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Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical
systems. While there are already many successful applications ranging from medicine to paleoclima-
tology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret
an ε-recurrence network as a discrete subnetwork of a “continuous” graph with uncountably many
vertices and edges corresponding to the system’s attractor. This step allows us to show that various
statistical measures commonly used in complex network analysis can be seen as discrete estimators
of newly defined continuous measures of certain complex geometric properties of the attractor on
the scale given by ε. In particular, we introduce local measures such as the ε-clustering coefficient,
mesoscopic measures such as ε-motif density, path-based measures such as ε-betweennesses, and
global measures such as ε-efficiency. This new analytical basis for the so far heuristically motivated
network measures also provides an objective criterion for the choice of ε via a percolation threshold,
and it shows that estimation can be improved by so-called node splitting invariant versions of the
measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as
those of the Bernoulli and logistic maps, periodic and two-dimensional quasi-periodic motions, and
for hyperballs and hypercubes, by deriving analytical expressions for the novel measures and com-
paring them with data from numerical experiments. More generally, the theoretical framework put
forward in this work describes random geometric graphs and other networks with spatial constraints
which appear frequently in disciplines ranging from biology to climate science.

PACS numbers: 05.45.Tp, 89.75.Hc, 05.45.-a

I. INTRODUCTION

Analogies are a fundamental motor of innovation in
physics and other disciplines, since they allow the trans-
fer of theoretical insights, results and techniques from
one field to the other. In the last years, complex network
theory has been particularly successful in providing uni-
fying concepts and methods for understanding the struc-
ture and dynamics of complex systems in many areas of
science, ranging from power grids over social networks to
neuronal networks [1–4]. Similarly, nonlinear time series
analysis aims to gain insights on a wide variety of nat-
ural, technological, and experimental dynamical systems
drawing on a generic body of theory and methods [5].

By exploiting analogies in the structure and descrip-
tion of complex networks and dynamical systems, a num-
ber of new network-based techniques for nonlinear time
series analysis have been proposed recently [6]. The first
class of these methods makes use of graph representations
of certain similarity relationships between state vectors
or groups of state vectors (e.g., cycles) in phase space. It
includes transition networks based on a coarse-graining
of phase space [7], cycle networks [8], correlation net-
works [9], k-nearest-neighbor [10], and adaptive nearest
neighbor networks [11, 12] as well as ε-recurrence net-
works [13, 14]. The latter three techniques harness the
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fundamental analogy between the Poincaré recurrence
structure [15] of a time series in phase space, which is
commonly represented by a binary recurrence matrix and
allows us to recover basic dynamical invariants of the
underlying system [16], and the binary adjacency ma-
trix describing a complex network. Other methods such
as visibility graphs [17] work in the time domain and
focus on studying stochastic properties of time series.
Aside from these network-based approaches for investi-
gating (possibly multivariate) time series from isolated
dynamical systems, efforts have been spent for develop-
ing techniques for studying fields of time series such as
functional brain networks [18–20] in the neurosciences or
climate networks [21–24] in climatology. In summary, all
methods mentioned above propose a mapping from the
time series to the network domain and then proceed to
interpret the statistical properties of the resulting (usu-
ally complex) network in terms of the underlying system’s
dynamical properties.

While these interpretations are mostly based on empir-
ical findings for paradigmatic model systems and heuris-
tic arguments, only a few rigorous results are available.
So far, Lacasa et al. have pointed out a relationship
between the scaling exponent of the degree distribution
pk(k) ∝ k−γ in visibility graphs constructed from frac-
tional Brownian motion and the Hurst exponent [25].
Furthermore, close relationships between the transitivity
properties (network transitivity and local clustering co-
efficients) [26] as well as the degree distribution’s power-
law scaling exponent γ [27] of ε-recurrence networks and

ar
X

iv
:1

20
3.

47
01

v1
  [

ph
ys

ic
s.

da
ta

-a
n]

  2
1 

M
ar

 2
01

2

mailto:donges@pik-potsdam.de


2

the (fractal) global and local dimensionality of the at-
tracting set underlying the time series have been found.
Constituting random geometric graphs [28], ε-recurrence
networks represent the geometry induced by the time se-
ries in phase space in a simple and well-defined way. This
enabled Donner et al. [14, 26] to define continuous tran-
sitivity properties depending solely on the geometry of
the (attracting) set S and the probability density func-
tion p(x). These can in turn be calculated analytically for
paradigmatic model systems with smooth and self-similar
geometry and are approximated by the corresponding
discrete ε-recurrence network measures. Notably, most
kinds of time series networks proposed so far are spatial
networks [29], since vertices are embedded either in phase
space or on the time axis, implying that general results
obtained for this class of networks are applicable to time
series networks as well.
Recently, ε-recurrence networks have been demon-

strated to be a particularly useful tool in diverse applica-
tions of nonlinear time series analysis ranging from model
systems [6, 13, 14, 26, 30–36] via experimental data [37–
40] to recent and paleo-climate records [6, 13, 41–43] as
well as financial time series [31]. They allow us to un-
cover complex bifurcation scenarios [13, 41] and to re-
liably distinguish between chaotic and non-chaotic dy-
namics [33]. Furthermore, the local and global transi-
tivity characteristics of ε-recurrence networks have been
shown to enable us to trace unstable periodic orbits [14]
and to define alternative notions of fractal dimension [26]
independently of earlier approaches. An important ad-
vantage of nonlinear ε-recurrence-network-based time se-
ries analysis is that it performs well with significantly
shorter time series (O(102) data points [13, 33, 41]) than
required by classical techniques like estimating the max-
imum Lyapunov exponent from data [5, 44]. This ren-
ders ε-recurrence networks readily applicable to the anal-
ysis of non-stationary real world data. The method has
also been applied successfully to time series with irreg-
ular sampling and/or uncertain timing of observations
that are commonly found in the geosciences or in astro-
physics [41, 42].
An ε-recurrence network is completely defined by its

adjacency matrix Aij(ε) which is obtained from a (mul-
tidimensional) time series x(ti), i = 1, . . . , N , by

Aij(ε) = Θ (ε− ‖x(ti)− x(tj)‖)− δij , (1)

where Θ(·) is the Heaviside function, ε a threshold used
for defining the neighborhood of a state vector x(ti), ‖ · ‖
some norm, and δij denotes Kronecker’s delta introduced
to avoid self-loops in the network. Given univariate ob-
servational or experimental time series, it is usually nec-
essary to reconstruct the corresponding system’s trajec-
tory in some higher dimensional phase space to recover
its recurrence structure reliably (e.g., by time-delay em-
bedding [45, 46]).
Within the recurrence network, vertices represent ob-

servations or state vectors in phase space, while edges
indicate a close proximity between two state vectors.

Recurrence networks and their statistical properties are
related, but complementary to the established concepts
of recurrence plots (the recurrence matrix is given by
Rij(ε) = Aij(ε)+δij) and recurrence quantification anal-
ysis (RQA) [16]. In contrast to RQA, which considers
temporal dependencies between observations in form of
diagonal and vertical line structures in the recurrence
plot, recurrence network analysis discards all temporal
information and solely quantifies the geometry of the un-
derlying set S (e.g., an attractor) [14, 41].

Given the diverse and successful applications of ε-
recurrence network analysis reported in the literature,
it is important to establish a firm theoretical founda-
tion for advancing the understanding of the method.
Building on earlier work [26], we propose here an an-
alytical framework for ε-recurrence network analysis of
time series encompassing neighborhood-based transitiv-
ity measures, mesoscopic measures relying on network
motifs [47], path-based network characteristics as well as
spectral and random walk-based measures. Specifically,
our theory describes all graph-theoretical recurrence net-
work quantifiers that have been used in the literature so
far [14]. Beyond forming a solid theoretical basis for this
modern nonlinear approach to time series analysis and
fostering its detailed understanding in a way compara-
ble to that of standard linear time series analysis [48],
our analytical framework opens several avenues for prac-
tically improving the method when dealing with finite
(real-world) time series: (i) We are able to obtain closed-
form analytical results for paradigmatic model systems
with stochastic (uniform and Gaussian noise) and deter-
ministic (periodic, quasi-periodic, and chaotic) dynamics.
These can in turn be harnessed as a benchmark for the
discrete standard estimators from complex network the-
ory which have been employed so far [14], e.g., for assess-
ing the estimators’ bias and variance. (ii) This bottom-
up approach allows us to design improved, weighted sta-
tistical estimators [49] which may be more appropriate
in specific situations. (iii) Moreover, our framework en-
ables us to derive rigorous bounds for feasible values of
the recurrence threshold ε, the most important param-
eter of the method, the choice of which is critical when
analyzing finite (experimental) time series [30]. We will
argue in Sec. V that the concepts and measures developed
in this paper can be readily generalized to describe the
structure of a wider class of spatial networks, e.g., ran-
dom networks with an arbitrary prescribed edge length
distribution pl(l).

