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Analytical Framework of Hybrid Beamforming in

Multi-Cell Millimeter-Wave Systems
Shu Sun, Student Member, IEEE, Theodore S. Rappaport, Fellow, IEEE,

Mansoor Shafi, Life Fellow, IEEE, and Harsh Tataria, Member, IEEE

Abstract—Multi-cell wireless systems usually encounter both intra-
cell and inter-cell interference, which can be mitigated via coordinated
multipoint (CoMP) transmission. Previous works on multi-cell analysis
in the microwave band generally consider fully digital beamforming,
requiring a complete radio-frequency chain behind each antenna. This
is practically infeasible for millimeter-wave (mmWave) systems where
large amounts of antennas are necessary to provide sufficient gain and
to enable transmission/reception of multiple streams to/from a user.
This article provides a general methodology to analytically compute
the expected per-cell spectral efficiency of a mmWave multi-cell
single-stream system using phase-shifter-based analog beamforming
and regularized zero-forcing digital beamforming. Four analog-digital
hybrid beamforming techniques for multi-cell multi-stream mmWave
communication are proposed, assuming that base stations in different
cells share channel state information to cooperatively transmit signals
to their home-cell users. Spectral efficiency of the proposed hybrid
beamforming approaches are investigated and compared using two
channel models suitable for fifth-generation cellular systems, namely
the 3rd Generation Partnership Project model and the NYUSIM model.
Numerical results show that the benefits of base station coordination (as
compared to the no-coordination case) are governed by the underlying
propagation model, and the aggregate interference levels proportional
to the cell radius and number of users per cell.

Index Terms—5G, CoMP, hybrid beamforming, millimeter wave
(mmWave), multi-cell, MIMO.

I. INTRODUCTION

Millimeter-wave (mmWave) technologies are expected to play a

key role in fifth-generation (5G) mobile communications due to

the tremendous amount of available bandwidth [1], [2]. MmWave

cellular systems are expected to be densely deployed to guarantee

acceptable coverage, spectral efficiency, as well as energy effi-

ciency [3], [4]. In dense networks, a major challenge that needs to

be solved is inter-cell interference. Extensive research has been done

on mitigating inter-cell interference. For instance, power control and

adaptive beamforming are two classical approaches for controlling

multi-user interference [5], yet power control mainly improves the

quality of weak links by equalizing the signal-to-interference-plus-

noise ratio (SINR) for all users in a cell. On the other hand,

adaptive antenna arrays can improve signal quality while mitigating
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interference via adjustment of spatial beam patterns. To reduce

interference using arrays, one promising solution is to let base

stations (BSs) or transmission points (TPs) in different geographical

cells coordinate in transmission and/or reception. The aim of TP

coordination is to prevent the transmitted signals from/to other TPs

from incurring serious interference.

A. Prior Work

The 3rd Generation Partnership Project (3GPP) studied coordi-

nated multipoint (CoMP) techniques for both downlink and up-

link for fourth-generation (4G) communications in 2013 [6]. The

different CoMP strategies in [6] entail various requirements with

respect to channel state information (CSI) feedback and CSI sharing,

which are detailed below in increasing order of complexity. (1)

Coordinated Scheduling/Beamforming: Data for a user equipment

(UE) is available at and transmitted from one TP in the CoMP

cooperating set (downlink data transmission is done from that TP)

for a time-frequency resource, but user scheduling/beamforming

decisions are made with coordination among TPs [6]. (2) Dynamic

Point Selection/Muting: Data is available simultaneously at multiple

TPs but is transmitted from one TP in a time-frequency resource,

and the transmitting/muting TP may change from one subframe to

another [6]. (3) Joint Transmission: Data for a UE is available at

multiple TPs and is simultaneously transmitted from multiple TPs

to a single UE or multiple UEs in a time-frequency resource [6].

