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ABSTRACT 
In gas-turbine engines and other rotating machinery structures 

rubbing contact interactions can occur when the contacting 

components have large relative motion between components: 

such as in rotating bladed disc-casing rubbing contacts, rubbing 

in rotor bearing and labyrinth seals, etc. The analysis of 

vibrations of structures with rubbing contacts requires the 

development of a mathematical model and special friction 

contact elements that would allow for the prescribed relative 

motion of rubbing surfaces in addition to the motion due to 

vibrations of the contacting components.  

In the proposed paper, the formulation of the friction contact 

elements is developed which includes the effects of the 

prescribed relative motion on the friction stick-slip transitions 

and, therefore, on the contact interaction forces. For a first time, 

the formulation is made for the frequency domain analysis of 

coupled rubbing and vibrational motion, using the 

multiharmonic representation of the vibration displacements. 

The formulation is made fully analytically to express the 

multiharmonic contact interaction forces and multiharmonic 

tangent stiffness matrix in an explicit analytical form allowing 

their calculation accurately and fast. The dependency of the 

friction and contact stiffness coefficients on the energy 

dissipated during high-energy rubbing contacts and, hence, on 

the corresponding increase of the contact interface temperature 

is included in the formulation.  

The efficiency of the developed friction elements is 

demonstrated on a set of test cases including simple models and 

a large-scale realistic blade. 

INTRODUCTION 
Friction is one of the most important sources of nonlinear 

behaviour, damping and, in some cases, self-excitation of 

vibrations in gas-turbine and other machinery structures. The 

beginning of understanding and modelling of friction is usually 

attributed to works of G. Amontons in 17th century and then 

C.A. Coulomb in 18th century (see Coulomb’s prize-winning 

paper in [1] or in later reprints of this paper). The Amontons- 

Coulomb friction model is still rather widely used in many 

studies, although a large number of new friction models has been 

developed to reflect some new experimental facts. There are 

good reviews of such models, developed mostly for the needs of 

mechatronics and servo-machines (e.g. see [2-4]). 

In gas-turbine engines and many other machinery structures 

there are two major types of the friction contact interactions 

which need to be analysed: (i) the micro and macro slip friction 

interactions resulting from vibrations of a structure (such as 

friction at blade root joints, blade shroud contacts, underplatform 

and other friction damper devices, bolted joints, etc.) and (ii) 

friction contact interactions with or without vibrations 

accompanied by a rubbing motion which exceeds usually 

significantly the level of vibration amplitudes (blade-casing 

rubs, rubbing in bearing, seals, braking disks etc.) 

The friction modelling in bladed disks for the first of the 

mentioned types started from using a slider friction model with 

the straight-line motion trajectory (see [5,6]) which were later 

generalised for two-dimensional motion ([7,8]) and finally for 

three-dimensional motion (see [9,10]). The fully analytical 

formulation of the friction damper model has been proposed for 

multiharmonic balance equations of motion in [11]. The 

modification allowing for the coupling between static and 

dynamic deformation components was suggested in [12]. A 

thorough review of friction modelling and numerical methods 

for analysis of gas-turbine structures is published recently in 

[13]. 

The second type of friction interaction is considered mostly 
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in papers on the analysis of rotor and whole engine dynamics 

(see e.g. a review in [14] and [15,16]) and in the analysis of blade 

tip – casing rubbing analysis (e.g. see [17]). Good descriptions 

of the friction contact modelling for rotor-casing and blade-

casing rubs are given in [18,19]. The rubbing interaction between 

braking disks and pads represents another important example of 

this type of friction interaction. The energy resulting from 

friction interaction between a rotating brake disk and pads can 

produce self-excitation vibrations and, therefore, brake squeal in 

braking systems. The review of modelling brake squeal 

approaches can be found in [20]. The friction forces generate 

significant amount of heat energy, during gross rubbing, which 

can affect rotor vibration and the examples of analysis of the 

rotor dynamics allowing for the heat generation rubbing on the 

rotor dynamics are given in [21] and [22], where the rotor shaft 

bow due to friction-generated heat is included into coupled 

thermo-elastic equations.  

In the papers considering the rubbing motion at the contacts, 

the effect of vibration of the rubbing components on the slip-

stick transitions at the friction contact interface is usually ignored 

and assumed that the friction forces are fully governed by the 

sign of the velocity of gross rubbing motion used in the 

Amontons-Coulomb friction model. Yet, in many practical cases, 

a structure is subjected to periodic excitation and its vibrations 

can be significantly affected by the rubbing motion and vice 

versa. This effect can be noticed even when the amplitudes of 

vibrations are much smaller than the displacements of rubbing 

motion. Not displacement amplitudes but velocities of vibratory 

and rubbing motions determine the necessity of considering the 

coupling of both these motions in the friction modelling. Small 

but high frequency vibrations can produce velocities comparable 

to the velocities of large rubbing motion. 

In the proposed paper, a friction model is developed which 

allows for the consistent description of the coupled effects of the 

prescribed rubbing motion and the vibration motion on the stick-

slip transitions. The model is valid in the whole range of the 

rubbing motion velocities: from the case when the gross rubbing 

motion is absent to the case when the rubbing velocity is so large 

that the stick state does not occur and the permanent slip can only 

exist. The model includes the case of motion when, due to large 

vibrations along direction normal to the contact surfaces, 

contact-separation transitions occur. 

The model is developed for the frequency-domain 

multiharmonic analysis of the nonlinear periodic vibrations. All 

matrices and vectors necessary for the Newton-Raphson iterative 

solution of the multiharmonic nonlinear equations of motion are 

derived in the analytical form, which provides the possibility of 

their accurate and fast solution. The most general case of the 

rubbing motion providing the periodic motion is considered: 

when the rubbing motion is represented as a sum of motion with 

a constant velocity and a periodic motion with a period common 

with the period of the excitation forces. 

The friction element created here allows the calculation of: 

(i) forced response excited by external forces and (ii) the 

parametrically excited vibrations due to the periodic rubbing 

motion. 

The effects of the heat generation at the contact interface on 

the friction contact parameters: friction coefficient and tangential 

and normal stiffness are also included in the formulation of the 

friction contact element. The calculation of the contact 

parameters corresponding to the vibration regime is based on an 

experimentally defined dependency of contact parameters on the 

contact temperature and the calculated correlation between the 

calculated dissipated power and the contact temperature. A 

nonlinear problem is formulated for the contact parameter 

calculation and an effective iterative solution procedure is 

proposed. The major capabilities of the developed friction model 

and the friction contact element are demonstrated on one degree 

of freedom (DOF) model and large-scale model of a realistic 

turbine blade.  