This paper is organized as follows: We introduce a
continuous framework for recurrence network analysis in
Sec. II. After reviewing the corresponding discrete esti-
mators (Sec. III), we present examples ranging from peri-
odic and quasi-periodic dynamics and higher dimensional
symmetric sets over chaotic maps to stochastic processes
and compare some of the results to discrete estimates
(Sec. IV). We conclude with a discussion of these achieve-
ments (Sec. V).
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FIG. 1: Illustration of a set S (gray), where g(x, y) denotes
the geodesic distance between x, y ∈ S.

II. CONTINUOUS FRAMEWORK

A. General setting

Let us consider a path-connected Lebesgue-measurable
subset S ⊂ X of anm-dimensional compact smooth man-
ifold X with a non-vanishing continuous probability den-
sity function p : S → (0,∞) with

∫

S
dmx p(x) = 1.

We will use the abbreviation
∫

dµ(x) =
∫

S
dmx p(x)

throughout the paper, where µ is a probability measure
on S (Fig. 1). Then we can define “continuous” equiv-
alents of all relevant graph-theoretical measures for ε-
recurrence networks which may be approximated by cal-
culating their discrete counterparts in the limit ε → 0,
N → ∞ (Sec. III). Here ε is the threshold used for net-
work construction (Eq. (1)) and N denotes the number
of data points (samples, phase space vectors, . . . ) consid-
ered. These measures capture the properties of a “con-
tinuous” network with uncountably many vertices and
edges which may be defined by a continuous analog of
the adjacency matrix, the adjacency function

A(x, y) = Θ(ε− ‖x− y‖)− δxy (2)

for all x, y ∈ S. It is important to realize that the
framework introduced in this paper is not restricted to
ε-recurrence networks alone, but may be more generally
applied to describe random geometric graphs (aka spatial
networks) [28, 50, 51] and other types of networks with
spatial constraints [29, 52, 53].
In the following we will formally define the pro-

posed continuous recurrence network measures and dis-
cuss their properties, interrelationships and interpreta-
tions (see Table I for an overview). Statements made for
the limits ε → 0 and x → y for x, y ∈ S should be under-
stood to hold for smooth S and p. We do not consider
them for fractal geometries explicitly.

B. Neighborhood-based measures

Among other interesting properties, it has been shown
recently that the local and global transitivity properties
of ε-recurrence networks measured by the local clustering
coefficient Ci and the global transitivity T , respectively,

are closely related to a certain notion of the fractal di-
mension of an underlying set S and its associated prob-
ability density p(x) with x ∈ S [26]. To capture this
theoretically, continuous versions of both measures de-
noted C(x; ε) and T (ε) have been defined together with
a continuous degree density ρ(x; ε).

1. Local measures

Definition 1. The continuous ε-degree density

ρ(x; ε) =

∫

Bε(x)

dµ(y) (3)

measures the probability that a point y randomly drawn
according to p lies in an ε-neighborhood Bε(x) = {y ∈
S : ‖x− y‖ ≤ ε} of x.

Definition 2. In turn, the continuous local ε-clustering
coefficient of any point x ∈ S,

C(x; ε) =
∫∫

Bε(x)
dµ(y) dµ(z)Θ(ε− ‖y − z‖)

ρ(x; ε)2
, (4)

is the probability that two points y and z randomly drawn
according to p are closer than ε given they are both closer
than ε to x.

Definition 3. The continuous ε-matching index
M(x, y, ε) measures the overlap of the neighborhoods of
x, y ∈ S,

M(x, y; ε) =

∫

Bε(x)∩Bε(y)
dµ(z)

∫

Bε(x)∪Bε(y)
dµ(z)

. (5)

It gives the probability that a point z drawn randomly
from Bε(x) according to p is also contained in Bε(y) and
vice versa.

For x → y, M(x, y; ε) → 1. Furthermore, M(x, y; ε) =
0 if ‖x− y‖ > 2ε.

2. Global measures

Definition 4. The continuous ε-edge density

ρ(ε) =

∫

S

dµ(x)ρ(x; ε) (6)

=

∫

S

dµ(x)

∫

Bε(x)

dµ(y)

is the expectation value of the continuous ε-degree density
ρ(x; ε).
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TABLE I: A summary of the continuous geometric properties of the set S and its associated probability density p defined in
Sec. II. See main text for formal probabilistic interpretations.

Class Name Heuristic interpretation

Neighborhood-based

Local Continuous ε-degree density (Eq. (3)) Local density

Continuous local ε-clustering (Eq. (4)) Local dimension [26]

Continuous ε-matching index (Eq. (5)) Local density gradient

Global Continuous ε-edge density (Eq. (6)) Average local density

Continuous ε-transitivity (Eq. (7)) Global dimension [26]

Continuous global ε-clustering (Eq. (8)) Average local dimension

Continuous ε-assortativity (Eq. (9)) Average local density gradient

Mesoscopic Continuous ε-motif density (Eq. (10)) Higher-order density structure/

Density anisotropy

Path-based

Local Continuous ε-closeness (Eq. (12)) } Geometric centrality
Continuous ε-efficiency (Eq. (13))

Continuous ε-shortest path betweenness (Eq. (14)) } Geometric bottleneckishness
Continuous ε-shortest path edge betweenness (Eq. (18))

Global Continuous ε-average path length (Eq. (25)) } Average separation
Continuous global ε-efficiency (Eq. (27))

ε-diameter (Eq. (32)) Geometric diameter

ε-radius (Eq. (33)) Geometric radius

Definition 5. As a global measure of geometric transi-
tivity, we define the continuous ε-transitivity of S as

T (ε) =

[
∫∫∫

S

dµ(x) dµ(y) dµ(z)Θ(ε− ‖x− y‖)×

×Θ(ε− ‖y − z‖)Θ(ε− ‖z − x‖)
]/

[
∫∫∫

S

dµ(x) dµ(y) dµ(z)Θ(ε− ‖x− y‖)×

×Θ(ε− ‖z − x‖)
]

, (7)

which is the probability that among three points x, y, z
drawn randomly according to p, y and z are closer than
ε given they are both closer than ε to x.

Definition 6. Similarly, the continuous global ε-
clustering coefficient

C(ε) =
∫

S

dµ(x)C(x; ε) (8)

is the expectation value of the continuous local ε-
clustering coefficient C(x; ε) (Eq. (4)).
Note that the above defined measures of transitivity

have been mainly considered for the supremum norm L∞
in [26].

Definition 7. Continuous ε-assortativity

A(ε) = r

(

ρ(x; ε), ρ(y; ε) | ‖x− y‖ < ε

)

(9)

gives the Pearson product-moment correlation coeffi-
cient [48] of the degree densities ρ(x; ε) and ρ(y; ε) of
all points x, y that are closer than ε to each other.

A(ε) can be considered as a measure of the smoothness
of the set S and the probability density p [14]. In the limit
ε → 0 we have A(ε) → 1.

C. Mesoscopic measures

Motifs of order α are small connected subgraphs of
α vertices that are embedded within the topology of a
complex network [47]. For combinatorial reasons, usu-
ally α < 5 is considered. Measuring motif densities is
a useful approach for quantifying higher-order neighbor-
hood relationships in complex geometries [11] and may
be seen as a generalization of the transitivity concepts
introduced above.

Definition 8. The continuous ε-motif density

Mα
β =

(

α
∏

i=1

∫

S

dµ(xi)

)

∏

(j,k)∈Eα
β

Θ(ε− ‖xj − xk‖) (10)

quantifies the frequency of occurrence of a certain recur-
rence motif of order α described by the corresponding edge
set Eα

β , where β = 1, . . . , n(α) and n(α) is the total num-
ber of distinct motifs of order α. Mα

β is the probability
that α points drawn randomly according to p are arranged
according to the recurrence motif described by Eα

β .
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For example, the density M4
⊔ of the recurrence motif ⊔

of order 4 is measured by

M4
⊔ =

(

4
∏

i=1

∫

S

dµ(xi)

)

Θ(ε− ‖x1 − x2‖)×

×Θ(ε− ‖x2 − x3‖)Θ(ε− ‖x3 − x4‖).

In contrast to the study of motifs for other general com-
plex networks [47], it is neither meaningful nor necessary
to normalize motif densities by their expectation values
for randomized networks here. The reason is that the
Mα

β already have a natural probability interpretation. To
render the results for different α more comparable, one
may consider to use relative motif densities normalized

by
∑n(α)

β=1 Mα
β .