BS coordination for interference suppression has been extensively

explored in the literature [7]–[10], yet those works focused on fully

digital beamforming with one radio-frequency (RF) chain behind

each antenna, which is not likely to be suitable for mmWave systems

with large amounts (e.g., hundreds) of antennas at BSs due to

hardware complexity, power consumption, and cost. BS cooperation

in mmWave multi-cell networks was investigated in [11]–[13], but

the mobile receiver was equipped with merely a single antenna,

hence leading to only single-stream communication in those works.

In fifth-generation (5G) mmWave systems, however, antenna arrays

will also be employed at the mobile receiver to provide array gain

and beamforming and/or spatial multiplexing capability for multiple

streams.

Furthermore, the majority of the prior work did not provide

an analytical framework when analyzing the multi-cell system

performance, which could be done via eigenvalue distributions

(EVDs) for uncorrelated and correlated Wishart matrices, which

are well known [14]–[18]. Eigenvalue densities of the complex non-

central Wishart channel correlation matrix were first derived in [17],

[18] in matrix tensor form, and were later extended in [19] to a finite

summation representation to facilitate analytical approximations of

the regularized zero-forcing (RZF) expected SINR and spectral



efficiency for the general case of uncorrelated Ricean fading.

The authors in [20] demonstrated the equivalent analysis with

i.i.d. (independent and identically distributed) and semi-correlated

Rayleigh fading channels, by averaging the analytical expressions

over the arbitrary eigenvalue densities of the channel correlation

matrix. However, the above eigenvalue densities are all for channel

matrices with known statistics, facilitating analysis with digital

processing, rather than the channel matrix multiplied by an RF

precoding matrix that is used in analog-digital hybrid beamforming

(HBF). Moreover, due to the analytical complications, none of the

above studies consider channel models developed for 5G systems

(including mmWave frequencies) in the derivation of the relevant

channel eigenvalue densities.

B. Contributions of This Work

In this paper, we investigate the performance of multi-cell, multi-

user, multi-stream analog-digital HBF for mmWave multiple-input

multiple-output (MIMO) systems, where HBF is used at both the

TP and UE, which has not been studied before to the best of our

knowledge. The main contributions of this paper are as follows.

• Built on the multi-cell framework, EVDs for channels after

RF precoding in a multi-cell multi-user system with a single

stream per user are investigated for both signal and interference

channels, which has not been studied before to our best

knowledge. HBF based on RZF is employed at each TP.

The channel matrices are generated using both the 3GPP TR

38.901 Release 14 [21] and the NYUSIM (New York University

SIMulator) channel models [22]. The eigenvalue densities are

approximated with a gamma distribution. The approximation of

eigenvalue densities is motivated by the fact that exact densities

are extremely challenging to derive, so that the best trade-off

approach is to approximate.

• Leveraging the approximate channel eigenvalue densities from

both channel models, for a single-stream multi-cell system

employing hybrid processing, we give a methodology to derive

tight analytical approximations of the expected per-user SINR

and expected per-cell sum spectral efficiency. Our analyses

assume a bank of phase shifters for the analog precoding

and RZF processing for digital beamforming. Due to the joint

design of both analog and digital processing matrices, we

note the tremendous analytical complexity involved in deriving

the aforementioned expressions. Hence, to the best of our

knowledge, such general analysis of mmWave systems has

been missing from the literature to date.

• A novel coordination-based HBF method with signal-

maximizing and leakage-minimizing analog beamforming

(SLAB) is proposed, which is improved upon the leakage-

suppressing and signal-maximizing HBF in [23] by adding

UE beamforming to enhance signal. Four multi-cell multi-

stream downlink HBF approaches, where two use coordinated

beamforming and two do not use TP coordination (including

a baseline and SLAB), are compared in terms of spectral

efficiency under various conditions (e.g., different cell radii,

user numbers, and stream numbers per user). Equal power

allocations are used for each stream, and numerical results

demonstrate that benefits of multi-cell coordination depend on

the underlying channel model and the aggregate interference

levels, as shown in Fig. 5.