FORMULATION OF THE NONLINEAR VIBRATION 
PROBLEM FOR STRUCTURES WITH RUBS 
The equation of motion for the forced vibrations of a structure 

with nonlinear interactions at joints can be written in the form: 

 ( ) ( ) ( ) ( ( ), ( )) ( )t t t t t t+ + + =Kx Cx Mx f x u p   (1) 

where ( )tx  is a vector of displacements for all degrees of 

freedom in the structure considered; K , C  and M  are structural 

stiffness, damping and mass matrices of finite element (FE) 

model of a structure and ( )tp  is a vector of excitation forces; 

( )tp  is a vector of periodic excitation forces; ( ( ), ( ))t tf x u  is a 

vector of nonlinear contact interface forces, and ( )tu is a vector 

of a prescribed motion of all or some components of a structure 

analysed. 

It is assumed that the prescribed motion, ( )tu , is known, for 

example, being determined from multibody dynamics equations, 

or defined by the kinematics of the structural components. In 

many cases the displacement described by this motion is much 

larger than the vibratory displacements, ( )tx , caused by the 

excitation forces, ( )tp . It should be noted that the prescribed 

motion, ( )tu , can excite the forced vibration in addition to the 

excitation forces, ( )tp . 

The case of periodic excitation forces is considered, 

( )( ) pt t T= +p p , where pT  is the forces’ period, and the 

periodic forced response is analysed. In order to ensure the 

periodicity of the forced response we have to impose a constraint 

on the prescribed motion variation over time. The most general 

case is considered here, when ( ) ( )ut t T= +u u   where uT is the 

period of the prescribed motion velocities. Moreover, the ratio of 

the periods of the excitation force and the prescribed motion 

velocity should be a rational number, i.e. 

 1 2/ /p uT T j j=  (2) 

where 1j  and 2j  are integer numbers. Then the period of the 

forced response resulting from the action of these two sources of 

the excitation is: 

 ( ) ( )1 1 2/ ,pT T j lcm j j=  (3) 
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where ( )1 2,lcm j j  is the least common multiplier of 1j  and 2j .  

The solution of periodic forced response of such a structure 

can be efficiently obtained with the multiharmonic balance 

method in conjunction with the Newton-Raphson method (see 

[11]). The efficiency and robustness of the solution process can 

be achieved by accurate and fast evaluation of the multiharmonic 

equation of motion and its extended Jacobian. To do this, we 

derive here analytical expressions for multiharmonic contact 

forces, stiffness matrix and other expressions for the friction 

contact elements with rubbing friction contacts. 

FORCES AT THE RUBBING FRICTION INTERFACE  
In order to derive the expressions for friction interface, we 

consider the relative motion of the contacting nodes of two 

surfaces where the tangential displacements are described by 

displacements  1( )x t  and 2 ( )x t  , and the normal displacements 

are described by displacements, 1( )y t  and 2 ( )y t  (see Fig. 1). 

The prescribed rubbing motion along tangential direction, ( )u t , 

is added to the vibrational motion of second contact surface to 

have its overall displacement in the global coordinate system: 

2 ( ) ( )x t u t− . 

 

Fig. 1. Contact interface between two rubbing surfaces 

The friction contact forces are dependent on the rubbing 

motion, ( )u t , and on relative vibrational motion of the 

contacting surfaces: 

 1 2( ) ( ) ( )x t x t x t= − ;    
1 2( ) ( ) ( )y t y t y t= −  (4) 

Since the periodic vibrations are analysed, the relative 

vibrational motion can be expanded in a restricted Fourier series. 

Introducing here non-dimensional time tτ = ω , where 

2 /Tω= π  is the principal vibration frequency, we obtain: 

 ( ) ( )Tx −τ = τH X ;    ( ) ( )Ty −τ = τH Y  (5) 

where 
1 2= −X X X , and 

1 2= −Y Y Y  are vectors of harmonic 

coefficients of relative vibrational motion in the tangential and 

normal directions and vector −H  takes the form: 

 { }1 11,cos ,sin ,...,cos ,sin
T

n nm m m m− = τ τ τ τH  (6) 

where jm  ( 1.. )j n=  are the harmonic numbers included in the 

multiharmonic expansion of the forced response.  

It was found that the most general form of the rubbing 

motion, which can provide the periodic vibration, can be 

represented as sum of motion with constant velocity, v , and the 

periodic motion with the period the motion defined in Eq.(3):  

 ( ) ( )Tu t vt t−= + ωH U  (7) 

or in the non-dimensional time: 

 ( ) ( )Tu v −τ = τ + τH U  (8) 

where v v= ω  and U  is the vector of harmonic coefficients of 

the periodic part of the rubbing motion. It should be noted that 

in many practical cases, this part is absent and only the motion 

with constant velocity can be considered. Moreover, the 

approach developed here can be applied for cases when the 

velocity v  is varying over time, provided the rate of velocity 

variation is small enough to allow consideration of the vibrations 

as periodic – this is also quite common in practical applications. 

Contact surface mechanical properties are characterised by 

a friction coefficient, µ, and stiffness coefficients along 

tangential direction, 
tk  and normal direction, 

nk . The stiffness 

coefficients characterise elastic deformation of the asperities of 

the contacting rough surfaces in the tangential and normal 

directions respectively. Moreover, an initial gap between two 

contacting surfaces, g , can also be prescribed. The general case 

is considered here, when the gap value can be positive or 

negative. The later correspond to initial interferences, when the 

initial static pressure is applied at the contact interface. 

Two components of the forces can occur during vibration: 

(i) normal and (ii) tangential forces. The time-domain 

expressions for these forces have common features with the 

expressions developed in [11], the major difference is the 

addition of the rubbing motion term in the expressions for the 

tangential force and allowing for the rubbing motion effects on 

the stick-slip transitions.  

