (26) to get xC as

xC =
xA

(

x2
B + y2B − x2

A − y2A
)

2 (−x2
A − y2A + 2xAxB + 2yAyB)

. (30)

The radius RC can be calculated directly from triangle 1 as

RC =

√

(xA − xC)
2
+ (yA − yC)

2
. (31)

APPENDIX B

DERIVATION OF THE CENTERS AND RADII OF THE

AUXILIARY CIRCLES

In this section the value of the capacitor (C2) that produces

the auxiliary circle is derived for all the topologies presented

in Fig. 3.

A. Π Matching Network

The value of C2 that gives maximum conductance is referred

to as C′
2 and can be calculated by first evaluating the real part

of the admittance just before the last branch as

Y2 =
(Y0 + jωC2)

(

1
jωL

)

Y0 + j
(

ωC2 −
1
ωL

) . (32)

The real part of which (conductance) can be calculated as:

ℜ{Y2} =
❍
❍❍

Y0C2

L
+ Y0

(ωL)2 −❍
❍❍

Y0C2

L

Y 2
0 +

(

ωC2 −
1
ωL

)2 . (33)

To evaluate the maximum conductance the derivative of ℜ{Y2}
with respect to C2 must be zero, which gives:

2Y0

(

1− ω2LC ′
2

) (

ω2L
)

(

(Y0ωL)
2
+ (ω2LC ′

2 − 1)
2
)2 = 0. (34)

Therefore,

1− ω2LC ′
2 = 0, and (35)

C ′
2 =

1

ω2L
. (36)

B. T-Matching Network

In this case, the last branch is a series capacitor (C1), the

forbidden area can be defined by the maximum resistance that

can be matched before C1. The value of C′
2 can be calculated

by evaluating the real part of the impedance just before the

last branch as

ℜ{Z2} = ℜ{Zin} =
Z0ω

2L2

Z2
0 +

(

ωL− 1
ωC2

)2 . (37)

Equating the first derivative with respect to C2 to zero gives:

2Z0ωL2

C′2
2

(

ωL− 1
ωC′

2

)

(

Z2
0 +

(

ωL− 1
ωC′2

2

)2
)2 = 0. (38)

Since C ′
2 = ∞ can be excluded,

C ′
2 =

1

ω2L
(39)
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C. Ladder Matching Network

For this case, a simple transformation can be used to

transform Y0 and L2 from a series to a parallel configuration.

This network can then be analysed in the same way as the

Π network. The parallel conductance and susceptance can be

calculated to be

Y ′
0 =

Y0

1 + (Y0ωL2)
2 and (40)

B0 =
−ωY 2

0 L2

1 + (Y0ωL2)
2 , (41)

respectively. From the results of the Π network in (equation

(36)) and assuming that B0 is capacitive

C ′
2 −

−Y 2
0 L2

1 + (Y0ωL2)
2 =

1

ω2L1
, and (42)

C ′
2 =

1

ω2L1
+

Y 2
0 L2

1 + (Y0ωL2)
2 . (43)

D. Hybrid Π Matching Network

This network can be analyzed in the same way as the Π
network.

Y2 = Y0
Y0 + j (ωC2 + Y0 tan(θ))

Y0 − ωC2 tan(θ) + jY0 tan(θ)
, (44)

from which the real part can be evaluated as

ℜ{Y2} = ℜ{Yin} =
Y 3
0

(

1 + tan2(θ)
)

(Y0 − ωC2 tan(θ))
2
+ (Y0 tan(θ))

2 .

(45)

Applying the maximum conductance condition results in

2Y 3
0 ω tan(θ) [1 + tan(θ)] [Y0 − ωC2 tan(θ)]
[

(Y0 − ωC2 tan(θ))
2
+ (Y0 tan(θ))

2
]2 = 0, (46)

which gives

C ′
2 =

Y0

ω tan(θ)
. (47)

APPENDIX C

PLOTTING AN ARC KNOWING ITS CENTER RADIUS AND

THREE POINTS

In this section plotting an arc with a radius of RC and

center C(xC ,yC) and three points A, B and D is illustrated as

shown in Fig. (13(b)). First the angles of the three points are

calculated as

θi = tan−1

(

yi − yC
xi − xC

)

, i ∈ {A,B,D} (48)

Next, a vector of the ordered (ascending or descending)

angles can be formulated as

θ = [θA, θ2, θ3, ..., θk, θD, θk+2, ..., θB ] . (49)

The angles in this vector always represent the right arc because

they include θD. From this vector, the x and y coordinates of

any point in the arc can be simply calculated using:

x+ jy = RC (cos(θ) + xC + j [sin(θ) + yC ]) . (50)
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