We conjecture that motif densities as generalizations of
the continuous ε-transitivity are like the latter related to
certain notions of the dimensionality of the set S and its
associated probability density p [26]. This would allow us
to define and study a new class of motif-based measures
of dimensionality analogously to the sequence of Rényi
dimensions from dynamical systems theory [54].

D. Path-based measures

While the neighborhood-based properties defined
above describe the small-scale geometry of the set S
and probability density p, path-based measures quantify
their global geometry in terms of global geodesics (see
Fig. 2 for examples). Most of the path-based concepts
defined below do not conceptually depend on the thresh-
old ε. Nevertheless, we introduce the appropriate scal-
ing with ε into the definitions for consistency with the
corresponding discrete estimators from complex network
theory (Sec. III) and the recurrence network literature.
As in standard topological terminology, a path in S is

a continuous function f : [0, 1] → S, and its path length
l(f) ∈ [0,∞] is the supremum of

∑n
i=1 d(f(ti−1), f(ti))

over all n > 0 and all tuples 0 = t0 ≤ · · · ≤ tn = 1, where
d(·, ·) is some metric. Note that l(f) can be infinite in
which case the path is called non-rectifiable. For points
x, y, the geodesic distance g(x, y) ∈ [0,∞] is the infimum
of l(f) over all paths in S from x to y (i.e., with f(0) = x
and f(1) = y) 1. A corresponding path of this length is

1 Note that when defined in this way, g(x, y) may change discon-
tinuously under continuous changes of the probability density p.
This is because we require the geodesics to stay within S which
consists of all points x where p(x) 6= 0. When p(x) is continu-
ously changed to zero, the length of geodesics running through x

for p(x) > 0 may change abruptly once p(x) = 0 is reached, e.g.,
when x constitutes some kind of geometric bottleneck. If this be-
havior is undesirable, one may consider generalized p-weighted
notions of the geodesic distance. These could be motivated by
an analogy to the optical path length in heterogeneous and non-
isotropic media in physics, where the probability density p would
play the role of the spatially varying refractive index.

called a global geodesic or shortest curve [55]. Depending
on the geometry of S, there may be none, one, or multi-
ple distinct global geodesics connecting x and y, but in
a sufficiently well-behaved set S, there will usually be a
unique global geodesic for almost every pair x, y (Fig. 1)
and almost every metric (in particular, for the Euclidean
metric), where by “almost every” we mean as usual that
the set of exceptions has zero measure. Note that, how-
ever, for some pathological metrics global geodesics are
rarely unique, including the L1 and L∞ metrics.
To understand the reasoning behind the following def-

initions, one has to note that discrete shortest paths of
the ε-recurrence network approximate global geodesics
connecting two points x, y ∈ S for small ε and large N .
Then the shortest path length lij(ε) (the minimum num-
ber of edges that have to be traversed to reach vertex i
from vertex j [1]) approximates g(x(ti), x(tj)), i.e.,

εlij(ε) ≈ g(x(ti), x(tj)) (11)

(Fig. 1), where x = x(ti) and y = x(tj). In the limit
ε → 0, and if N → ∞ sufficiently fast, we argue in
Appendix A that indeed εlij(ε) → g(x(ti), x(tj)), inde-
pendently of which metric is used for constructing the
ε-recurrence network.

1. Local measures

Definition 9. Given that a point y is drawn randomly
according to p, continuous ε-closeness

c(x; ε) =

(
∫

S

dµ(y)
g(x, y)

ε

)−1

(12)

= ε

(
∫

S

dµ(y)g(x, y)

)−1

is the inverse expected geodesic distance of y to another
chosen point x in units of ε.

Definition 10. Similarly, continuous local ε-efficiency

e(x; ε) =

∫

S

dµ(y)

(

g(x, y)

ε

)−1

(13)

= ε

∫

S

dµ(y)g(x, y)−1

gives the expected inverse geodesic distance of y to x mea-
sured in units of ε.

Both c(x; ε) and e(x; ε) quantify the geometric close-
ness of x to any other point in S given a probability den-
sity p. Hence, points in the center of S will carry larger
values of c(x; ε) and e(x; ε) than those on its boundaries
(see Fig. 2 and below).

Definition 11. Continuous ε-shortest path betweenness

b(x; ε) =

∫∫

S

dµ(y) dµ(z)
σ(y, z;x; ε)

σ(y, z)
, (14)
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c(x;ε) e(x;ε) b
1
(x) b

2
(x;ε)

FIG. 2: Local path-based measures continuous ε-closeness c(x; ε), -efficiency e(x; ε), and -shortest path betweenness b1(x)
(based on Eq. (15)), b2(x; ε) (based on Eq. (16)) in three example sets S with a uniform density p, two convex sets (circle and
square), and a nonconvex set. Grayscale indicates the value of the measures (white: small, black: large) obtained by Monte
Carlo numerical integration using the Euclidean norm for small ε to avoid boundary effects. Note the more complex structure
of the betweenness field, displaying particularly large values (dark) at the inward corners where many shortest paths must
pass. In contrast to the path-based measures shown here, continuous ε-degree ρ(x; ε) and local ε-clustering coefficient C(x; ε)
are constant in the interior of S due to the uniform p. Variations of these measures due to boundary effects occur only closer
than ε to the boundary of S [26].

is the probability that a point x lies on a randomly chosen
global geodesic connecting two points y, z drawn randomly
from S according to p. Here, σ(y, z;x; ε) denotes the
number of times x ∈ S lies on a global geodesic between
y, z ∈ S and σ(y, z) is the total number of global geodesics
between y, z (Fig. 3).

In pathological situations, e.g., for certain open sets
S, σ(y, z) may be zero even when the geodesic distance
g(y, z) is well-defined and finite. We ignore these cases
for now.
There are several ways to formally define σ(y, z;x; ε).

Using a parametrization fκ(t) of the family of global
geodesics connecting y and z, with t ∈ [0, 1] and fκ(0) =
y, fκ(1) = z, we may write

σ1(y, z;x; ε) = σ1(y, z;x)

=

σ(y,z)
∑

κ=1

∫ 1

0

dt δ(fκ(t)− x), (15)

where δ(·) is Dirac’s multi-dimensional delta function.
Alternatively, we can include the finite ε-effect by
counting all shortest paths that pass through the ε-
neighborhood of x by setting

σ2(y, z;x; ε) =

σ(y,z)
∑

κ=1

∫ 1

0

dtΘ(ε− ‖fκ(t)− x‖). (16)

Both variants of σ(y, z;x; ε) yield different, yet qualita-
tively similar results for b(x; ε) as is illustrated in Fig. (2).

Given convex domains S, σ(y, z) = 1 always holds,
i.e., there is only one straight line connecting y and z,
parametrized by f(t) = y+t(z−y). For one-dimensional,
convex sets S and using σ1(y, z;x), continuous ε-shortest
path betweenness simplifies to

b(x) = 2

∫∫

S

dµ(y) dµ(z)Θ(x− y)Θ(z − x). (17)

Definition 12. Continuous ε-shortest path edge be-
tweenness

b(x, y; ε) =

∫∫

S

dµ(z) dµ(w)
σ(z, w;x, y; ε)

σ(z, w)
, (18)

is the probability that two points x, y both lie on a ran-
domly chosen global geodesic connecting two points z, w
drawn randomly according to p. σ(z, w;x, y; ε) counts
the number of global geodesics between z, w which con-
tain x, y.