Normal contact interaction force 
The motion along the normal direction, ( )y τ , determines 

whether the interacting surfaces are in contact or separated. The 

normal contact force is expressed as 

 
( ) for contact  ( )

( )   
for separation        0

n

y

k y g
f

τ −
τ = 


 (9) 

Transitions from separation to contact and from contact to 

separation occur when normal displacement is equal to the gap 

value. The corresponding time instants are determined from the 

equation:  

 ( ) 0y gτ − =  (10) 

The sign of the normal velocity, ( )y τ , at these transitions 

determines the type of such a transition. When ( ) 0y τ >  at the 

transition time then this is a transition from separation to contact, 

otherwise it is a transition from contact to separation. 

Tangential contact interaction force 
The tangential contact force occurs only when the gap is closed 

and the contact surfaces come in contact, otherwise it is zero. In 

the expressions for the tangential force derived below, we 

assume that the surfaces are in contact. During contact, two 

different states of the friction contact interface are possible: slip 

or stick. In slip, the tangential force, 
xf , is a dry friction force 
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and in the stick state, this force is due to elastic asperity 

deformations. Taking into account the influence of the variable 

normal force occurring during motion along normal direction 

and the rubbing motion defined by ( )u τ , expressions for non-

linear interaction forces can be derived for the possible states in 

the following form: 

 

0

0 0( ( ) ( ) ) for stick  
( )  

( ) for slip        

x t

x

y

f k x x u u
f

f

 + τ − + τ −τ =  ξµ τ
 (11) 

where 
0 ( )stickx x= τ , 

0 ( )sticku u= τ  and 
0 ( )x x stickf f= τ , are 

values of the relative tangential displacement, prescribed 

rubbing displacement and the tangential force at the beginning 

of the stick state, 
stickτ , respectively; 1ξ = ±  is a sign function of 

the tangential force at the time instant of slip state initiation, .slipτ  

For the considered case of rubbing friction contact, we 

generalise here the conditions of the stick-slip transition derived 

in [11]. The stick to slip transition occurs when the tangential 

interaction force of the stick state, ( )xf t , reaches this limiting 

value, ( )yf tµ  i.e. when: 

 ( ) ( )0

0 0( ) ( ) ( )x t nf k x x u u k y g+ τ − + τ − = ±µ τ −  (12) 

Eq.(12) is solved with respect to time for both values of the sign 

for the limiting friction force. The lower value of τ  gives the 

time of the stick-to-slip transition and the sign used in the 

equation gives the magnitude of the sign function, 

sgn( ( ))x slipfξ = τ . 

Equality of rates of stick and slip tangential force variation 

in time then allows us to write out an equation for slip-to-stick 

transition in the form: 

 ( )( ) ( ) ( )t nk x u k yξ τ + τ = µ τ     (13) 

To select from all possible solutions of Eq.(13) only those 

instants satisfying time instants when the stick state starts the 

following condition has to be checked: 

 ( )( ) ( ) ( )t nk x u k yξ τ + τ < µ τ    (14) 

This condition ensures larger rate of increase for the limiting 

friction force (determined by the normal load) than the rate of 

increase of the friction force at the found time instant. 

PERIODIC FRICTION STATE TRANSITION TIMES 
Since periodic steady-state vibrations are analysed here, the 

periodic set of instants for state transitions has to be calculated 

in order to provide the periodic variation of non-linear interface 

forces.  

Contact-separation transitions 
The periodic set of contact-separation times is obtained simply 

by solving Eq.(10) over period of the vibrations. For the non-

dimensional time all roots of this equation are calculated over 

period [0,2 ]π  and intervals starting with ( ) 0y τ > corresponds 

to the contact state. 

Stick-slip transitions 
Determination of stick-slip transitions is performed differently 

for two possible cases: (i) a case when there are contact-

separation transitions and (ii) a case when the contact interface 

surfaces are in contact over the whole vibration period.  

A case of the presence of contact-separation 
transitions. For this case, stick-slip transitions are determined 

for each contact interval independently.  Firstly, the friction state 

is checked at the very beginning of the contact interval (i.e. at 

time 
cτ ) using the condition of the stick state existence –  the 

absolute value of the tangential force increase rate should be 

smaller than the rate of the normal force increase: 

 ( ) ( )x c y cf fτ < µ τ   (15) 

or substituting here the expressions for the tangential and normal 

forces this condition takes the form: 

  ( ) ( ) ( )t c c n ck x u k yτ + τ < µ τ    (16) 

If this condition is satisfied then at the start there is stick 

state. If instead of the inequality, we have equality in Eq.(16), 

then Eq.(14) allows the determination whether there is stick state 

at the starting contact time. In all other cases, the starting state is 

slip. 

The initial values of displacements and tangential force used 

in Eq.(11) for the determination of the tangential force are 

calculated for the starting stick as follows:  

 
0 ( )cx x= τ ;   

0 ( )cu u= τ ;   
0 0xf =  (17) 

If the contact starts from slip then sgn( ( ) ( ))c cx uξ = τ + τ   

and the expression for the tangential force in Eq.(11) is used for 

first slip state. When first state is known then all alternating stick 

and slip state transitions are found within the considered contact 

interval using Eqs.(12) and (13). It should be noted the 

possibility of only one state over the whole contact interval – this 

can be any of possible contact states: stick or slip. 

A case of permanent contact. The case of permanent 

contact differs the most from the case considered in [11] where 

the rubbing was not considered. One of major differences is the 

possibility of full slip state (for large enough values of rubbing 

velocity, v ) and the impossibility of the full stick state for all 

cases when 0v ≠ .  

To obtain the periodic set of state transition here we start 

from searching for the slip-to-stick transitions over period of 

vibration for the non-dimensional time, τ , [ ]0,2π  using 

Eqs.(13) and (14) for two values of the sign 1ξ = ± . If such 

transitions cannot be found then only slip exists over the whole 

vibration period and further search for state transitions stops. If 

the slip-to-stick transitions are found for both signs, then the 

stick time value, 
0τ   is chosen from the slip-to-stick transitions 

found for the equation with sign ξ  coinciding with the sign of 

the transitional velocity, v .  This choice is necessary to ensure 

the correct calculation of slip states for cases of small vibration 

amplitudes, which for friction with 0v =  would provide the fully 

stuck state. For the case when 0v ≠  the sign of the slipping 
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velocity is defined by sign of v .  For the starting stick state the 

following initial values are calculated: 

 
0 0( )x x= τ ;   

0 0( )u u= τ ;   ( )0

0x yf f= ξµ τ  (18) 

The value for ξ  is used here which corresponds to the sign that 

is used in Eq. (13) for the found time 
0τ . After this, all 

alternating stick and slip state transitions are searched within two 

vibration periods using Eqs.(12) and (13). For the periodic state 

transitions, the values obtained over the second period are taken 

to avoid some possible transitional effects. 

