
Advanced Composite Letters, Vol. 9, No. 6, 373-383 (2000) Full Article

ANALYTICAL FRACTURE MECHANICS ANALYSIS OF THE
PULL-OUT TEST INCLUDING THE EFFECTS OF FRICTION

AND THERMAL STRESSES

John A. Nairn

Material Science & Engineering Department
University of Utah

Salt Lake City, UT 84112, USA

(Submitted 6/00, Revised 10/00)

ABSTRACT
The energy release rate for propagation of a debond in a single-fibre pull out test was derived
analytically. The key finding was that an accurate analysis can be derived by a global energy
analysis that includes effects of residual stresses and interfacial friction but does not need to include
the details of the stress state at the interfacial crack tip. By comparison to finite elements analysis,
it was verified that the analytical results are very accurate provided the debond tip is not too close
to either end of the specimen. By casting the results in terms of net-specimen stress, it was possible
to derive a general energy release rate result that applies to both the pull-out test and the related
microbond test. The energy release rate expressions can be used to determine interfacial fracture
toughness from single-fibre pull-out tests or microbond tests.

KEYWORDS: Pull-Out Test, Fracture Mechanics, Energy Release Rate, Debonding, Microbond
Test, Residual Stresses, Friction.

1. INTRODUCTION
In a previous paper [1] the problem of a propagating fibre/matrix debond in a microbond specimen [2] was
considered. Despite the complexity of the stresses around interface cracks, it was shown that the details of
those crack tip stresses are normally not needed for deriving the energy release rate for debond propagation.
The crack-tip stresses only matter when the debond tip is near either end of the specimen. For all other
debond lengths, it is possible to derive an analytical expression for energy release rate by consideration only of
boundary conditions, frictional stresses on the interface crack, and far-field mechanical and thermal stresses.
The resulting energy release rate was verified by finite element analysis to be very accurate over almost the
entire range of debond lengths. That energy release rate analysis was used to develop the microbond test
into a fracture mechanics method for determining the mode II toughness of the fibre/matrix interface. It
was found that both friction and residual stresses are important effects and must be included to determine
the true interfacial fracture toughness [1].

A single-fibre test similar to the microbond test is the single-fibre, pull-out test [3]. In this paper, the
methods of [1] were applied to the pull-out test. By using similar approximations, it was possible to derive
an analytical expression for energy release rate for debond growth as a function of debond length including
both the effects of interfacial friction and residual thermal stresses. Comparison to finite element analysis
showed that this new result is very accurate except when the debond tip is near the point where the fibre
enters the matrix or near the end of the embedded fibre length. The energy release rate expression can thus
be used to deduce fracture toughness results from pull-out tests.

The analyses for the microbond test and the pull-out test are very similar, but there are two important
differences. First, in the microbond test, the fibre is pulled while the top of the matrix is restrained. The
force on the fibre is balanced by a restraining force on the matrix (see Fig. 1A). The net stress on the free
droplet below the loading point is zero. In contrast, in the pull-out test the fibre is pulled while the matrix
droplet is typically restrained on the opposite end (see Fig. 1B). This loading from both ends leads to a
non-zero net stress throughout the specimen. By casting some terms in the analysis of this paper using net
stress, it was possible to derive a general energy release rate expression that applies to both microbond and

Advanced Composites Letters, Vol. 9, No. 6, 2000 373



John A. Nairn

Matrix

Fiber

CBA

le

lf

lm

σd

σd vf

R

Fig. 1.: A. Microbond test geometry. B. Typical single-fibre, pull-out test with the fibre embedded in the top of a
hemispherical droplet of radius R. lf , le, and lm are the lengths of free fibre, embedded fibre, and free matrix,

respectively. C. The conversion of the embedded fibre zone to equivalent, concentric fibre and matrix cylinders. The
radius of the matrix cylinder is chosen to match the total volume within the embedded fibre zone.

pull-out specimens. The net stress terms appear for the pull-out test, but are absent for the microbond test.
Thus, the general expression derived here includes the results of [1] as a special case.