II. MULTI-CELL SYSTEM LAYOUT AND UNDERLYING

CHANNEL MODELS

A. Multi-Cell System Layout

We assume the TPs in different cells have full CSI and can

exchange the CSI among each other to mitigate inter-cell inter-

ference, which corresponds to coordinated beamforming as defined

by 3GPP [6]. First, a multi-cell communication framework based

upon today’s conventional three-sector BS antenna configuration is

formulated, where each 120◦ sector (i.e., cell [6]) uses a uniform

rectangular array (URA) with 256 antenna elements (eight rows by

16 columns by two polarization states) for each TP.

Each antenna is a pair of co-located slant polarized antennas,

slanted at ±45◦ [21]. The spacing between adjacent co-polarized

elements is λ/2 in azimuth and λ in elevation, with λ denoting the

carrier wavelength, and the radiation pattern of each TP antenna

element given in Table I, which provides a half-power beamwidth

resolution of about 8◦ in both azimuth and elevation in the broadside

direction of the URA. A number of UEs (3 or 12 in this work),

each with an eight-element URA (two rows by two columns by

two polarization states) and four RF chains (for up to four streams

per user), are randomly dropped in each cell over 2D distances

of 10 m to the cell radius (e.g., 50 m or 200 m) [23]. URAs are

considered because they are able to form beams in both azimuth and

elevation dimensions, since exploiting the zenith characteristics of

the propagation channel will be essential for enhanced performance

at mmWave frequencies [25].

We consider a mmWave system with three cells (where each

cell is a 120◦ sector), each having one TP and multiple UEs, as

shown in Fig. 1(a). Only three cells are considered since interference

caused by farther cells will be reduced, and analysis is simplified

for a homogeneous multi-cell network with both intra- and inter-

cell interference. The users in each cell are distributed uniformly

and randomly with T-R separation distances ranging from 10 m to

the cell radius [21], [23]. By assuming 95% of the area in a cell

has an SNR larger than or equal to 5 dB, the upper bound of the

T-R separation distance is calculated and rounded to 200 m for

both models for fair comparison. The 50 m cell radius is set for

comparison purposes. It is assumed that perfect CSI is available

at both the home-cell TP and interfering TPs. This assumption,

at first sight, may seem naive. However, there are several reasons

for this: First, unlike previous studies, the central focus of this

paper is to devise a general multi-cell analysis methodology to

approximate the downlink expected per-cell spectral efficiency with

hybrid processing (joint design of analog and digital beamforming

networks) and channel models developed for 5G mmWave frequen-

cies. Under this most general scenario, it is extremely difficult, if

not intractable, to make analytical progress without perfect channel

knowledge. Second, in line with [26], this assumption is reasonable

in scenarios with low terminal mobility, where exploiting time

division duplexing, a large fraction of the channel coherence interval

can be spent on uplink training. Finally, the results obtained from

the subsequent analysis and evaluation can be treated as a useful

upper bound on what may be achieved in practice with imperfect

channel knowledge. This paper considers a carrier frequency of

28 GHz with a 100 MHz RF bandwidth [21]. However, for the

purpose of our study and following [27], we consider a narrowband

block fading propagation model since orthogonal frequency-division



Table I
SIMULATION SETTINGS USING THE 3GPP [21] AND NYUSIM [22] MODELS.

Parameter Setting

Carrier Frequency 28 GHz
Bandwidth 100 MHz [21]

Transmit Power Without Array Gain 35.2 dBm per UE (46 dBm for a cell with 12 UEs)
95% Cell-Edge SNR 5 dB

BS Antennas
three panels for the three sectors, where each panel is a uniform

rectangular array with 256 cross-polarized elements in the x-z plane [21]
BS Antenna Spacing half wavelength in azimuth; one wavelength in elevation

BS Antenna Element Gain 8 dBi [21]
BS Antenna Element Pattern Model 2, Page 18 in 3GPP TR 36.873 Release 12 [24]

UE Antennas
uniform rectangular array consisting of eight cross-polarized

elements in the x-z plane [21]
UE Antenna Spacing half wavelength in azimuth; one wavelength in elevation

UE Antenna Element Gain 0 dBi [21]
UE Antenna Element Pattern omnidirectional [21]

Receiver Noise Figure 10 dB

(a)

(b)

Figure 1. (a) An example of the three-cell layout where there is one TP and three
UEs per cell, where each cell is a sector with an azimuth span of 120◦ served by
one URA. (b) Multi-cell HBF architecture at the TP in each cell.

multiplexing (OFDM)-like modulations are likely to be used in 5G.