Several scenarios of the forming of periodic variation of the 

friction force are illustrated in Fig. 2. The plots of the friction 

force obtained using the suggested above friction model for 

different values, v , for the rubbing velocity that is constant over 

time here (i.e. u v= ). The mono-harmonic vibrations for ( )x τ  

and ( )y τ  are considered and the friction force is evaluated 

assuming that the normal pressure is the same for all considered 

cases. The non-dimensional time in this figure is the number of 

full cycles of vibrations. Small vibration amplitudes are 

considered here, but in all cases: with very small velocity values 

and with large velocity values the friction force reaches the 

limiting friction force value and the interface starts to slip. We 

can observe here that the rubbing velocity affects significantly 

the values of the friction forces when they start to vary 

periodically. The hysteresis loops plotted in Fig. 3 correspond to 

the periodic motions considered in Fig. 2. It is evident significant 

effect of the rubbing velocity on the hysteresis loops, even for 

the case of small amplitudes of vibration. 

 
Fig. 2. Establishing of periodic variation of the friction 

force: a case of small vibration amplitudes 

 
Fig. 3. Hysteresis loops for different transitional velocity: a 

case of small vibration amplitudes. 

Other examples are shown for larger amplitudes in Fig. 4 

and Fig. 5 where the cases of constant and variable pressures at 

the friction contact interface are considered.  

 
Fig. 4. The friction force: a case of large vibration 

amplitudes. 

 
Fig. 5. Hysteresis loops: a case of large vibration amplitudes 

One can see, again, the significant effect of the transitional 

velocity on the friction forces: the rubbing can cause the 

existence of only one (or in general case odd number) of stick 

state over period, which never happens in the conventional 

friction models when the rubbing motion is not allowed for. 

Further increase of the rubbing velocity can lead to the vibration 

without stick state at the contact interface. 

MULTIHARMONIC CONTACT FORCES AND TANGENT 
STIFFNESS MATRIX 
When the periodic set of friction state transition times is 

determined, then the vectors of multiharmonic expansion 

coefficients for tangential, xF , and normal, yF , forces can be 

calculated by integration of tangential and normal force 

expressions given by Eqs.(9) and (11) multiplied by the vector 

of harmonic functions, +H , over each interval of friction contact 

state:  

 

( )

1

( )

1

c

n
j

x

jx

n
y j

y

j

τ

τ

=

=

 
 

   =   
   

  

∑

∑

J
F

F
J

 (19) 

where nτ  and 
cnτ  are the total numbers of stick- slip and contact-

separation intervals accordingly. Introduced here integrals 
( )j

xJ  

and ( )j

yJ  over each interval of stick, slip and/or contact states 

have the form: 
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( )

( )
1

( )
stick1

slip

j

j

x v x

t j t j j jj

x x x x

j n j j

k k v c
f d

k g

+τ

+
τ

 + + += τ = π ξ µ − +
∫

W X U w w
J H

w W Y
 (20) 

1

( ) contact1

separation

c
j

c
j

y y

j n j n j

y x

k g k
f d

+τ

+

τ

− +
= τ = π 

∫
w W Y

J H
0

 (21) 

where { }1
1 12

,cos ,sin ,...,cos ,sin
T

n nm m m m+ = τ τ τ τH ; jτ  are 

instants of slip-stick transitions and c

jτ  are instants of contact-

separation transitions. Other terms in these equations take the 

form: 

 
1

( )

1
j

j

x T

j

n n

d

+τ

+ −
× τ

= τ
π ∫W H H ;   

1

( )

1
c
j

c
j

y T

j

n n

d

+τ

+ −
× τ

= τ
π ∫W H H  (22) 

1

( 1)

1
j

j

x

j

n

d

+τ

+
× τ

= τ
π ∫w H ; 

1

( 1)

1
j

j

v

j

n

d

+τ

+
× τ

= τ τ
π ∫w H ;

1

( 1)

1
c
j

c
j

y

j

n

d

+τ

+
× τ

= τ
π ∫w H  (23) 

 
( )

0

1

( ) ( ) ( )

( ) ( ) ( )

j x j t j j

j n j t j j

c f k x u

k g y k x u−

 = τ − τ + τ = 
 = ξ µ − + τ − τ + τ 

 (24) 

Since the vectors used for transformation from time domain 

into frequency domain, +H , and for transformation back to time 

domain, −H , consist of sine and cosine functions of different 

orders, then the components of matrix W and vector w are simple 

integrals of sine and cosine functions and integrals of products 

of these functions. These integrals are calculated analytically, 

which provides an exact and very fast calculation for the vectors 

of Fourier expansion coefficients of the contact interface forces.  

The tangent stiffness matrix of the friction interface element, 

K , is determined as a matrix of derivatives of the multiharmonic 

vector of interface forces taken with respect to the multiharmonic 

coefficients of relative displacements. This matrix is obtained by 

differentiating Eq.(19) with respect to vectors X and Y: 

 

( ) ( )

1 1

( )

1

c

n nj j

x x
x x

j j

jn
y y

j

τ τ

τ

= =

=

 ∂ ∂∂ ∂     ∂ ∂∂ ∂  = =   ∂ ∂    ∂  ∂  

∑ ∑

∑

J JF F

X YX Y
K

F J
0 0

Y Y

 (25) 

where: 

 
( ) jj x x

x t j j

c
k

∂
∂ += ∂∂ 

J W w
X

X
0

;   
( ) stick

slip

jxj
jx

x

y j

c

k

∂
∂ = ∂∂ ξµ

wJ
Y

Y
W

 (26) 

 

( )
contact

separation

j y
y n jk∂ 

= ∂ 

J W

Y 0
 (27) 

The derivatives of the constant term, jc , of the tangential 

force with respect to X and Y  used in Eqs.(26) are determined 

by differentiating Eq.(24), which gives the following 

expressions: 

 ( )
j jT

t j j

c
k c−

∂ ∂τ
= − τ +

∂ ∂
H

X X
 ;    ( )

j jT

n j j

c
k c−

∂ ∂τ
= −ξµ τ +

∂ ∂
H

Y Y
  (28) 

 
1 ( ) ( ) ( )j j n j t j jc k y k x u−  = ξ µ τ − τ + τ      (29) 

It should be noted the product j jc ∂τ ∂X  and j jc ∂τ ∂Y  are 

equal to zero for all stick times that follow to slip. This is owing 

to 0jc =  at these time instants by definition of times when slip 

to stick transitions occurs. For cases when the stick occurs at the 

time when separated surfaces come into contact, the time of the 

stick beginning coincides with the time of contact beginning. 