The second difference between microbond and pull-out tests is the amount of matrix material used.
Microbond specimens typically use a small amount of matrix while pull-out tests use much more matrix.
There are two terms in the final energy release rate analysis that depend on the rate of stress transfer between
the matrix and the fibre. In the microbond test, these stress-transfer terms can be determined sufficiently
accurately by shear-lag methods [1, 4]. In the pull-out test, the shear-lag methods have to be modified
or replaced to get good stress-transfer results. The stress-transfer terms are only important when there is
significant friction on the interface or when the total embedded fibre length is small. If friction is low and
the embedded fibre length is long, the energy release rate in both the microbond test and in the pull-out
test can be determined without need for any stress-transfer analysis.

2. THEORY
Figures 1 and 2 show a reduction of a real pull-out specimen to idealized coordinates. First, the restraint on
the bottom of the matrix is replaced by a uniform traction that balances the traction applied to the top of
the fibre. Second, the matrix region surrounding the embedded fibre is replaced by an equivalent cylinder of
matrix. The radius of the matrix cylinder is chosen to preserve the total amount of matrix material within
the zone of the embedded fibre (see Fig. 1). Finally, because the free fibre zone (of length lf ) and the free
matrix zone (of length lm) are under constant-traction, they release no energy as the debond propagates.
The energy release rate analysis can thus focus on the concentric cylinder model in Fig. 2. The fibre is loaded
by a stress of σd while the opposite end of the specimen is loaded by a uniform stress of vfσd where vf is
the fibre volume fraction in the equivalent cylinder model of the embedded fibre zone. The stress σe shown
on the bottom of the fibre is the actual internal stress on the end of the embedded fibre.

Using the general composite fracture mechanics methods from [5] and applying them to the geometry in
Fig. 2 using the methods of [1], the exact energy release rate for debond growth can be written as

G(a) =
rf
4

{
σd

d

da

(
〈wf (a)〉 − 〈w(a− le)〉

)
− k d

da

∫ a

0

(
〈wf (z)〉 − 〈wm(z)〉

)
dz
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Fig. 2.: An equivalent, concentric-cylinder model for the embedded fibre zone of a single-fibre pull-out specimen.
The origin of the z axis is placed at the debond tip. The net stress of σ0 = vfσd is applied to the bottom of the
specimen as a uniform traction. The actual stress on the end of the embedded fibre internal to the specimen is

designated by σe.
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)} (1)

Here the z-axis origin has been placed at the tip of the debond (see Fig. 2), a is the length of the debond,
rf is the fibre radius, 〈wf (a)〉 is the average axial fibre displacement on the top of the specimen, 〈w(a− le)〉
is the average axial displacement at the bottom of the specimen, k = 2τf/rf is a friction term related to the
absolute value of the interfacial friction stress (τf ), 〈wf (z)〉 and 〈wm(z)〉 are the average fibre and matrix
axial displacements as a function of position within the debond zone, le is the embedded fibre length, ∆T is
the difference between the specimen temperature and the stress-free temperature, αA and αT are the axial
and transverse thermal expansion coefficients of the fibre (which is assumed to be transversely isotropic),
αm is the thermal expansion coefficient of the matrix (which is assumed to be isotropic), vf and vm are the

volume fractions of the fibre and matrix in the equivalent cylinders, and σ
(i)
jj are phase-averaged stresses in

the fibre or matrix [1, 5].
There are two changes between (1) and the corresponding result for the microbond test [1]. First, the term

involving 〈w(a− le)〉 arises from the tractions at the bottom of the specimen; the corresponding term in the
microbond analysis involves the matrix displacement at the top of the specimen. Second, the friction term
arises from frictional work on the interface. The term here has already been simplified using approximations
introduced later in [1]. The two approximations are to assume that the magnitude of the friction stress,
τf , is constant over the entire interface and to assume that the amount of sliding at the interface can be
approximated by the difference in average axial displacements in the fibre and the matrix. Although we
use the term “friction” for the interfacial shear stress, the use of a constant τf over the debond zone is not
modeling Coulomb friction. We used a constant friction stresses as an approximation to friction in order to
get an analytical result. A rigorous representation of Coulomb friction requires numerical calculations [6].
Furthermore, there is evidence that interfacial shear stress on debonds in pull-out tests may not arise from
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Coulomb friction. In linear-elastic Coulomb friction, the friction stress should be proportional to the radial
stress which must be proportional to the axial load. Raman experiments on pull-out specimens, however,
show that the shear stress in the debond zone is not proportional to applied load and is often roughly
constant [7]. A constant interfacial shear stress is thus used here as an approximate model for frictional
loading and as a tool to account for other sources of interfacial shear stress that may not be due to Coulomb
friction.