B. Channel Models Used in Analysis and Simulations

Two popular channel models for 5G wireless are the 3GPP [21]

and NYUSIM [22], [28] channel models. Both models are stochastic

channel models that include basic channel model components

such as line-of-sight (LOS) probability model, large-scale path

loss model, large-scale parameters, and small-scale parameters.

However, the approaches and parameter values used in each channel

modeling steps can be significantly different, as shown in [28].

III. MULTI-CELL MULTI-USER SINGLE-STREAM HYBRID

BEAMFORMING

In this section, we investigate HBF for a multi-cell MU-MIMO

system where each TP communicates with each of its home-cell

users via a single data stream. The HBF architecture at each TP

is illustrated in Fig. 1(b), where there are K baseband precoding

units with one for each user in the same cell, one data stream

is transmitted for each home-cell user, and each baseband unit is

connected with NRF
T RF chains with NRF

T = K. Each RF chain

is connected to all of the NT TP antennas through a network of

NT phase shifters, yielding a total of NRF
T NT phase shifters. The

large numbers of antenna elements in mmWave systems require RF

precoding techniques to provide antenna beamforming for multi-

user separation. Digital precoding requires dedicated baseband and

RF hardware for each antenna element, which increases cost, com-

plexity, and power consumption. The spectral efficiency achieved

via this approach is called the fully digital spectral efficiency.

Reduction of implementation complexity is a motivation to look

at other forms of precoding that achieve spectrum efficiency similar

to the fully digital case. Coverage improvement in the spatially

sparse mmWave channel motivates the use of transceiver structures

with RF antenna processing, where the mmWave multipath spatial

sparsity limits the numbers of simultaneous users. Therefore, best-

case system spectral efficiency (close to the fully digital spectrum

efficiency) can be achieved with hybrid beamforming (HBF) using

much less hardware (especially RF chains) [23], [25]. HBF has

two types of precoding, analog precoding and digital precoding.

Analog precoding is implemented via phase shifters connecting

each antenna element in an array to form the required spatially

sparse beam patterns. The analog beamforming stage also plays a

significant role in forming beam patterns to either enhance desired

signal power or mitigate pattern leakage from a TP to undesired

users. Digital precoding is implemented at baseband and is lower

in dimension relative to the analog precoders as the numbers of

multiple users are few due to sparsity. Both precoders work in

tandem to separate the users as shown in Figs. 1(b) and 4. The angle

information in the phase shifters is based on feedback from the UE

— typically given in the form of a beam ID index — enabling a

TP to choose from a number of preselect beams. However, in this

work, we assume the ideal case with perfect angular resolution for

the phase shifters available at the transmitter.

Each user is assumed to have either a single antenna or an antenna



array with analog beamforming only, for analytical and practical

feasibility. For TP i and user k in cell l, the 1 × NT downlink

channel is denoted as hk,l,i, the NT×NRF
T RF precoding matrix is

FRFi
(NRF

T ≪ NT), and the NRF
T × 1 baseband precoding vector

is fBBk,i
. The 1×NRF

T effective channel ȟk,l,i after RF precoding

is:
ȟk,l,i = hk,l,iFRFi

(1)

where FRFi
is designed based on Algorithm 1 in [29]. The K×NRF

T

composite effective channel from TP i to all the K users in cell l
is expressed as:

Ȟl,i = [ȟ
H
1,l,i, ȟ

H
2,l,i, ..., ȟ

H
K,l,i, ]

H (2)

where the superscript H denotes conjugate transpose. The received

signal at user k in cell l is:

yk,l =

√

PT

ηlPLk,l,l
ȟk,l,lfBBk,l

sk,l

︸ ︷︷ ︸

Desired Signal

+
∑

(m,i) 6=(k,l)