Analogously to continuous ε-shortest path betweenness
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x
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z

x

FIG. 3: Illustration of the definition of continuous ε-shortest
path betweenness (the set S is indicated by gray shading).
(A) There are σ(y, z) = 2 global geodesics connecting y, z ∈
S, but only σ(y, z;x; ε) = 1 includes x ∈ S. (B) In this
example, x lies on all four global geodesics between x and y,
i.e., σ(y, z) = σ(y, z;x; ε) = 4.

b(x; ε), we can define this quantity as

σ1(z, w;x, y; ε) = σ1(z, w;x, y)

=

σ(z,w)
∑

κ=1

(
∫ 1

0

dt δ(fκ(t)− x)

)

×

×
(
∫ 1

0

dt δ(fκ(t)− y)

)

. (19)

Further generalizations for including the finite ε-effect
may be deduced as shown above for continuous ε-shortest
path betweenness.
For one-dimensional convex sets S and using

σ1(z, w;x, y; ε), Eq. (18) reduces to

b(x, y) = 2

∫∫

S

dµ(z) dµ(w)Θ(x− z)Θ(y − z)×

×Θ(w − x)Θ(w − y). (20)

In the limit x → y we always have b(x, y; ε) → b(x; ε).
We note that b(x, y; ε) does not require the condition
Θ(ε−‖x−y‖) as is the case for the corresponding discrete
estimator (Table II). Related generalized concepts of co-
and group betweenness have been described for discrete
complex networks [56].
For general non-pathological S we almost surely have

σ(z, w) = 1, i.e., the probability that there are more than
one global geodesics connecting z and w drawn randomly
from S according to p is zero. For example, in both
Figs. 3A and B the set of pairs z, w with σ(z, w) = 2 or
σ(z, w) = 4, respectively, is of measure zero. In these
cases, b(x; ε) and b(x, y; ε) reduce to

b(x; ε) =

∫∫

S

dµ(y) dµ(z)σ(y, z;x; ε) (21)

and

b(x, y; ε) =

∫∫

S

dµ(z) dµ(w)σ(z, w;x, y; ε). (22)

It should be noted that for general S and p, the center
of mass

X =

∫

S

dµ(x)x (23)

does not necessarily extremize c(x; ε), e(x; ε) or b(x).
However, for convex S the generalized continuous ε-
closeness

cη(x; ε) =

(
∫

S

dµ(y)

(

g(x, y)

ε

)η)−1

(24)

= εη
(
∫

S

dµ(y)g(x, y)η
)−1

can be shown to assume a global maximum at x = X for
the special case η = 2. In turn, the standard continuous
ε-closeness c(x; ε) (η = 1) is maximized at the geometric
median or Fermat-Weber point [57].

2. Global measures

Definition 13. The continuous ε-average path length

L(ε) =

∫∫

S

dµ(x) dµ(y)
g(x, y)

ε
(25)

= ε−1

∫∫

S

dµ(x) dµ(y)g(x, y).

measures the expected geodesic distance in units of ε be-
tween two points x and y drawn randomly according to
p.

From Eq. (25), the equivalence of this formulation of
continuous average path length to the intensively stud-
ied problem in probabilistic geometry [58] of finding the
expectation value of the distance between two randomly
drawn points x, y ∈ S according to the probability dis-
tribution p becomes evident. Our definitions imply the
relationship

L(ε) =
∫

S

dµ(x)c(x; ε)−1. (26)

Definition 14. Similarly, the continuous global ε-
efficiency

E(ε) =

(

∫∫

S

dµ(x) dµ(y)

(

g(x, y)

ε

)−1
)−1

(27)

= ε−1

(
∫∫

S

dµ(x) dµ(y)g(x, y)−1

)−1

.

is the inverse of the expected inverse geodesic distance
between two points x, y drawn randomly according to p
measured in units of ε.
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Here, we have

E(ε) =
(
∫

S

dµ(x)e(x; ε)

)−1

. (28)

More generally, let ∆S,p(η) be the expectation value of
a power η of the geodesic distance g(x, y) between two
points x, y ∈ S randomly drawn according to p:

∆S,p(η) =

∫∫

S

dµ(x) dµ(y)g(x, y)η. (29)

Then continuous ε-average path length and global ε-
efficiency may be expressed as

L(ε) = ε−1∆S,p(1) (30)

and

E(ε) = ε−1 (∆S,p(−1))
−1

. (31)

Definition 15. The ε-diameter

D(ε) = ε−1 sup
x,y∈S

g(x, y) (32)

and the ε-radius

R(ε) = ε−1 inf
x∈S

sup
y∈S

g(x, y) (33)

are global geometric characteristics of the set S that are
independent of p [55].

E. Further measures

To illustrate that the proposed framework can be ex-
tended in several directions, we shortly discuss spectral
and random-walk-based measures in the context of con-
tinuous recurrence networks. Motivated by the study of
eigenvector centrality in complex networks [1], we can
consider spectral properties of the set S and probability
density p.

Definition 16. The linear Laplace operator

(Lεf) (x) =

∫

S

dµ(y)[Θ(ε− ‖x− y‖

−δ(x− y)ρ(y; ε)]f(y) (34)

is a continuous equivalent of the discrete Laplacian ma-
trix in network theory [1]. We are interested in its eigen-
functions f(x) and eigenvalues λ satisfying

(Lεf) (x) = λf(x) (35)

for all x ∈ S.

For example, considering an arbitrary S with uni-
form p, one obtains an eigenfunction f(x) = C for some

C ∈ R associated to the eigenvalue λ = 0. This is anal-
ogous to the eigenvector (1, 1, . . . , 1) with eigenvalue 0
which is always present for the discrete Laplacian matrix
of general networks [1]. We can expect more interesting
results for non-uniform p. For example, one may define
a continuous analog of the eigenvector centrality of com-
plex network theory [59] by considering the eigenfunction

f̃(x) corresponding to the largest eigenvalue λ̃.
For discrete networks, there are several measures of

betweenness based on random walks rather than short-
est paths [60, 61]. Continuous versions of these measures
would be based on continuous analogs of random walks
on S that start and end at points y and z randomly cho-
sen from p. Since in a discrete network the limit distribu-
tion of a random walk without a sink is proportional to
the degree distribution, a natural choice for a continuous
analog is an Itō diffusion process, the limit distribution
of which is proportional to ρ(x; ε), with a source at y
and a sink at z [62]. Such a process can most easily be

defined as a gradient flow dXt = −∇Ψ(Xt) dt+
√
2T dBt

that combines a Brownian motion B with a local drift
coefficient −∇Ψ(Xt) which comes from a potential Ψ(x)
that is the product of a temperature T > 0 and the in-
formation corresponding to ρ(x; ε), which is − ln ρ(x; ε).
The resulting process

dXt = T
∇ρ(Xt; ε)

ρ(Xt; ε)
dt+

√
2T dBt (36)

can then be interpreted as a diffusion that drifts in the
direction of increasing density. The continuous version of
Arenas’ random walk betweenness [60] would then be the
expected density of the process at x when the source and
sink are drawn from p. Similarly, the continuous version
of Newman’s random walk betweenness [61] would be the
expected absolute value of the resulting flux density at x
for a random source and sink.

F. Behavior under affine transformations

All continuous measures defined above are based on
neighborhood relationships in S and geodesic distances
between points therein. They are therefore invariant with
respect to the subclass of affine transformations which
leaves these properties unchanged, i.e., x → Dx + s
for x ∈ S with D being a combination of rotation and
isotropic scaling operations and s a translation. This
is to be understood in the sense that for a measure h,
h(Dx+ s; aε) = h(x; ε) holds, where a is the scaling fac-
tor. The measures considered here are generally not in-
variant under non-isotropic scaling and shear operations.

III. DISCRETE ESTIMATORS

Given the continuous framework defined above, we
are able to treat the commonly used recurrence network
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TABLE II: A summary of standard unweighted network estimators for the continuous geometric properties defined in Sec. II.
For a detailed discussion, see [1, 2, 14, 63]. SP abbreviates “shortest path”.

Class Name Definition Comments

Neighborhood-based

Local Degree k̂i =
∑N

j=1 Aij

Degree density ρ̂i =
1

N−1
k̂i

Local clustering coeff. Ĉi =
∑N

j,k=1
AijAjkAki

k̂i(k̂i−1)
Ĉi = 0 iff ki < 2.

Matching index µ̂ij =
∑N

l=1
AilAjl

k̂i+k̂j−
∑

N
l=1

AilAjl

Global Edge density ρ̂ = 1
N(N−1)

∑N

i,j=1 Aij

Transitivity T̂ =
∑N

i,j,k=1
AijAjkAki

∑
N
i,j,k=1

AkiAkj

Global clustering coeff. Ĉ = 1
N

∑

i Ĉi

Assortativity Â =
1

L

∑
j>i k̂ik̂jAij−〈 1

2
(k̂i+k̂j)〉

2

i,j

1

L

∑
j>i

1

2
(k̂2

i
+k̂2

j
)Aij−〈 1

2
(k̂i+k̂j)〉

2

i,j

L =
∑

j>i Aij is the number of edges,
〈

1
2
(k̂i + k̂j)

〉

i,j
= 1

L

∑

j>i
1
2
(k̂i + k̂j)Aij [41].

Path-based

Local Closeness ĉi =
N−1∑
N
j=1

lij
Set lij = N − 1 iff ∄ path between i, j [64].

Local efficiency êi =
1

N−1

∑N

j=1 l
−1
ij

SP betweenness b̂i =
(

N−1
2

)−1 ∑N

j,k 6=i

σ̂jk(i)

σ̂jk
σ̂jk shortest paths connect vertices j, k,

σ̂jk(i) of those include i [64],

SP edge betweenness b̂ij =
(

N−1
2

)−1 ∑N

k,l 6=i,j

σ̂kl(i,j)
σ̂kl

and σ̂jk(i, j) include i, j.