Within the debond zone (0 < z < a), the average axial and transverse stresses in the fibre and matrix
can be written as〈

σ(f)
zz (r, z)

〉
= σd + k(z − a) and

〈
σ(m)
zz (r, z)

〉
= −vfk(z − a)

vm〈
σ(f)
rr (z) + σ

(f)
θθ (z)

〉
= 0 and

〈
σ(m)
rr (z) + σ

(m)
θθ (z)

〉
= 0

(2)

The average axial stress in the fibre consists of the applied stress, σd, reduced by stress transfer to the matrix
through friction at the interface (see [1] but note that that paper has a misprint in the sign of the k term.
Despite that misprint, the remaining equations in that paper are correct). The fibre stress decreases from
σd where the fibre enters the matrix (z = a) to σd − ka at the debond tip (z = 0). This analysis assumes
that friction is low enough that only partial stress transfer occurs in the debond zone. In other words, this
analysis requires ka < σd. The average axial matrix stress is determined by force balance. Notice that the
net axial stress is

σ0 = vf

〈
σ(f)
zz (r, z)

〉
+ vm

〈
σ(m)
zz (r, z)

〉
= vfσd (3)

In contrast, σ0 = 0 in the microbond analysis. The radial and hoop stresses are complicated, especially near
the debond tip. As long as the debond tip is not too close to either end, however, the complicated radial
and hoop stresses can be expected to remain constant in magnitude but to propagate along with the crack.
When evaluating energy release rate by taking derivatives as a function of debond length, such constant
stresses will drop out. Thus it assumed that the average transverse stresses in the debond zone are zero.

Within the intact zone (a− le < z < 0), the average axial and transverse stresses in the fibre and matrix
can be written as [1] 〈

σ(f)
zz (z)

〉
= ψ∞ + (σe − ψ∞)F (z − a+ l) + (σd − k a− ψ∞)F (−z)〈

σ(f)
rr (z) + σ

(f)
θθ (z)

〉
= 2σ∞〈

σ(m)
zz (z)

〉
=

vf

(
σd −

〈
σ

(f)
zz (z)

〉)
vm〈

σ(m)
rr (z) + σ

(m)
θθ (z)

〉
= −2vfσ∞

vm

(4)

Here ψ∞ and σ∞ are the axial fibre stress and interfacial radial stress for infinitely long concentric cylinders
subjected to net axial stress σ0 = vfσd and temperature differential ∆T . The function F (z) is the solution
to an underlying stress-transfer problem; it is the average axial fibre stress in concentric cylinders subjected
to unit normal stress on the fibre and a balancing −vf/vm stress on the matrix, both at z = 0. Analogous
to the analysis in the debond zone, it was assumed that any complicated radial and hoop stresses associated
with the debond tip drop out when evaluating energy release rate. The remaining average transverse stresses
are those associated with far-field transverse stresses in a concentric cylinder model [1]. The average axial
stress in the fibre is the superposition of three problems - far-field fibre stress plus (σe −ψ∞) at the bottom
of the fibre plus (σd−k a−ψ∞) at the debond tip. The axial stresses are identical to the results in [1] except
for the new σe term and the addition of the vfσd net stress term to the matrix axial stress.