√

PT

ηiPLk,l,i
ȟk,l,ifBBm,i

sm,i

︸ ︷︷ ︸

Interference

+ nk,l
︸︷︷︸

Noise

(3)

where PT represents the total transmit power in Watts at each

TP, PLk,l,i denotes the large-scale distance-dependent path loss in

Watts1, including shadow fading, from TP i to user k in cell l. Fur-

thermore, ηl = ||FRFl
FBBl

||2F is a scaling factor to satisfy the total

transmit power constraint ||√PTFRFl
FBBl

/
√
ηl||2F = PT, where

F denotes the Frobenius norm, and FBBl
= [fBB1,l

, ..., fBBK,l
] ∈

C
NRF

T
×K . Note that sk,l represents the desired transmitted signal

for user k in cell l with E[|sk,l|2] = 1, and nk,l ∼ CN (0, N0) is

complex Gaussian noise with variance N0. The signal model (3)

generally applies to both LOS and non-line-of-sight (NLOS) en-

vironments, and the LOS/NLOS state in each channel realization

is stochastic and determined by the LOS probability model in the

underlying channel model. The SINR of user k in cell l is therefore:

SINRk,l =

PT

ηlPLk,l,l
|ȟk,l,lfBBk,l

|2
∑

(m,i) 6=(k,l)

PT

ηiPLk,l,i
|ȟk,l,ifBBm,i

|2 +N0

(4)

The expected per-user SINR can be obtained by calculating

E[SINRk,l]. The exact evaluation of E[SINRk,l], however, requires

knowledge of the ”exact” probability density of SINRk,l. This is

usually unknown (particularly for ray-based channel models) and is

extremely difficult if not intractable to characterize analytically in

an a priori fashion. This has led many related works using simple

statistical channel models to approximate the SINR expectation

via the classical first-order Delta approximation as in [20], [30]

and references therein. In line with these, we also leverage this

approximation and note that the ultimate accuracy of the approxi-

mation relies on the variance of the interference power being small

relative to its mean value. This is possible to achieve for scenarios

with moderately large values of NT, and can be mathematically

seen via the application of the multivariate Taylor series expansion

of the SINR around the mean of the signal over the mean of

the interference powers [20], [30]. While exact analysis of this

1Note that generally path loss is defined in the dB scale representing a signal scale
level, while in (3) it is defined in the linear scale for ease of calculation.

approximation is outside the scope of our study since we leverage

the simple approximation introduced in [20], [30], we point out that

its accuracy is characterized by Lemma 1 and Appendix I in [30].

Hence, the expected per-user SINR can be approximated as:

E[SINRk,l] ≈
PT

η̃lPLk,l,l
E[|ȟk,l,lfBBk,l

|2]
∑

(m,i) 6=(k,l)

PT

η̃iPLk,l,i
E[|ȟk,l,ifBBm,i

|2] +N0

(5)

where η̃l = E[ηl] and η̃i = E[ηi]. In what follows, the expected

values in the numerator and denominator of (5) are derived sepa-

rately using approximated densities for an arbitrary eigenvalue and

a joint pair of arbitrary eigenvalues of both signal and interference

channels for both models. The approximated density for an arbitrary

eigenvalue is obtained via simulations, followed by the derivation

of the approximated density for a joint pair of arbitrary eigenvalues

detailed below.

A. Channel Eigenvalue Distribution

The EVDs are to determine the expected SINR, which is in turn

needed to determine the ergodic spectral efficiency. The EVDs for

uncorrelated and correlated Wishart matrices are presented in [14]–

[18]. EVDs for channels after RF precoding in HBF, however, have

not been investigated to the authors’ best knowledge. This is because

joint processing of FRF and FBB twice alters both the magnitude

and phase of the preferential channel directions, and therefore the

complexity of exact expressions is very high. While the computation

of exact eigenvalue densities with such complex channel models

remains an open problem in multivariate statistics, we resort to

accurate approximations to facilitate the subsequent analysis. In this

subsection, we study EVDs of ȞȞ
H

for the 3GPP channel model

and the NYUSIM channel model, where Ȟ denotes the effective

channel matrix after TP RF precoding, i.e., Ȟ = HFRF. Below

are existing works on EVDs and the rationale for deriving the

approximated EVDs in our work.