Global Average path length L̂ = 〈lij〉i,j Set lij = N − 1 iff ∄ path between i, j [1].

Global efficiency Ê =
(

〈

l−1
ij

〉

i,j

)−1

Diameter D̂ = maxi,j (lij)

Radius R̂ = mini maxj (lij)

quantifiers [6, 14] taken from standard complex network
theory [1, 2] as the most straightforward discrete esti-
mators of the continuous quantities for a finite number
of observations N and finite ε. The discrete estimators
will be denoted using hats, e.g., the discrete estimator
of continuous average path length L(ε) is L̂(ε,N) (we
will in the following omit the estimators’ dependency
on ε and N to simplify the notation). Their numer-
ical properties have been elaborated in detail in ear-
lier works [6, 13, 14, 26, 30, 33]. The characteristics
of these standard measures for discrete and finite com-
plex networks have also been studied for random geomet-
ric graphs and more general network models with strong
spatial contraints [50, 52, 53], e.g., the degree distribu-
tion [50], network motifs [53], as well as clustering coef-
ficient and degree correlations [52].

Here, we briefly review the estimator’s definitions (Ta-
ble II). For some specific examples, the estimators will be
compared to the results theoretically derived from their
continuous counterparts in Sec. IV. This will also allow
us to gain certain insights into their bias and variance for
finite data sets.

A. Weighted network statistics and node splitting
invariant measures

We may now ask how the estimation of the above de-
fined continuous geometric properties from a finite data
set can be improved with respect to the measures from
complex network theory that have been used so far for
this purpose. One way to go in line with standard es-
timation theory is node-weighted network statistics, as
proposed by Heitzig et al. [49]. For a full application of
that theory, weights wi for all vertices i have to be chosen
in a suitable way, which we leave as a subject of future
research. But even with constant weights wi ≡ 1, the ax-
iomatic theory developed in [49] allows us to improve esti-
mation by using so-called node splitting invariant (n.s.i.)
versions of network measures to reduce the estimation
bias that results from excluding self-loops from the net-
work. Let us illustrate this for the case of continuous
ε-degree density, ρ(x; ε) =

∫

Bε(x)
dµ(y). If x is a vertex,

p is approximately constant in Bε(x), and the latter con-

tains k̂i additional vertices (see Table II), then ρ(x; ε) ≈
p(x)Vol(Bε(x)) ≈ (k̂i + 1)/N since Bε(x) contains k̂∗i =
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k̂i + 1 out of N vertices. In other words, k̂∗i /N is a bet-

ter estimator for ρ(x; ε) than k̂i/N , since the latter has a

bias of ∼ O(1/N). Likewise, the transitivity measure T̂
(see Table II) can be improved by using instead the n.s.i.

transitivity T̂ ∗ =
∑N

i,j,k=1 A
+
ijA

+
jkA

+
ki/
∑N

i,j,k=1 A
+
kiA

+
kj ,

where A+
ij = Aij + δij = Rij , showing that this approach

is also more in line with recurrence plot analysis. This
would also reduce the bias in the estimation of the tran-
sitivity dimension that was observed in [26, Fig. 10A].

The measures k̂∗i and T̂ ∗ are examples of n.s.i. measures
with unit weights, which can basically be interpreted as
variants of the classical measures in which vertices are
considered to be linked to themselves [49].

B. Choice of the recurrence threshold ε

A careful choice of the recurrence threshold ε is crit-
ical for faithfully estimating the continuous recurrence
network properties defined above [30]. For too large ε,
i.e., on the order of the diameter of S, boundary effects
dominate, the discrete recurrence network used for esti-
mation becomes too dense and is unable to capture the
geometry induced by S and p (see Sec. IVA4). In con-
trast, the network’s giant component breaks down for
too small ε with a phase transition at the critical value
εc. This obstructs our ability to properly estimate meso-
scopic and path-based measures for ε < εc. Therefore we
expect a good performance of the discrete estimators for
thresholds just above the critical εc, where much of the
geometric fine structure is still resolved [26].
The problem of selecting ε therefore reduces to deriv-

ing the percolation threshold εc which is directly related
to the critical edge density ρc = ρ(εc) of the theory of
random geometric graphs [51] via Eq. (6). ρc is linked to
the commonly studied critical mean degree zc by

ρc =
zc

N − 1
. (37)

The Erdős-Rényi graph is the simplest random network
model [1]. Since any pair of vertices is linked with
the same probability ρ independent of their distance,
it neglects the effects of spatial embedding. Therefore
the Erdős-Rényi model is inadequate for describing d-
dimensional random geometric graphs, and the corre-
sponding critical mean degree zc = 1 [1] turns out to
be too low except for the limiting case d → ∞ [28] (see
Sec. IVA4 for an example). Taking into account the ef-
fects of clustering of vertices induced by the spatial em-
bedding [65] yields improved analytical bounds on the
true zc obtained from numerical simulations [66]. Exact
analytical results for arbitrary d are not available so far,
but Dall and Christensen [28] have empirically found the
scaling law

zc(d) = zc(∞) +Ad−γ (38)

from extensive numerical simulations, where zc(∞) = 1,
γ = 1.74(2) and A = 11.78(5). Inverting ρc = ρ(εc)

(which is possible as dρ(ε)/dε > 0 in non-pathological
situations) yields the associated critical threshold

εc(d) = ρ−1

(

zc(d)

N − 1

)

. (39)

To our best knowledge this is the most useful result avail-
able so far for our aim of choosing the recurrence thresh-
old ε. However, one should be aware that the results
of [28] were obtained for the box S = [0, 1]d with uni-
form probability density p which is the most commonly
studied setting in random geometric graph theory. When
considering general S and p they may be appropriate as
a first educated guess for properly selecting ε in line with
the guidelines discussed in [26, 30]. Deriving analytical
bounds on zc for such geometries remains an open prob-
lem.

IV. EXAMPLES

We illustrate the above defined continuous geometric
quantities and their estimators for paradigmatic exam-
ples by giving closed-form analytical results and relating
them to numerical evidence from ε-recurrence networks
constructed from time series. The focus will be on exam-
ples where all quantities of interest can be calculated ei-
ther analytically or semi-analytically (relying on numer-
ical evaluation of some integrals), i.e., possessing smooth
sets S and density functions p(x). This implies that when
considering the Euclidean norm (which we will use for all
examples below) and neglecting boundary effects [14, 26],
we obtain

C(x; ε) = 1− dΓ(d/2)

2
√
πΓ((d+ 1)/2)

[

2F1

(

1

2
,
1− d

2
;
3

2
;
1

4

)

− 1

d+ 1
2F1

(

1− d

2
,
d+ 1

2
;
d+ 3

2
;
1

4

)]

=C(ε) = T (ε)

(40)

for all transitivity-based measures, where 2F1(·) is the hy-
pergeometric function and d the manifold dimension of S.
A simpler exponential scaling with d can be found for the
supremum metric. Nontrivial transitivity-based proper-
ties for fractal sets S and densities p(x) allowing for non-
integer d, where an analytical calculation of path-based
measures is problematic, have been treated exhaustively
in [26].

The results given here hold in the limit ε → 0.
For simplicity we ignore boundary effects which have
been treated in [14, 26]. In all examples, we use the
parametrization σ1(y, z;x) to compute continuous ε-
shortest path betweenness.
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A. One-dimensional chaotic maps and stochastic
processes

All examples considered in this section are defined on
convex sets S embedded on the real axis. Therefore, the
geodesic distance of x, y ∈ R reduces to g(x, y) = |x− y|.
Since for one-dimensional S the integral

∫

S
dy p(y) |x −

y|−1 diverges for all p and all x ∈ S, we get E(ε) = 0
and e(x; ε) = ∞ ∀x in all examples of this section. In
contrast, the corresponding integral always converges for
non-fractal S with d ≥ 2 and general p.

1. Bernoulli map / uniformly distributed noise

The Bernoulli map xn+1 = (2xn) mod 1 defined on
the interval S = [0, 1) induces the probability density
p(x) = 1. This yields

T (ε) = C(ε) = C(x; ε) = 3

4

L(ε) =
1

3
ε−1

c(x; ε) =
2ε

1− 2x+ 2x2

b(x) = 2x(1− x).

The same results hold for uniformly distributed noise on
the interval [0, 1], since S and p(x) are identical to those
of the Bernoulli map (an exemplary calculation for this
setting is shown in Appendix B). This equality clearly
illustrates that recurrence network analysis is purely
geometric and, hence, by design masks out the auto-
dependency structure of dynamical systems. Stochastic
and deterministic dynamics can be distinguished when
embedding techniques are used prior to recurrence net-
work analysis [14].