Because of that it is independent of X, i.e. 

 stick∂τ
=

∂
0

X
  (30) 

and derivatives with respect to vector Y are obtained by 

differentiation of the contact condition given by Eq.(10): 

 
1

( )
( )

Tstick
stick

sticky
−

∂τ
= − τ

∂ τ
H

Y 
  (31) 

There are two special cases when the expressions for the 

vector and the stiffness matrix can be written without calculation 

of a set of stick-slip transitions. These cases are: (i) the case of 

full separation and (ii) the case when contact is permanent and 

stick does not occur. 

For the full separation case the contact forces and tangent 

matrix are equal to zero, i.e.: 

 x y= =F F 0    and   =K 0  (32) 

For the case of permanent slip, the expressions for vector of 

the forces and tangent matrix take the form: 

 
( )1( )x n

y n

sign v k g

k

  µ − 
=   
  

F Y e

F Y
;    

nk

 
=  
 

0 0
K

0 I
 (33) 

where { }1 1,0,...0
T=e  and  I is the identity matrix. 

SENSITIVITY OF CONTACT FORCES TO VIBRATION 
FREQUENCY 
The important feature of the friction under rubbing motion is the 

frequency dependency of the friction contact forces on the 

vibration frequency. This contrasts to the conventional 

perception that the dry friction is generally frequency-

independent. The frequency dependency occurs for all cases 

when the linear component of the rubbing velocity is different 

from zero, i.e. 0v ≠ , and when this velocity is small enough  to 

allow slip-stick transitions. These conditions are satisfied for 

many practical cases of friction contacts with rubs. Therefore, to 

perform the solution continuation, when the excitation frequency 

is the tracing parameter, it is necessary to calculate not only the 

multiharmonic contact forces and the tangent matrix, as it is 

shown in the preceding section, but also the sensitivity of the 

contact forces to the principal vibration frequency, ω . The 

expression for these sensitivities can be also obtained 

analytically: 

 

( )

( )
1

1

( )

1

c

n
j n
x j

jx x

j
n

y j

y

j

τ

τ

τ

=
=

=

 
 ∂ 

 ∂ ∂    = = ∂ω     ∂ω ∂ω     
   

∑ ∑

∑

J
F J

F
0J

 (34) 
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where 

 
( )

stick

slip

jv x

t j jj

x

cv
k

∂ ∂  +  ∂ω ∂ω∂  = ∂ω 


w w
J

0

 (35) 

and /v v∂ ∂ω = − ω ;   /j t jc k v∂ ∂ω = τ ω  (36) 

MODELLING OF RUBBING ENERGY DISSIPATION 
EFFECTS ON CONTACT INTERFACE PARAMETERS 
The friction contact interactions dissipate the energy of vibration 

and the energy of prescribing rubbing motion, ( )u τ , by 

transferring them into the thermal energy and into the generation 

of debris due to wear of the microasperities at the rough contact 

surfaces. When the dissipation energy is high, as it usually 

happens under high-energy rubs, the generated thermal energy is 

high enough to increase significantly the temperature at contact 

interfaces. It is experimentally confirmed (see, e.g. [23]) that the 

friction coefficient and other parameters of contact interfaces are 

dependent on the temperature, i.e.: 

 ( )oTµ = µ ; ( )ot tk k T= ; ( )on nk k T=  (37) 

where oT  is the temperature at the contact interface. The contact 

interface temperature is determined by the thermal conditions at 

which the structure operates, by the conductivity characteristics 

and by the amount of energy generated at contact interfaces due 

to friction forces. Hence, the temperature at a contact interface 

can be represented as a sum of background temperature, 
0

oT   – 

not related to the energy dissipated at contact interface and the 

temperature increase caused by the frictional rubs, o

rT . The latter 

is dependent on the power of the energy dissipation at the contact 

interface, E :  

 ( )0

o o o

rT T T E= +   (38) 

To determine the dissipated power, E , firstly we obtain the 

expression for the energy dissipated over a period of vibrations, 

E : 

 

[ ]

( )

( )( )

2

0

2

0

1

( ) ( ) ( )

( ) ( )

2

x

T T

x

TT

x x

E f x u d

v d

v

π

π

− −

= τ τ + τ τ =

 = τ + τ + τ = 

= π + π +

∫

∫ F H H X U

e F L X U F

 

   (39) 

where 

{ }1 1,0,...,0
T=e ;   

1

0 1 0 1
0, ,...,

1 0 1 0
ndiag m m

    
=     − −    

L  (40) 

Then, owing to small vibration period comparing to the time 

scale in which the temperature variation is considered, the 

dissipated power can be obtained by equalising the dissipation 

power to its value averaged over the period of vibration: 

( ) ( )( ) ( )1 0.5
2

TT

x x

E
E E v

t

∂ ω  = = ω + +
 ∂ π

e F b L X U F b    (41) 

The vector of multiharmonic contact forces, ( )xF b , is calculated 

as explained in previous sections. It is dependent on all contact 

interface parameters, combined here in a vector: { }, ,
T

t nk k= µb    

We can notice that Eq.(37) together with Eqs.(38) and (41) 

represents a nonlinear system of equations with respect to values 

of the contact interface parameters , ,tkµ and 
nk : 

( )( )
( )( )
( )( )

( )( )( )
0

0 0

0

o o

r

o o o o

t t r r

o o

n n r

T T E

k k T T E T T E

k k T T E

 µ −µ +
 
 = − + = − + = 
 

− +  

R b b b 0



 



 (42) 

The solution of this equation is performed by Newton-Raphson 

iterative method: 

 
( ) ( ) ( )1

i

i i i+

∂
− = −

∂
R b

b b R b
b

 (43) 

where i  is the iteration number. The iterative solution process is 

performed for the fixed values of X   and Y  at each iteration 

the contact forces, 
xF  and the dissipation power ( ), , xE b X F  

are calculated. For the starting point the values of contact 

interface parameters at the background temperature, 
0

oT , can be 

used: ( )0 0

oT=b b . The iterative solution of Eq.(43) can be 

performed for each friction contact element independently. So, 

the contact parameters are determined at the contact element 

level: to obtain the friction contact interface parameters 

corresponding to any given relative displacements X  and .Y  

When the friction interface parameters are found, the 

multiharmonic contact forces xF  and yF , the tangential stiffness 

matrix, K , and x∂ ∂ωF corresponding to found parameter 

values are calculated and they are used in forming the frequency-

domain equations of motion for a structure analysed. In some 

cases the dependency of the temperature on the energy generated 

by all friction elements needs to be considered. In this case, the 

temperature of contact friction elements at a contact surface is 

coupled by the thermo-conductivity coefficients for a considered 

surface and the iterative determination of the contact parameters 

is performed for all contact elements located at this surface 

simultaneously. 