• In the simplest case of uncorrelated scattering, the entries

of H are i.i.d. complex Gaussian random variables, widely

known as Rayleigh fading, HHH is an uncorrelated central

complex Wishart matrix, and the corresponding probability

density function (PDF) of an arbitrary eigenvalue of HHH is

derived in [14] via the orthogonal basis expansion of HHH

as it is non-trivial to compute the density of each eigenvalue,

even for this case.

• For the case of semi-correlated Rayleigh fading with spatial

correlation at either transmit or receive end of the link, HHH

takes the form of a correlated central complex Wishart dis-

tribution. The corresponding arbitrary eigenvalue densities are

derived in [15], [17], [18], [20], [31] for various types of spatial

correlation models.

• For an uncorrelated Ricean channel, HHH follows an uncorre-

lated non-central complex Wishart structure, whose eigenvalue

densities were derived in [16].

• LOS components pointing in certain directions can be regarded

as inducing additional spatial correlation [19]. The resultant

HHH is a correlated non-central complex Wishart matrix,

and the arbitrary eigenvalue densities for such channels were

studied in [17]–[19].

• For a channel matrix combined with RF precoding and RF

combining, it is conjectured that this is akin to inducing



spatial correlation at both ends of the link in the direction

of the boresight of the antenna (array). The antenna ele-

ments of the array are closely located (e.g., half wavelength)

hence inducing spatial correlation as well. Furthermore, with

a fixed number of scattering clusters and subpaths within

each cluster, the channel models can be statistically treated

as an arbitrary link gain pre-multiplied by a correlated random

variable dependent on the antenna array configuration and the

direction-of-departure/arrival distribution. Thus, the resultant

arbitrary eigenvalue density will be similar to the second point

mentioned above.

For the first four types of channels above, the mathematical form

of the arbitrary eigenvalue density is a product of exponential func-

tions with a finite power of the arbitrary eigenvalue upper bounded

by the minimum of the transmit and receive antenna dimension.

This is equivalent to the mathematical form of the density of a

gamma-distributed random variable [32]. Moreover, while the chi-

square and beta distributions also exhibit the above mathematical

form, they are special cases of the gamma distribution with specific

shape and rate parameters. Furthermore, the gamma distribution

results in the highest Kolmogorov-Smirnov (KS) test statistic among

all other contending distributions2. Therefore, it is reasonable to

use the gamma distribution to approximate the eigenvalue density

distribution. In what follows, to obtain approximated EVDs, we first

plot the PDFs of ordered eigenvalues via simulations, and then fit

the PDF curves with the gamma distribution by optimizing its shape

and scale parameters. Specifically, the fitting is done via Algorithm

1 given below.

To further justify and verify the generality (e.g., applicability to

different numbers of antennas at each TP and different numbers of

users per cell) of the gamma distribution to approximate PDFs of the

eigenvalues, we employ a multivariate statistical technique known

as the moment method, which matches the moments of the true dis-

tribution with the one approximated. Define X =
∑K

k=1 λk where

λk denotes the k-th largest eigenvalue of Ȟl,lȞ
H
l,l, if λ1, ..., λK can

be proved to follow a gamma distribution, then X is also gamma-

distributed. Assuming the shape and rate parameters in the gamma

distribution for X are α and β, respectively, the mean of X is µ, and

the mean of X2 is µ̃, then through some fundamental mathematical

derivation, we obtain µ = α
β , µ̃ = α(α+1)

β2 . Equivalently, we have

α =
µ2

µ̃− µ2
, β =

µ

µ̃− µ2
(6)

Therefore, it is necessary and sufficient to verify (6) for various

scenarios, e.g., different numbers of users per cell and different

numbers of TP antenna elements, where α and β are to be obtained

via mathematical fitting using the gamma distribution on simulated

eigenvalues, while µ and µ̃ are to be obtained through direct

simulations. To verify (6), we considered the following cases: (i)

64 TP antenna elements and 6 users per cell, and (ii) 256 TP

antenna elements and 3 users per cell. For each case, 1000 random

channel realizations were performed to compute the eigenvalues

of Ȟl,lȞ
H
l,l and to obtain their sum X . Then the distribution of

X was fitted using the gamma distribution which gives the shape

and rate parameters α and β. On the other hand, µ and µ̃ were

2The KS test is a widely used measure in communications theory to determine
the accuracy of an approximate statistical distribution relative to a specific system
related metric [33].