2. Gaussian noise

Considering Gaussian noise with zero mean
and standard deviation σ, i.e., p(x) =
(

1/
√
2πσ2

)

exp
(

−x2/(2σ2)
)

, on the real axis

S = (−∞,+∞) we obtain

T (ε) = C(ε) = C(x; ε) = 3

4

L(ε) =
2σ√
π
ε−1

c(x; ε) =
ε

√

2
π
σ exp

(

− x2

2σ2

)

+ xerf
(

x√
2σ

)

b(x) =
1

2

(

1− erf

(

x√
2σ

)2
)

,

where erf(x) = 2√
π

∫ x

0
e−t2dt is the error function. The

results for mean χ 6= 0 can be derived by substituting

A Bernoulli map B Logistic map

FIG. 4: (Color online) Continuous ε-average path length L(ε)
for (A) the Bernoulli map and (B) the logistic map. Analyt-

ical results are indicated by solid red lines. Estimates L̂(ε)
have been obtained from ε-recurrence networks constructed
from one realization of N = 1, 000 samples, respectively, for
each map (black dots). Ensemble mean (dashed-dotted black
line) and standard deviation (gray band) for different ε have
been obtained from an ensemble of 100 realizations of each
model with initial conditions uniformly distributed in the in-
terval [0, 1]. Vertical dashed lines indicate the estimated per-
colation thresholds εc.

x → x−χ on the right side of the equations for the local
measures given above (see also Sec. II F).

3. Logistic map

We can also give exact analytical solutions for the logis-
tic map in the fully chaotic regime, xn+1 = 4xn(1− xn),
defined on the interval S = [0, 1]. Using the probability

density p(x) = π−1
√

x(1− x)
−1

[67] yields

T (ε) = C(ε) = C(x; ε) = 3

4

L(ε) =
4

π2
ε−1

c(x; ε) = πε
[

2
√

x(1− x) + (1− 2x)×
×
(

arccos
(√

x
)

− arcsin
(√

x
)) ]−1

b(x) =
8 Im [arcosh (

√
x)] arcsin (

√
x)

π2
.

4. Comparison to numerical results

Within an intermediate range of ε, the continuous ε-
average path length L(ε) is approximated well by the es-

timators L̂(ε) calculated from ε-recurrence networks for
both the Bernoulli and logistic map (Fig. 4). For small
ε, the estimator breaks down due to the finite number
of samples used (finite size effect) after the network’s gi-
ant component decomposes into smaller and smaller dis-
connected components. The Erdős-Rényi approximation
yields a critical percolation threshold εc = 1/(2(N−1)) ≈
5 · 10−4 for both maps using the parameters of Fig. 4,
which is one order of magnitude smaller than the nu-
merically observed phase transition point (Fig. 4). As
explained in Sec. III B, this is because the Erdős-Rényi
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model does not account for the effects of spatial em-
bedding and clustering. To be able to use the relation-
ship of Eq. (39) based on the empirical results of [28]
for m = 1, we approximate ρ(ε) = 2ε (Bernoulli map)
and ρ(ε) = 8ε artanh(1− 2ε)/π2 (logistic map) for small
ε. This yields εc ≈ 6.4 · 10−3 for the Bernoulli map
and εc ≈ 6.2 · 10−3 for the logistic map, which is con-
sistent with the phase transition points observed numer-
ically (Fig. 4). The good agreement of predicted and
observed phase transition for the Bernoulli map can be
explained by the fact that the latter exactly meets the as-
sumptions underlying the theory of Dall and Christensen
(Sec. III B). These observations indicate that Eq. (39) is
indeed useful to derive an educated guess for the proper
choice of ε, even for strongly varying probability densities
p. Moreover, the phase transition for the logistic map
occurs at notably larger ε than for the Bernoulli map.
Consistently with the results of [66], this indicates that
the increased spatial clustering induced by peaks in the
density p leads to larger values of the critical mean degree
zc and therefore the associated percolation threshold εc.
However, the results of [52] suggest that there may be in
fact no true phase transition in giant component size for
non-uniform p in the limit N → ∞.

For large ε, the approximation in Eq. (11) is not valid
anymore and, hence, the discrete estimator breaks down
in this regime. Note that L(εc′) = 1 for a critical εc′ .

Since L(ε) < 1 whereas L̂(ε) = 1 for ε > εc′ , the defini-
tion of the discrete estimator is not meaningful anymore
for thresholds larger than the critical threshold. For the
Bernoulli map we have εc′ = 1/3 and for the logistic map,
εc′ = 4/π2 follows.
The continuous ε-closeness c(x; ε) is approximated well

by the estimator ĉ(x; ε) for both the Bernoulli and logistic
maps (Fig. 5). However, ĉ(x; ε) is notably smaller than
the true theoretical value particularly in the center of S
at x = 1/2, implying that shortest paths are longer in
the empirical ε-recurrence network than expected theo-
retically. This is clearly a finite size effect as the bias and
variance of the estimator clearly decrease for growing N
and fixed ε (Fig. 5).
The shape of continuous ε-shortest path betweenness

b(x) is approached well by the estimator b̂(x; ε) for both
maps (Fig. 6). However, there is a large bias that in-
creases with the number of samples N , while the variance

decreases with growing N . That the estimator b̂(x; ε) is
generally smaller than the theoretical value b(x) for all
x can be explained by the skipping of vertices due to
the finite ε in the empirical ε-recurrence network. This
effect is expected to increase for growing N when ε is
fixed, since more and more vertices can be skipped along
a shortest path for the same recurrence radius ε, which
also explains the growing bias in this setting. Accord-
ingly, the bias decreases for decreasing ε when N is suffi-
ciently large regarding the discussion of suitable choices
of ε in Sec. III B (Fig. 6G,H). However, the bias is not
a problem in practical situations, because for local mea-
sures we are usually only interested in relative differences

A Bernoulli map B Logistic map
N

 =
 1

0
0

0

C D

N
 =

 2
0

0
0

E F

N
 =

 5
0

0
0

FIG. 5: (Color online) Continuous ε-closeness c(x; ε) for
(A,C,E) the Bernoulli map and (B,D,F) the logistic map. An-
alytical results are indicated by red solid lines. Estimates
ĉ(x; ε) have been obtained from ε-recurrence networks at ε =
0.01 constructed from single realizations of (A,B) N = 1, 000,
(C,D) N = 2, 000 and (E,F) N = 5, 000 samples (all: black
squares). Ensemble mean (black dashed-dotted lines) and
standard deviation (gray bands) have been calculated as in
Fig. 4. The standard deviation is too small to be visible in
the plots for N = 5, 000 (E,F).

between vertices and not in the absolute values.

B. Periodic and quasi-periodic dynamics

1. Periodic orbit

We analyze next a periodic orbit (gen-
eral closed curve) of curve length l embed-
ded in an m-dimensional phase space, i.e.,
S = {x ∈ Rm : x = f(s); s ∈ [0, l]; f(0) = f(l)}, with
uniform probability density p(x) = 1/l. The geodesic
distance of two points x(s), x(t) along the curve is then
given by g(x(s), x(t)) = |s− t|. This yields

T (ε) = C(ε) = C(x; ε) = 3

4

L(ε) =
l

4
ε−1

c(x; ε) =
4ε

l

b(x) =
1

4
.
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A Bernoulli map B Logistic map

N
 =

 1
0

0
0

C D

N
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0

0
0

E F

N
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 5
0

0
0

G H

N
 =

 1
0

0
0

0

FIG. 6: (Color online) Continuous ε-shortest path between-
ness b(x) for (A,C,E,G) the Bernoulli map and (B,D,F,H) the
logistic map. Analytical results are indicated by red solid
lines. Estimates b̂(x; ε) have been obtained from ε-recurrence
networks at ε = 0.01 constructed from single realizations of
(A,B) N = 1, 000, (C,D) N = 2, 000 and (E,F) N = 5, 000
samples (all: black squares). Panels (G,H) show results for
ε = 0.005 and N = 10, 000. Ensemble mean (black dashed-
dotted lines) and standard deviation (gray bands) have been

calculated as in Fig. 4. Note that b̂(x) is the discrete shortest
path betweenness of [14], but normalized by its theoretical
maximum value (N − 1)(N − 2)/2.

As the periodic orbit is a one-dimensional set
we have E(ε) = 0 and e(x; ε) = ∞ as above.
For example, a circular orbit of radius R as
generated by a harmonic oscillator with S =
{

x ∈ R2 : x1 = R sin(s/R), x2 = R cos(s/R); s ∈ [0, 2πR]
}

and p(x) = 1/(2πR) gives the above results with
l = 2πR.