Evaluation of energy release rate using (1) requires evaluation of phase average stresses and average axial
displacements. The required phase-averaged stresses in terms of average stresses can be evaluated using the
above results and

σ
(m or f)
ij =

1
le

∫ a

−(le−a)

〈
σ

(m or f)
ij

〉
dz (5)

The required average axial displacements can be evaluated by integrating the axial strains:

〈wf (z)〉 =
∫ z

0

〈
ε(f)
zz (u)

〉
du and 〈wm(z)〉 =

∫ z

0

〈
ε(m)
zz (u)

〉
du (6)
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The average strains can be found from

〈
ε(f)
zz (u)

〉
=

〈
σ

(f)
zz (u)

〉
EA

−
νA

〈
σ

(f)
rr (u) + σ

(f)
θθ (u)

〉
EA

+ αA∆T

〈
ε(m)
zz (u)

〉
=

〈
σ

(m)
zz (u)

〉
Em

−
νm

〈
σ

(m)
rr (u) + σ

(m)
θθ (u)

〉
Em

+ αm∆T

(7)

where EA is the axial modulus of the fibre and Em is the modulus of the matrix. The specimen displacement
at the bottom is found by averaging the fibre and matrix displacements:

〈w(a− le)〉 = vf 〈wf (a− le)〉+ vm 〈wm(a− le)〉 (8)

Finally, by an exact elasticity analysis for two infinitely-long concentric cylinders, the far field stress terms
can be written as

ψ∞ = −C13σ0

C33
− D3∆T

C33
and σ∞ =

vmσd
A0

(
C13A3

C33
− νm
vmEm

)
+
vm∆T
vfA0

(
A3D3

C33
− (αT − αm)

)
(9)

where the constants Ai, D3, and Cij depend only on fibre and matrix properties and are defined in the
Appendix [8].

The above results can be substituted into (1) leading to a closed-form expression for energy release rate
for debond growth as a function of specimen geometry and loading terms σd, ∆T , and k. The resulting
expression (which is not given here) is very complex, but many terms are typically negligible in polymer-
matrix composites. The key next step is rewrite the results in terms of the effective axial modulus, Ec,
and effective thermal expansion coefficient, αc, of an infinitely-long concentric fibre/matrix cylinder model.
Writing the far-field, fibre axial strain in terms of effective properties gives

vfσd
Ec

+ αc∆T =
ψ∞
EA
− 2νAσ∞

EA
+ αA∆T (10)

Substituting the results for ψ∞ and σ∞ in (9) into (10) and equating the mechanical and thermal parts leads
to exact elasticity results for Ec and αc which can be written as

Ec = vfEA + vmEm + E∗c

αc =
αAvfEA + αmvmEm

Ec
+ α∗c

(11)

The first terms in these results are the simple rule-of-mixtures results for axial modulus and axial thermal
expansion. The second terms are extra terms that arise in the exact analysis of concentric cylinder models [9,
10]. They are exactly zero when the Poisson ratio of the fibre and the matrix are equal (νA = νm). For
typical polymer-matrix composites, they are much smaller than the rule-of-mixtures terms and therefore can
be neglected.

Rewriting the complex expression for G(a) mentioned above in terms of Ec and αc, substituting the
results in (11), and ignoring all terms involving E∗c and α∗c , the energy release rate for debond growth in the
single-fibre, pull-out test can be written as:

G(a) =
rf
2

{
C33sσ̄

2 + 2D3sσ̄∆T +
(
D2

3

C33
+
vm(αT − αm)2

vfA0

)
∆T 2

−
[
σ0

2

(
1
EA
− 1
Em

)
+D3s∆T

] [
k CT (a)−

(
σ̄ +

2D3∆T
C33

+ σe −
σ0

2C33svmEm

)
C ′T (a)

]}
(12)

where σ̄ is a reduced debonding stress which is defined by

σ̄ = σd − k a−
σ0EA

vfEA + vmEm
(13)
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and CT (a) is a cumulative stress-transfer function defined by:

CT (a) =
∫ le−a

0

F (z) dz (14)

The remaining constants, Ai, Di, and Cij , are defined in the Appendix. Equation 12 has been written with
terms involving the net specimen stress, σ0 = vfσd, and the stress at the end of the embedded fibre, σe. For
the microbond test, both these stresses are zero. Thus, (12) reduces exactly to the microbond result in [1]
by setting σ0 = σe = 0. Finally, the result can be simplified further by making one additional assumption
about the stress at the end of the embedded fibre, σe. Here we assume that the fibre stress in the pull-out
test reaches the far-field fibre stress or ψ∞. Furthermore, using the approximation that E∗c = α∗c = 0, ψ∞
can be rewritten as