Algorithm 1 Algorithm for Fitting Eigenvalues Using the Gamma

Distribution

Require: Number of transmit antenna elements NT, number of

total receive antennas K in a cell, number of transmit RF chains

NRF
T (NRF

T ≥ K), and number of simulation realizations Nsim

1: for nsim = 1 : Nsim do

2: Generate an K × NT propagation channel matrix H (for

both models)

3: Construct the NT ×NRF
T RF precoding matrix FRF given

the array structure, using Algorithm 1 in [29]

4: Multiply H with FRF to give Ȟ = HFRF

5: Compute the eigenvalues λ′s of ȞȞ
H

by taking the eigen-

value decomposition of ȞȞ
H

: ȞȞ
H

= UΛU−1, where Λ

is a K ×K diagonal matrix consisting of eigenvalues

6: Extract all of the K eigenvalues, λ1,..., λK (in descending

order), of ȞȞ
H

and store in an array as a function of nsim

7: end for

8: Obtain the approximated PDF of the k-th largest eigenvalue of

ȞȞ
H

: For all the eigenvalues generated from the Nsim channel

realizations, extract the k-th eigenvalue λk from each channel

realization, plot their PDF using MATLAB, and fit the density

using the gamma distribution by adjusting the shape and rate

parameters

9: Find the mathematical trend of the shape (rate) parameter for the

K eigenvalues, and derive a common mathematical expression

of the shape (rate) parameter for the K eigenvalues as a function

of k.

calculated from X , which were then used to compute α and β
using (6) via the moment method. Finally, these two sets of α and

β were compared and the relative error was calculated, which are

shown in Table II. As can be observed from Table II, for both cases

with different numbers of TP antenna elements and users per cell,

the relative differences in both α and β are within ±13%, which is

small, revealing the rationality and good generality of the gamma

distribution when used to fit the eigenvalues.

For both models, the approximated PDF of the n-th largest

eigenvalue, λn, of Ȟl,lȞ
H
l,l is fitted using the gamma distribution

based on the rationale described above, which is expressed as:

fλn
(λn) ≈

ban
n λan−1

n e−bnλn

Γ(an)
, n = 1, ..., N (7)

where an and bn are the shape and rate parameters to be determined

via simulations. When K = 3, for instance, an = 1 + 20
30n and

bn = 3
20

∏n
s=1 s! for the 3GPP channel model, while an = 1 + 1

3n

and bn = 3×5n

5000 for NYUSIM. Γ(·) denotes the complete gamma

function, and N is the smaller dimension of Ȟl,l, which equals K
for the single-stream-per-user case considered in (3). Based on the

PDFs fλn
(λn) of the ordered eigenvalues, the approximated PDF of

an arbitrary eigenvalue of Ȟl,lȞ
H
l,l is derived and expressed as [15]:

fλarb
(λarb) ≈

1

K

K∑

n=1

ban
n λan−1

arb e−bnλarb

Γ(an)
. (8)

The approximated joint density of two arbitrary unordered eigenval-

ues of Ȟl,lȞ
H
l,l is given by (see Appendix-A for detailed derivation):



Table II
SHAPE AND RATE PARAMETERS IN THE GAMMA DISTRIBUTION OBTAINED VIA MATHEMATICAL FITTING AND CALCULATION USING THE MOMENT METHOD.