2. Flat 2-torus

Quasi-periodic dynamics is displayed by a system os-
cillating with two incommensurable frequencies ω1 and
ω2, i.e., where the ratio ω1/ω2 is not a rational num-

ber. The phase space trajectory fills a 2-torus S =
{x = (s, t) : s ∈ [0, 2πR], t ∈ [0, 2πr]} uniformly with
p(s, t) = p = 1/(4π2Rr). The radii R, r are related to
the oscillation’s amplitudes. With the geodesic distance

g((s, t), (s′, t′)) =
(

min (|s− s′|, 2πR− |s− s′|)2

+min (|t− t′|, 2πr − |t− t′|)2
)

1

2

we obtain

T (ε) = C(ε) = C(x; ε) = 1− 3
√
3

4π
≈ 0.5865

L(ε) =
πε−1

12rR

(

4rR
√

r2 +R2 + 3r3arsinh

(

R

r

)

+2R3artanh

(

r√
r2 +R2

)

−r3artanh

(

R√
r2 +R2

))

E(ε) = 2πrRε−1

(

2rartanh

(

R√
r2 +R2

)

+R ln

(

r +
√
r2 +R2

−r +
√
r2 +R2

)

)−1

.

Because of symmetry, the local path-based measures do
not depend on x as for the periodic orbit discussed above
and we have

c(x; ε) = L(ε)−1

e(x; ε) = E(ε)−1

b(x) =
1

4π2Rr
= p.

As expected, in the limit r → 0 the average path length
converges to the value obtained for a circle of radius R
(see above), i.e., limr→0 L(ε) = (πR/2)ε−1.

C. Higher-dimensional symmetric sets

The m-dimensional hyperball and hypercube may be
viewed as tractable idealizations of higher dimensional
attracting sets of dynamical systems (in this section, we
set d = m, since the manifold dimension of S is inte-
ger). Their study highlights that continuous path-based
measures may depend sensitively and non-trivially on the
global geometry of the set. In contrast, their neighbor-
hood and transitivity-based counterparts just depend on
the dimension m and are therefore identical for the hy-
perball and hypercube (Eq. (40)). The sets considered
here are convex, hence, g(x, y) = ‖x − y‖2 holds when
using the Euclidean norm.

1. m-dimensional hyperball

Here we consider the m-dimensional hyperball S =
Sm with the uniform probability density p(x) = p =
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FIG. 7: Continuous ε-average path length εL(ε) of the hy-
perball Sm with uniform probability density, obtained from
Eq. (42).

1/
∫

S
dx = Vol (Sm)

−1
= Γ

(

m
2 + 1

)

/π
m
2 . Following

Hammersley [68], the r-th moment of the distribution
of point-to-point distances ‖x− y‖2 in Sm is given by

µmr = 2
mΓ (m+ 1)

Γ
(

1
2m+ 1

2

)

Γ
(

1
2m+ 1

2r +
1
2

)

(m+ r)Γ
(

m+ 1
2r + 1

) . (41)

Then the continuous ε-average path length is

L(ε) = µm1ε
−1

= 2
m

m+ 1

Γ (m+ 1)

Γ
(

1
2m+ 1

2

)

Γ
(

1
2m+ 1

)

Γ
(

m+ 3
2

) ε−1, (42)

and all its higher moments are known via Eq. (41) (see
Fig. 7). Some examples for lower-dimensional spheres
follow:

εL(ε) =































2
3 m = 1
128
45 π−1 m = 2
36
35 m = 3
16384
4725 π−1 m = 4
800
693 m = 5

.

Note that the result for m = 1 agrees with the cor-
responding one for the Bernoulli map when consider-
ing the stretching of the domain by a factor of 2, since
S1 = [−1, 1]. In the limit m → ∞ the continuous ε-

average path length is L(ε) =
√
2ε−1 (see Fig. 7). We

can also derive in closed form an expression for the con-
tinuous ε-closeness c(0; ε) of the center of Sm, taking ad-
vantage of the spherical symmetry:

c(0; ε)−1 = ε−1

∫

Sm

dx1 . . . dxm p
√

x2
1 + · · ·+ x2

m

= ε−1Ωmp

∫ 1

0

dr rm−1r.

With the full solid angle in m dimensions Ωm =
mπ

m
2 /Γ(m2 + 1) this leads to

c(0; ε) =
m+ 1

m
ε. (43)

Note that the limit εc(0; ε)−1 → 1 for m → ∞ shows
that almost all of the measure µ(Sm) of the unit radius
hyperball Sm is concentrated at its surface for large m.
For the special case of m = 2 (unit disk with uniform
p(x)), Lew et al. [69] give a nearly closed-form expression
for the continuous ε-closeness at x(q) = (q, 0),

c(x(q); ε)−1 =
1

9π

(

16(q2 − 1)K(q2) + 4(q2 + 7)E(q2)
)

ε−1,

where 0 ≤ q ≤ 1 and the value for arbitrary x ∈ S2

may be obtained after an appropriate rotation. K(m)
and E(m) are complete elliptic integrals of the first and
second kind (see §17.3 in [70]).
For the continuous local ε-efficiency e(0; ε) of the center

of Sm we get for m > 1

e(0; ε) = ε

∫

Sm

dx1 . . . dxm p
√

x2
1 + · · ·+ x2

m

−1

= εΩmp

∫ 1

0

dr rm−1r−1

=
m

m− 1
ε.

A somewhat more involved calculation of the continuous
ε-betweenness b(0) of the center of Sm yields (see Ap-
pendix C)

b(0) =
1

Ωm

=
Γ(m2 + 1)

mπ
m
2

. (44)

The high degree of symmetry of Sm allows us to derive
closed-form results for local path-based measures at its
center for many p(x) = p(r,Ω), as long as the probability
density separates into a radial and an angular part, i.e.,
p(r,Ω) = p(r)p(Ω).

2. m-dimensional hypercube

The hypercube S = Km = [0, 1]m with uniform prob-
ability density p(x) = Vol(Km)−1 = 1 is much harder to
treat analytically than the hyperball Sm. Hence, rigorous
results are only available for isolated dimensions m and a
subset of the continuous measures defined above [58, 71–
73]. Solving the resulting general box integrals remains
a largely unsolved problem of applied and experimental
mathematics.
The following closed-form expressions for the continu-

ous ε-average path length L(ε) are based on the expecta-
tion values for point-to-point distances ∆Km(1) = εL(ε)
(see Eq. (29)) listed in [73]:

εL(ε) =



















1
3 m = 1
1
15

(

2 +
√
2 + 5 ln

(

1 +
√
2
))

m = 2

− 118
21 − 2

3π + 34
21

√
2− 4

7

√
3 m = 3

+2 ln(1 +
√
2) + 8 ln( 1+

√
3√

2
)

.
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FIG. 8: (Color online) Continuous ε-average path length
εL(ε) of the hypercube Km with uniform probability density,
obtained by numerical Monte Carlo integration using Mathe-
matica (yellow diamonds). Analytical lower (blue discs) and
upper (red squares) bounds from [71] are also shown.

Some numerical results for m = 1, . . . , 10 are displayed
in Fig. 8. Anderssen et al. [71] proved the bounds

1

3

√
m ≤ εL ≤

√

1

6
m

√

√

√

√

1

3

(

1 + 2

√

1− 3

5m

)

(45)

implying εL → ∞ for m → ∞. This is in contrast to the
hyperball, where this limit is finite (see above). Using ex-
pectation values for the inverse point-to-point distances
∆Km(−1) = ε−1E(ε)−1, we are able to give the following
expressions for the continuous ε-efficiency E(ε):

(εE(ε))−1 =











































∞ m = 1
4
3 (1−

√
2) + 4 ln(1 +

√
2) m = 2

2
5 − 2

3π + 2
5

√
2− 4

5

√
3 m = 3

+2 ln(1 +
√
2)

+12 ln
(

1+
√
3√

2

)

−4 ln(2 +
√
3)

.

Note that as S = K1 = [0, 1], the results for m = 1
agree with the corresponding ones for the Bernoulli map
for both continuous ε-average path length and efficiency.
Further expressions for ∆Km(1) and ∆Km(−1) for m =
4, 5 are given in [73].
Another object of interest in the theory of box integrals

is the integral

B̃m(η) =

∫

Km

dx‖x‖η2 , (46)

which is related to the continuous ε-closeness c(0; ε) of
the origin x = 0 (and, by symmetry, to that of all the
2m corners of the hypercube) for η = 1 and to the local
efficiency e(0; ε) of the same points for η = −1:

c(0; ε) = B̃m(1)−1ε (47)

e(0; ε) = B̃m(−1)ε. (48)

We can now once again use results from Bailey et al. [73]
to give some closed forms for small m:

εc(0; ε)−1 =











1
2 m = 1
1
3 (
√
2 + ln(1 +

√
2)) m = 2

1
4

√
3− 1

24π + 1
2 ln(2 +

√
3) m = 3

and

ε−1e(0; ε) =











∞ m = 1

2 ln(1 +
√
2) m = 2

− 1
4π + 2

3 ln(2 +
√
3) m = 3

.