σe = ψ∞ ≈
σ0

2C33svmEm
− D3∆T

C33
(15)

In contrast, for the microbond test, the end of the fibre is unloaded and thus σe = 0. Substituting both σe
assumptions into (12) the energy release rate for debond growth in both the pull-out test and the microbond
test can be written as

G(a) =
rf
2

{
C33sσ̄

2 + 2D3sσ̄∆T +
(
D2

3

C33
+
vm(αT − αm)2

vfA0

)
∆T 2

−
[
σ0

2

(
1
EA
− 1
Em

)
+D3s∆T

] [
k CT (a)−

(
σ̄ +

(1 +m)D3∆T
C33

)
C ′T (a)

]}
(16)

where m is a flag that is m = 0 for the pull-out test but m = 1 for the microbond test. In many cases, it
is found that D3 ≈ D3s and C33 ≈ C33s, but some sample calculations showed differences of over 10% are
possible. There is little incentive to introduce these extra approximations because it is already easy to make
calculations using (16).

Two interesting limits of (16) are when the embedded fibre length is long and when the interface is
frictionless. For long embedded fibres, the function F (z) will decay from F (z) = 1 at z = 0 to F (z) = 0 long
before the end of the bonded interface zone at z = le−a. Clearly, this limit implies CT (a) is a constant which
further implies that C ′T (a) = 0. Writing the constant as CT (a) = 1/β (for reasons that become apparent
below), the long-fibre limiting result is

G∞(a) = lim
le→∞

G(a) =
rf
2

{
C33sσ̄

2 + 2D3sσ̄∆T +
(
D2

3

C33
+
vm(αT − αm)2

vfA0

)
∆T 2

− k

β

[
σ0

2

(
1
EA
− 1
Em

)
+D3s∆T

]}
(17)

This result reduces to the long-fibre limit in [1] for the microbond test which has σ0 = 0 and m = 1 (but
note that there is sign error in the k/β term in the long-fibre limit in [1] even though the full equation for
G(a) in that paper is correct). The frictionless limit for any fibre length or for long fibre lengths can easily
be found by setting k = 0 in (16) or (17), respectively. Note that for frictionless interfaces and long fibres
that all terms involving CT (a) and C ′T (a) drop out. In other words, for this special case, G∞(a) can be
determined without the need for any stress analysis to find CT (a).

3. RESULTS

The accuracy of (16) can be checked by comparison to finite element calculations. To get explicit results,
however, a result for the stress-transfer function CT (a) is needed. In real experiments, CT (a) could be
determined by experiments such as by Raman spectroscopy [7]. For comparison to linear-elastic, finite
element calculations, it is better to determine CT (a) by elasticity analysis of the pull-out test. Here it was
found that as long as vf is not too low, that CT (a) can be found with sufficient accuracy by a shear-lag
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analysis. From [1], the relevant results are:

CT (a) =
1
β

[cothβ(le − a)− cschβ(le − a)] (18)

C ′T (a) = −1
2

sech2

(
β(le − a)

2

)
(19)

where β is the shear-lag parameter defined by [4, 11, 12]

β2 =
2

r2
fEAEm

 EAvf + Emvm
vm

4GA
+ 1

2Gm

(
1
vm ln 1

vf − 1− vf
2

)
 (20)

where GA and Gm are the axial shear-modulus of the fibre and the shear modulus of the matrix. Note that
this shear-lag parameter is different than the Cox parameter [13] commonly quoted in the literature. The
Cox parameter is incorrect while the parameter in (20), originally derived by Nayfeh [12], has been shown to
give good results provided the fibre volume fraction is not too low [4]. In the long-fibre limit, CT (a)→ 1/β
and C ′T (a) → 0; thus an alternate view of the shear-lag parameter is that it is analogous to the inverse of
the cumulative stress transfer function defined here. In the previous section, G∞(a) was written in terms of
β. In a shear-lag analysis, this β is the shear-lag parameter. Equation 17, however, is not a shear-lag result.
Any alternate stress-analysis can be used to find the constant CT (a) which can then be set equal to 1/β and
substituted into (17) to get a long-fibre, limiting result for that stress-analysis method.