Therefore, the harmonic coefficients of relative 

displacements, X  and Y  are considered as independent of the 

values of contact interface parameters when Eq.(43) is solved 

and only friction forces are treated as functions of the contact 

interface parameters. The iterations given by Eq.(43) are 

performed till the required accuracy in the parameter 

determination is achieved, which is controlled by the 

convergence condition: ( )1 1i i i+ +− < εb b b  where the ε  is a 

chosen small number used to control the relative accuracy of the 

contact parameters. When the solution of this equation is found, 

the contact force vector is obtained and the tangent stiffness 

matrix are evaluated for the found set of contact parameters 

corresponding to found thermal equilibrium allowing for the 

friction-generated heat. 
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At each iteration the residual vector ( )iR b  and the Jacobian, 

( )i∂ ∂R b b  of Eq. (43) are calculated. The expressions for the 

Jacobian of Eq.(43) are derived analytically too. The general 

expression for the Jacobian takes the form: 

 
o

o

T E

T E

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
R b

I
b b


  (44) 

The derivatives, included in this equation, of the energy 

dissipation power with respect to contact parameters can be 

obtained by differentiating Eq.(41): 

 ( )1 0.5
T

T x xE v
 ∂ ∂∂

= ω + + ∂γ ∂γ ∂γ 

F F
e L X U ;  , ,t nk kγ = µ   (45) 

The evaluation of these derivatives requires the calculation of 

sensitivity of the multiharmonic tangential contact force vector, 

xF , with respect to the contact parameters. The expressions for 

these sensitivities can be also derived analytically: 

 
( )

1

n j

x
x

j

τ

=

∂∂
=

∂γ ∂γ∑ J
F ;    , ,t nk kγ = µ  (46) 

where the summands on the right side of Eq.(46) are obtained by 

differentiating Eq.(20) with respect to contact parameters. As a 

result, we obtain:  

 

( )

( ) stick

slip

j
j

j
x

x x

j n j j

c

k g

∂
∂ ∂µ= ∂µ ξ − +

wJ

w W Y

 (47) 

 
( )( ) stick

slip

jx v xj
j j jx

t

t

c
v

k
k

∂
+ + +∂ = ∂∂ 



W X U w wJ

0

 (48) 

 

( )

( ) stick

slip

j
j

j
x

n x x

j j j

c

k
g

∂
∂ ∂µ= ∂ ξ µ − +

wJ

w W Y

 (49) 

where /c∂ ∂µ  is determined by differentiating Eq.(24)  

 ( ) ( )( ) ( )
j j

n j j n j

c
k g y c k g y

∂ ∂τ
= ξ − + τ + = ξ − + τ

∂µ ∂µ
  (50) 

 ( ) ( ) ( ) ( )
j j

j j j j j

t t

c
x u c x u

k k

∂ ∂τ
 = − τ + τ + = − τ − τ ∂ ∂

  (51) 

 ( ) ( )( ) ( )
j j

j j j

n n

c
g y c g y

k k

∂ ∂τ
= ξµ − + τ + = ξµ − + τ

∂ ∂
  (52) 

Here the fact that the product j jc ∂τ ∂µ  and j j tc k∂τ ∂  are 

equal to zero for all stick starting time instants is taken into 

account. This is due to 0jc =  at these time instants by definition 

of times when slip to stick transitions occur. For special cases 

when the stick state after separated surfaces come into contact 

then another multiplier included in this product is equal to zero: 

0j j t j nk k∂τ ∂µ = ∂τ ∂ = ∂τ ∂ = , since these time instants are 

defined only by normal displacement variation and are not 

dependent on the contact parameters. 

NUMERICAL EXAMPLES  
The capabilities of the new friction contact interface model 

developed here to include large rubbing motion in the analysis of 

nonlinear vibrations of structures with contact interfaces has 

been explored on a number of simple systems and on realistic 

gas-turbine structures. In this paper the examples of application 

of this model to the analysis of two structures are shown: (i) a 

single-degree-of-freedom (SDOF) oscillator and (ii) a realistic 

blade.  

A single degree of freedom oscillator 
An SDOF oscillator was considered in order to explore the major 

properties of the new friction element. The equation of motion 

of the oscillator has the following form: 

 ( ( ), ( )) sinmx cx kx f x u t x u t p t+ + + + + = ω     (53) 

where 1m = ; 0.4c = ; 40k = ; 100p =  and 
xf f=  is the 

friction force. The fiction force is calculated assuming that the 

tangential direction of the contact surface coincides with the 

direction of oscillator motion and the normal load is constant 

800.y nf k g= =  The friction coefficient is not affected by the 

dissipation energy here: 0.3µ =  and the tangential contact 

interface stiffness is 100tk = . All parameters of the model can 

be provided in any consistent system of units, such as 

[kg,m,sec,N] or [ton,mm,sec,N]. The frequency in the following 

figures is provided in rad/sec. In the multiharmonic nonlinear 

forced response calculations, first 11 harmonics are used: from 0 

to 10. 

Constant rubbing velocity cases. Firstly, the cases of 

the transitional rubbing motion with constant velocity are 

considered: ( )u t vt= . The maximum dynamic amplitude and the 

static, zero component of the forced response are shown in Fig. 

6 and Fig. 7 for different values of the rubbing velocity: from 0 

to 250. The forced response of this system without the friction 

damper is also shown in these figures for comparison.  