Further solutions for m = 4, 5 are given in [73].

V. DISCUSSION

We have shown that the definitions of continuous
geometric measures provided in this paper are feasi-
ble for describing ε-recurrence networks for time series
analysis as well as, more generally, random geometric
graphs [28, 50, 51]. Our theoretical framework may
readily be generalized to encompass other classes of ran-
dom networks with spatial constraints (i.e., spatial net-
works) [29, 52, 53], e.g., those with an edge length distri-
bution of the form pl(l) ∝ exp(−l/ξ) describing among
others the substrate of climate networks [22, 74] (in con-
trast to the sharp cutoff pl(l) ∝ Θ(ε− l) for random ge-
ometric graphs). For the neighborhood-based measures,
this generalization can be achieved by substituting terms
containing the Heaviside function or Bε(x) with suitably
chosen expressions involving pl(l). One possible appli-
cation to real-world spatial networks is computing ex-
pectation values for the characteristics of an ensemble of
spatial random network surrogates to assess which prop-
erties of a given empirical network can be explained by
pl(l) alone. Additionally, more general metrics could be
used for measuring the distance l between connected ver-
tices. Research along these lines may also help to shed
light on the specific topology and dynamics of growing
spatial complex networks (cf. [8, 75]).
Furthermore, we have demonstrated that the result-

ing continuous properties can be approximated by esti-
mators calculated from empirical ε-recurrence networks
reasonably well, even for relatively small N and large
ε. The continuous framework promotes considerable ad-
vances in the theoretical understanding of ε-recurrence-
network-based time series analysis. Among others, from
the examples of hyperballs and hypercubes in various di-
mensions m, the claim that path-based measures depend
explicitly on the global geometry of the set S is theo-
retically justified. This is in contrast to the continuous
notions of local and global transitivity, as at least the
continuous local ε-clustering coefficient C(x; ε) depends
on the local dimensionality of the set S [26]. Along
these lines, in the future we may gain an understand-
ing of the differing performance of transitivity-based and
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path-based measures in classifying qualitatively different
behavior of dynamical systems [13, 33]. For example,
more complex dynamical systems such as the Lorenz and
Rössler models or noisy dynamical systems, where no
closed-form expression for the invariant probability den-
sity p exists, may be studied by estimating p̂ from simu-
lated trajectories. ε-recurrence network measures could
then be calculated by numerical integration techniques
relying on p̂ and the integral expressions given in this
paper. Circumventing the computational limitations of
discrete ε-recurrence network analysis whenN → ∞, this
approach would in principle allow us to approximate the
continuous geometric quantities defined above as closely
as desired.
The examples of hyperballs and hypercubes establish

links to some current research problems in probabilis-
tic geometry and applied mathematics, among others, to
the theory of box integrals [58, 71–73]. Perhaps these
highly symmetric model sets could serve to understand
theoretically some qualitative features of path-based ε-
recurrence network measures for strange attractors such
as the Lorenz or Rössler attractors. It remains an open
question as to whether it is possible to solve the inte-
grals for continuous path-based measures in the case of
self-similar sets S and more complex, potentially also self-
similar densities p.
The theoretical framework put forward in this paper

enables several practical advances, which are particu-
larly relevant for applications to time series analysis of
real-world data. Analytical solutions for continuous ε-
recurrence network measures allow us to assess the bias
and variance of the discrete estimators from complex net-
work theory that have been used in the literature so
far. These insights led to devising improved discrete es-
timators based on the concept of node-weighted network
statistics [49]. Furthermore, for the first time we were
able to formulate a theoretically motivated criterion for
the selection of the recurrence threshold ε based on the
critical percolation threshold εc which for a given system
can be estimated using our theory.
Finally, we should note that we now have a compre-

hensive continuous theory for essentially all relevant mea-
sures of ε-recurrence networks. This foundation will
help to further increase our understanding as well as
strengthen the general confidence in the method of ε-
recurrence network analysis in practical situations, e.g.,
the analysis of real-world time series. Our results sug-
gest that ε-recurrence network analysis is the simplest
and best understood network-based approach to nonlin-
ear time series analysis available so far.

Appendix A: Sketch of proof of Eq. (11)

For ε > 0, we define the continuous ε-distance l(x, y; ε)
between x 6= y ∈ S to be the smallest integer k > 0
such that there are points z0, . . . , zk ∈ S with z0 = x,
zk = y, and ||zi−1 − zi|| < ε for i = 1 . . . k. Note that be-

cause S is path-connected, l(x, y; ε) is finite. We also put
l(x, x; ε) = 0. Let lij(ε,N) ≥ l(xi, xj ; ε) be the network
distance between xi and xj in the ε-recurrence network
constructed from the first N points of a sequence of in-
dependent draws from p. One can then prove that for
fixed ε, fixed nodes xi, xj , and N → ∞, it has probabil-
ity one that lij(ε,N) = l(xi, xj ; ε) eventually (i.e., there
is some N(i, j, ε) so that lij(ε,N) = l(xi, xj ; ε) for all
N > N(i, j, ε)). This is because for k = l(xi, xj ; ε), there
is δ > 0 and z0, . . . , zk ∈ S with z0 = x, zk = y, and
||zi−1 − zi|| < ε− 2δ for i = 1 . . . k, and with probability
one, the sequence contains points w0, . . . , wk ∈ S with
w0 = xi, wk = xj , and ||wi − zi|| < δ for i = 1 . . . k − 1,
so that also ||wi−1 − wi|| < ε for i = 1 . . . k, implying
lij(ε,N) ≤ k when N > N(i, j, ε) where N(i, j, ε) is the
index of the last of the wi to occur in the sequence.
Moreover, l(x, y; ε) ≤ g(x, y)/ε + 1 and εl(x, y; ε) ≤

g(x, y) if g(x, y) is not an integer multiple of ε. This is
because for all δ > 0 and ε′ < ε, there is a path from x to
y of length ≤ g(x, y) + δ, hence for k = ⌈(g(x, y) + δ)/ε′⌉
(⌈x⌉ is the smallest integer not less than x), there are
z0, . . . , zk ∈ S with z0 = x, zk = y, and ||zi−1 − zi|| ≤
ε′ < ε for i = 1 . . . k, so that l(x, y; ε) ≤ k. On the
other hand, if S is sufficiently well-behaved, one will also
have εl(x, y; ε) ր g(x, y) for ε → 0. More precisely,
assume S is “locally almost convex” in the sense that for
all L > 1, there is some ε > 0 so that for all x, y ∈ S
with ||x − y|| < ε, we have g(x, y) < Lε. Then for all
L > 1, there is some ε > 0 so that εl(x, y; ε) > g(x, y)/L.
Putting all these facts together, we see that εlij(ε,N) is
a plausible estimate of g(x, y).

Appendix B: Continuous ε-average path length for
Bernoulli map and uniformly distributed noise

For illustration, we give the detailed calculation of L(ε)
for the Bernoulli map and, equivalently, uniformly dis-
tributed noise:

εL(ε) =

∫ 1

0

∫ 1

0

dxdy |x− y|

=

∫ 1

0

dx

(
∫ 1

x

dy |x− y|+
∫ x

0

dy |x− y|
)

=

∫ 1

0

dx

(
∫ 1

x

dy (y − x) +

∫ x

0

dy (x− y)

)

=

∫ 1

0

dx

(

[

1

2
y2 − xy

]1

x

+

[

xy − 1

2
y2
]x

0

)

=

∫ 1

0

dx

(

1

2
− x− 1

2
x2 + x2 + x2 − 1

2
x2

)

=

∫ 1

0

dx

(

1

2
− x+ x2

)

=

[

1

3
x3 − 1

2
x2 +

1

2
x

]1

0

=
1

3
.
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Appendix C: Continuous ε-betweenness for the
center of a hyperball

b(0) = p2
∫∫

S

dy dz

∫ 1

0

dt δ(f(t))

= p2
∫∫

dΩ dΩ′
∫ 1

0

∫ 1

0

drdr′rm−1r′m−1δ(Ω− Ω′)

= p2
∫

dΩ

(
∫ 1

0

dr rm−1

)2

= p2Ωm

1

m2

=
Γ
(

m
2 + 1

)

mπ
m
2

=
1

Ωm
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