Figure 3 gives a comparison between the analytical results and finite element analysis. In brief, the
comparison was for glass fibres (EA = ET = 73, 000 MPA, νA = νT = 0.17, αA = αT = 5 ppm/◦C,
GA = 31, 197 MPa) embedded in a polymer matrix (Em = 3300 MPa, νm = 0.34, αm = 48 ppm/◦C,
Gm = 1231 MPa). The fibre radius was rf = 10.5 µm, had an embedded length of 420 µm, and specimen
volume fraction of vf = 1%. The specimen was loaded with σd = 400 MPa, thermal load ∆T = −100◦C, and
interfacial friction of τf = 1 MPa. The finite element analysis used axisymmetric, 8-noded, isoparametric
elements. The energy release rate as a function of debond length was found by a modified crack closure
technique [15]. The analytical results are for the full analysis in (16) and for the long-fibre limit in (17). The
equations in this paper give the total energy release rate; the finite element results show that the total energy
release rate is essentially a pure mode II energy release rate. The full analysis and the finite element analysis
agree extremely well provided the debond length is neither too long nor too short. Many approximations
used here relied on the debond tip not being too close to either end. The results in Fig. 3 show that when
that condition holds the analytical result is very accurate. When the debond tip is near either end, the finite
element analysis and the analytical result disagree. It is not certain, however, that the finite element results
should be viewed as correct in these extremes. The finite element analysis has is own set of problems when
the debond tips get too close to boundaries, The analytical solution, which is smoother, may even provide
a better representation of the energy release rate as a function of debond length than the finite element
analysis. This issue could be resolved by more refined finite element analysis.

The long-fibre limit agrees well with the full analysis and with finite element analysis only for the shorter
debond lengths. As the debond length increases, the term le−a gets smaller and the long-fibre limit becomes
increasingly less accurate. From (18), it is apparent that the long-fibre limit requires

le − a >>
1
β

(21)

For these sample calculations, 1/β = 28.3 µm. The long-fibre limit in Fig. 3 is only accurate when le − a >
300 µm or when le − a is about an order of magnitude larger than β.

4. EXPERIMENTAL CONSIDERATIONS
The volume fractions used in Ai, Di, and Cij refer to the equivalent fibre volume fraction within the zone
containing the embedded fibre. A common specimen geometry in single-fibre pull out tests is to place a
large, hemispherical droplet on a surface and embed the fibre into the top of the hemisphere [16] (see Fig. 1).
By equating the volume of the specimen above the bottom of the embedded fibre (the zone above the dotted
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Fig. 3.: A sample calculation of G(a) for a single-fibre pull out test of a glass fibre in a polymeric matrix with the
fibre volume fraction of vf = 1%. The “equation” results were calculated from (16); the “long-fibre limit” results

were calculated from (17); the dashed line is the result of finite element calculations.

line in Fig. 1) to the volume of the equivalent cylinder, the effective matrix outer radius can be calculated
from:

rm =

√
le

(
R− le

3

)
(22)

The effective fibre volume fraction is vf = r2
f/r

2
m. In typical pull-out tests, R >> rf , le and the effective

fibre volume fractions are very low — typically vf ∼ 0.03% [17]. For volume fractions that low, all constants
can be evaluated with 2% accuracy simply by using vf = 0 which dispenses of the need for estimating an
effective fibre volume fraction. The insensitivity of the constants to volume fraction at low fibre volume
fraction suggests the analysis will be insensitive to the details of the matrix boundary. In other words, the
effective cylinder analysis is probably adequate.