 
Fig. 6. Vibration amplitude for different rubbing velocity 

values: the SDOF oscillator 
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For large rubbing velocity 250v =  the stick state does not occur 

over the whole frequency range for this system and the dynamic 

forced response amplitude (calculated by the subtraction of zero 

harmonic component from the response) is identical to the 

amplitude of the system without damper. The maximum 

displacement value differs by the value of static displacement, 

which equal to 0 / 6N kµ =  for a case of fully slipping interface. 

Observing the variation of the zero harmonic value over the 

frequency range in Fig. 7, we can see how the static equilibrium 

point varies with the variation of frequency. 

 
Fig. 7. Zero harmonic of the calculated forced response for 

different rubbing velocity values: the SDOF oscillator 

For 0v =  and for the system without friction, zero harmonic 

component is equal to zero over the whole analysed frequency 

range. For 1v =  the zero harmonic is close to zero at the 

resonance peak while for the other values zero harmonic 

component is significant over the whole frequency range and 

takes values close to 6 for frequency ranges where these 

amplitude are smaller. Hence, for small rubbing velocity 1v =  

the maximum displacement and the dynamic amplitude are 

close, in the vicinity of the resonance peak, to those of the system 

without rubbing, 0v = . This is because, for large vibration 

amplitudes, the vibratory motion is dominant in the stick-slip 

transitions at the contact interface. For out-of-resonance 

frequency ranges, where the vibration amplitudes are small, the 

large static component is observed, although the dynamic 

amplitude value is similar to the case of no rubbing. The plots 

corresponding to the values of rubbing velocity from 10 to 100 

show a gradual change of the resonance frequency to the 

frequency of system without damper: 6.32 rad/s. It is evident also 

that the shape of resonance peaks differ significantly from those 

that are observed for a system without rubbing when such 

transition is achieved by reduction of the normal load (see for 

comparison results shown in [11]). 

The results of calculations obtained by the multiharmonic 

balance methods are usually affected by the total number of 

harmonics used in the multiharmonic representation of the 

displacement and by the selection of these harmonic numbers. 

The extensive analysis of such effects on the analysis of simple 

and complex systems with rubbing has been performed. The 

analysis shows two significant distinctions of the analysis with 

rubbing from the analysis of structures with friction without 

rubbing: (i) necessity of using zero harmonic and (ii) importance 

of keeping even harmonics in the multiharmonic representation 

of displacements. As an example, in Fig. 8 the dynamic forced 

response of the considered above SDOF system is shown for a 

case of rubbing velocity 10v = . The results of three calculations 

are shown here when all (odd and even) harmonics are used: (i) 

from 0 to 3; (ii) from 0 to 7 and (iii) from 0 to 10. The case of 

calculation when zero and odd harmonic from 0 to 10 are also 

plotted. One can see that the curve corresponding to the case (ii) 

is fully hidden since it coincides with the curve (iii) and curve (i) 

is distinguishable only in a narrow frequency range close to the 

first resonance peak (in vicinity of frequency value 4 rad/s). The 

dynamic forced response curve obtained with only zero and odd 

harmonics used differs significantly over the large frequency 

range including both resonance peaks.   

 
Fig. 8. Effect of harmonic numbers on vibration amplitude: 

the SDOF oscillator, 10v =  

Oscillatory rubbing motion cases. In addition to the 

constant velocity the rubbing motion can have also periodically 

varied components and the effects of these components have 

been explored. The examples of the forced response obtained for 

a case when 2cosu vt t= + ω  for different values of v  is shown 

in Fig. 9 and Fig. 10. We can notice the change of the resonance 

peak shapes comparing them with Fig. 6 and the occurrence of 

multiple resonance peaks in the low frequency range. 

 
Fig. 9. Vibration amplitude for the SDOF oscillator with 

rubbing motion: 2cosu vt t= + ω  
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Fig. 10. Zero harmonic of the forced response for the SDOF 

oscillator with rubbing motion: 2cosu vt t= + ω  

Parametric excitation by rubbing oscillatory 
motion. The rubbing periodic motion can cause the parametric 

excitation of vibration. An example the forced response excited 

by only the harmonic rubbing motion of the damper is shown in 

Fig. 11 for different amplitudes, a , of the rubbing motion 

cosu a t= ω . In all cases, the external excitation force is 

assumed zero: 0p =  and the excitation of the vibration occurs 

due to the rubbing motion at frictional contact interface. The 

resonance peaks differ in shape from the resonance peaks of the 

system damped by friction in the absence of rubbing, the 

resonance frequency decreases monotonically and the resonance 

amplitude decreases. The zero component of the forced response 

excited by the rubbing motion has zero value for all frequencies 

and, hence, is not plotted here. 

 
Fig. 11. Vibration amplitude for the SDOF oscillator with 

rubbing motion: cosu a t= ω in the absence of external force  

A turbine blade  
For an example of the analysis of the rubbing motion on the 

vibration of large models of structures with friction contact 

interfaces a turbine blade finite element (FE) model shown in 

Fig. 12 is considered. The FE model comprises 101,200 DOFs. 

The blade is fixed at the blade root contact surfaces, 8 friction 

contact element are uniformly distributed over the surface at the 

blade shroud surface marked in green in Fig. 12.  

The direction of the rubbing motion is indicated in this 

figure by the arrow and the rubbing motion with constant 

velocity is considered, i.e. u vt= . The casing is not included in 

the model and it is assumed that the friction contact elements rub 

against a rigid surface. The excitation of the vibration is 

performed by harmonic forces distributed over the finite element 

nodes of the concave blade surface. The frequency range 

including first blade resonance frequency is considered. For the 

analysis of nonlinear vibration of the blade, the high-accuracy 

reduction method developed in [24] is used. The forced response 

function (FRF) matrices are generated for the nodes where the 

friction contact element are applied. The FRF matrices are 

generated with the use of modal characteristics of a structure 

without contacts. The background frequency-independent modal 

damping factors are assumed for all 128 modes included in the 

reduced blade model equal to 0.001 (see [24] for the details of 

the model reduction method). The analysis of effects of number 

of harmonics included in the analysis has been performed and it 

was found that first 6 harmonics: from 0 to 5 provide sufficiently 

accurate solutions over the whole frequency range and for 

parameters analysed, therefore, these harmonics are used to 

obtain all results reported below.  

 
Fig. 12. Finite element model of the analysed blade 

Two types of the analysis allowing for the rubbing effects 

have been performed: (i) the analysis when all friction contact 

interface parameter are considered constant irrelevantly of the 

dissipation energy and (ii) when the temperature increase effects 

on the friction coefficient values due to energy dissipation at 

contact interface are included in the analysis.  