Although Ai, Di, and Cij can be stably evaluated for any fibre volume fraction, the same situation does
not hold for the shear-lag parameter β, which is one method of finding CT (a). The shear-lag β approaches
zero as vf approaches zero. In other words, shear-lag analysis breaks down when the fibre volume fraction is
too low. Some comparisons between shear-lag analysis and finite element analysis for high-modulus fibres in
a polymeric matrix suggest that shear-lag analysis works for fibre volume fractions down to about vf = 1%,
or maybe slightly lower for very stiff fibres or very compliant matrices [4]. If shear-lag analysis is used to
find CT (a) at lower vf , the only option is to calculate β using yet another effective fibre-volume fraction that
characterizes stress transfer into the fibre. This new vf can be determined by other elasticity analyses or by
experiments [4]. Note that this new effective fibre volume fraction for shear-lag analysis of stress transfer
should only be used for finding β; the fibre volume fraction used for evaluating Ai, Di, and Cij should be
derived from the actual specimen as described above. Furthermore, if CT (a) is evaluated by a non-shear-lag
method that works at all volume fractions, than it can derived from actual specimen dimensions as well,
eliminating the need for the shear-lag β. For example, if CT (a) is measured using Raman experiments [7], it
can be directly determined without β by evaluation of the average fibre stress in the intact zone (see Fig. 2).
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The only complication is that Raman experiments measure actual fibre stress while CT (a) is defined from a
normalized stress analysis. From the average stresses in the intact zone in (4), it is easy to show that CT (a)
can be calculated from Raman experiments using

CT (a) = (le − a)


〈
σ

(f)
zz,intact

〉
− ψ∞

σ1 − ψ∞ + σ2 − ψ∞

 (23)

where
〈
σ

(f)
zz,intact

〉
is the average axial fibre stress measured in the intact zone, and σ1 and σ2 are the

measured axial fibre stress at the beginning and the end of the intact zone. The far-field stress ψ∞ could be
measured far from any fibre end or calculated using (9) or perhaps sufficiently accurately by (15).

To evaluate interfacial fracture toughness from experimental pull-out results, one substitutes those results
into (16). The required experimental results are failure stress (σd), the thermal stress term (∆T ), interfacial
friction (τf ), embedded fibre length (le), fibre radius (rf ), effective matrix radius (rm from (22) and hemi-
sphere radius R or some other method for other specimen geometries), debond length (a), and, if shear-lag
analysis is used, an effective fibre volume fraction solely for calculation of β. Most of these parameters are
readily available for pull-out results, but two require special mention. First is the debond length. The energy
release rate is a function of debond length and becomes a strong function of debond length when there is
interfacial friction. Thus, to derive the correct toughness requires knowledge of both debond load and initial
debond length. The best results require observations of debond length during the experiments. A possible
alternative is to record just the initiation of debonding and calculate toughness using a = 0. In typical
pull-out tests, however, initiation of debonding occurs well below the peak load [18]. In other words, data
that only records peak force can not be analyzed unless debond length at that load was also recorded.

Second is interfacial friction. The energy release rate depends on the amount of interfacial friction.
Friction becomes more important as the debond gets longer, but it even influences the toughness for zero
debond length. The true interfacial toughness can only be determined if some method is used to determine
the actual amount of friction on the debonded interface. If friction is ignored, the toughness calculated by
(16) will be too large. All calculations from experimental results can easily be done in spread sheet software.
A Microsoft Excel spread sheet for such calculations can be downloaded from the Internet [19] or obtained
from the author.
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APPENDIX
The defined Ai, Cij , and Di required for the calculations described in this paper are listed below:

vfA0 =
vm(1− νT )

ET
+
vf (1− νm)

Em
+

1 + νm
Em

(24)

A3 = −
(
νA
EA

+
vfνm
vmEm

)
(25)

C33s =
1
2

(
1
EA

+
vf

vmEm

)
(26)

C33 = C33s −
vmA

2
3

vfA0
(27)

C13 = − 1
2vmEm

− νmA3

vfA0Em
(28)

D3s =
1
2

(αA − αm) (29)

D3 = D3s −
vmA3

vfA0
[αT − αm] (30)
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Here EA and ET are the axial and transverse moduli of the fibre, νA and νT are the axial and transverse
Poisson’s ratios of the fibre, Em is the modulus of the matrix, νm in the Poisson’s ratio of the matrix, αA and
αT are the axial and transverse thermal expansion coefficients of the fibre, and αm is the thermal expansion
coefficient of the matrix. The fibre is treated as transversely isotropic with the axial direction along the
axis of the fibre and the matrix is isotropic. The results for isotropic fibres are easily generated be setting
EA = ET = Ef , νA = νT = νf , and αA = αT = αf where subscript f indicates thermomechanical properties
of an isotropic fibre.
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