For the second type, the dependency of the friction 

coefficient on the temperature is used that is obtained from the 

experimental measurements reported in [23]. The cubic spline 

approximation of this dependency is performed using the table 

of experimental values. The spline approximation allows 

calculation not only the friction coefficient value for a given 

temperature but also its derivative with respect to the 

temperature, which is necessary for the evaluation of the matrix 

in Eq.(44). The correlation between the dissipated power at 

contact interface and its temperature is obtained by the solution 

of the linear steady-state conductivity problem with heat sources 

applied at the friction contact element locations. For this 

calculation, the blade finite element model shown in Fig. 12 is 

used with allowing for the convection heat transfer over the blade 

surfaces. 
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Analysis with constant values of friction interface 
parameters. At first, to obtain a reference case for the 

illustration of the rubbing effects, the forced response was 

calculated without the rubbing motion and assuming constant 

friction coefficient. The amplitudes of vibration obtained for 

different levels of the normal load, 
0N , applied to the blade 

friction contact surface are shown Fig. 13 together with two 

limiting cases: (i) a blade without friction contacts and (ii) a 

blade with fully stuck contact elements. The normalised 

dissipation power is plotted for these cases in Fig. 14.  

 
Fig. 13. Forced response amplitude for a blade without rubs 

 
Fig. 14. Dissipation power for a blade without rubs 

It should be noticed here that, although the dissipated energy 

is correlated in most cases with the reduction of the resonance 

vibration amplitude, for the case of friction damping the energy 

dissipation is only one of two mechanisms of such reduction: the 

second mechanism is the variation of the stiffness properties over 

vibration period. Because of this, we can observe that the 

maximum amplitude reduction is achieved for normal load of 

100% while the maximum dissipated energy is observed here for 

the normal load 40%. More detailed discussion on these 

mechanisms can be found in [25]. 

The effect of the rubbing velocity on the dynamic forced 

response amplitude is shown for different levels of the normal 

load and the rubbing velocity in Fig. 15, Fig. 16 and Fig. 17. It is 

evident that for all levels of the normal loading the rubbing with 

large enough velocity (in our case 
410v = ) suppresses the 

damping effects of the friction contact on the vibrational 

amplitude and it becomes equal to the amplitude of the structure 

without friction. The rubbing motion affects significantly the 

resonance frequency values and the resonance amplitude. It is 

important to notice also the large effect of the rubbing motion on 

the out-of-resonance vibration amplitudes: the level of such 

vibrations can be changed due to rubbing by factor 2.5. The 

realistic values of rubbing velocity start from 5000 and higher 

for the case considered here. 

 
Fig. 15. Vibration amplitude for a blade with: 

0 40%N =  

 
Fig. 16. Vibration amplitude for a blade with: 

0 100%N =  

 
Fig. 17. Vibration amplitude for a blade with: 

0 400%N =  

Analysis considering the effects of the dissipation 
energy on friction coefficient. The examples of the analysis 

of blade vibration when the effects of friction-generated 
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dissipation energy on the friction coefficient through the contact 

temperature increase are shown in the following figures. A case 

of normal load 20%oN =  is considered here and the calculated 

forced response is shown in Fig. 18 (where the dynamic 

amplitudes are plotted), in Fig. 19 (where zero harmonic of the 

forced response is plotted) and in Fig. 20 (where the dissipated 

power is displayed).  

 
Fig. 18. Vibration amplitude for a blade with allowing for 

effects of dissipation energy on the friction coefficient 

 
Fig. 19. Zero harmonic of the forced response for a blade 

with the friction coefficient affected by dissipation energy  

 
Fig. 20. Dissipated power dependency on the vibration 

frequency for the blade with rubs 

The results are shown here for two friction modelling cases: 

(i) when the friction coefficients corresponding to the ambient 

temperature is used in the calculations and (ii) when the effect of 

dissipation energy on the friction coefficient is included in the 

model as it is described in the method developed in this paper.  

We can see that the resonance amplitudes are significantly 

higher when we take into account the effect of the dissipation 

energy on the friction coefficient: which is due to the significant 

reduction of its value due to temperature increase because of 

energy dissipation. Such increase is larger for smaller values of 

the rubbing velocity: from 0 to 2000, while for 5000v =  this 

effect is smaller. It is important to notice the large change in the 

zero component of the vibration – the component defining the 

equilibrium around which the vibrations are performed. The 

effect of the dissipation energy is significant only for larger 

rubbing velocity values (in the considered cases they are 2000 

and 5000). The dissipated power plots in Fig. 20 show that for 

large rubbing velocity the increase of the dissipation power at 

resonance peaks is rather small compared with the case of no 

rubbing ( 0v = ) or rubbing with small velocity ( 100v = ) when 

the vibration is the major source of the dissipation power. 

Allowing for the dependency of the friction coefficient on the 

temperature increase due to the dissipation can reduce by 50% 

the dissipation energy, especially for out-of-resonance 

frequencies.  

 
Fig. 21. Friction coefficient dependency on the vibration 

frequency due to effects of the dissipation energy  

The change of the friction coefficient with the frequency 

variation is illustrated in Fig. 21. The large decrease of the 

friction coefficient at the resonance peak can be seen, although 

for large rubbing velocity, when the rubbing energy dissipation 

is dominant, this increase becomes relatively small. 

CONCLUSIONS 
The formulation of the friction contact elements is developed 

which includes the effects of the prescribed relative motion on 

the friction stick-slip transitions and, therefore, on the contact 

interaction forces. For a first time, the formulation is made for 

the frequency domain analysis of coupled rubbing and 

vibrational motion, using the multiharmonic representation of 

the vibration displacements. The formulation is made fully 

analytically to express the multiharmonic contact interaction 
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forces and multiharmonic tangent stiffness matrix in an explicit 

analytical form allowing their calculation accurately and fast. 

The dependency of the friction coefficient on the energy 

dissipated during high-energy rubbing contacts and, hence, on 

the corresponding increase of the contact interface temperature 

is included in the formulation.  

The efficiency of the developed friction elements is 

demonstrated on a set of test cases including simple models and 

a large-scale realistic blade. It is shown the significant effects of 

the gross rubbing motion on the vibration amplitudes and 

resonance peak frequencies.  
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