Scenario Fitted Using Gamma Distribution
Calculated Using
Moment Method

Relative Error

Shape
Parameter

α

64 TP Antennas, 6
UEs Per Cell

0.9786 0.8745 11.9%

256 TP Antennas, 3
UEs Per Cell

0.5329 0.6058 -12.0%

Rate
Parameter

β

64 TP Antennas, 6
UEs Per Cell

0.0036 0.0032 12.5%

256 TP Antennas, 3
UEs Per Cell

0.0020 0.0023 -13.0%

fλ,unord(λ1, λ2) ≈
1

K(K − 1)

K∑

n=1

K∑

q=1
q 6=n

(λ1λ2)
−1
[(
φn(λ1)

)2(
φq(λ2)

)2

− φn(λ1)φq(λ1)φn(λ2)φq(λ2)
]

(9)
where φn(λ) is given by (56). The approximated PDF for the n-th

largest eigenvalue of Ȟ
H
l,iȞl,i (or equivalently Ȟl,iȞ

H
l,i) (i 6= l),

where Ȟl,i represents the effective other-cell interference (OCI)

channel, is found to be:

fσn
(σn) ≈

dcnn σcn−1
n e−dnσn

Γ(cn)
, n = 1, ...,K (10)

where cn = 1 + 20
100n and dn = 10n−1

4 for the 3GPP model, and

cn = 1 + 1
30n and dn = 6n−3 for NYUSIM, when K = 3. Note

that there is variation with the coefficients in (7) and (10) for both

models. One reason for this variation is the way the underlying

channel impulse responses are generated from both models that

results in very different eigenvalues [28] shown in Fig. 2 below.

The approximated PDF for an arbitrary eigenvalue of Ȟ
H
l,iȞl,i is

given by [15]:

fσarb
(σarb) ≈

1

K

K∑

n=1

dcnn σcn−1
arb e−dnσarb

Γ(cn)
(11)

Fig. 2 illustrates the PDFs of an arbitrary (unordered) eigenvalue of

ȞȞ
H

for both desired signal and interference channels generated

for both models, which shows that the analytical expressions given

by (8) and (11) match the simulated PDFs very well.

B. Expected Per-User Signal Power

The expected per-user signal power in (5) is:

δk,l =
PT

η̃lPLk,l,l
E[|ȟk,l,lfBBk,l

|2] (12)

When RZF3 precoding is employed at baseband, the un-normalized

RZF precoding vector for user k in cell l, fBBk,l
, is the k-th column

of the NRF
T ×K matrix FBBl

, such that

FBBl
= Ȟ

H
l,l(Ȟl,lȞ

H
l,l + ξlIK)−1 (13)

The constant ξl > 0 represents the regularization parameter specific

to TP l. In this work, ξl is set to the following value based on [29],

[34]:

ξl =
KN0

PT
(14)

3Note that the performance of RZF approximates maximum ratio (MR) transmis-
sion for low SNRs and zero-forcing (ZF) for high SNRs [34], hence it is sufficient
to study RZF instead of MR and ZF.
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Figure 2. PDF of an arbitrary eigenvalue of ȞȞ
H

for signal channels (λarb) and
interference channels (σarb) for three users per cell, using the (a) 3GPP model and
(b) NYUSIM model, where Ȟ denotes the effective channel matrix after transmit
RF precoding, i.e., Ȟ = HFRF.

Through an eigenvalue decomposition, we obtain Ȟl,lȞ
H
l,l =

UΛUH4. The entries in U have an isotropic distribution for NLOS

conditions. For LOS conditions where there is a dominant specular

component, U is not isotropic, but the averaging over the random

angles-of-departure (AoDs)/angles-of-arrival (AoAs) in the array

4To facilitate the analytical study later on, a singular value decomposition (SVD)
or an economy-size SVD is first performed such that Ȟl,l = UΛ

1/2VH , which

leads to Ȟl,lȞ
H
l,l = UΛ

1/2VHVΛ
1/2UH

= UΛUH .



steering vectors makes U retain its isotropicity. Thus, the expected

value in (12) over the isotropicity of U is expressed as [19], [20],

[34]:

̺k,l = E[|ȟk,l,lfBBk,l
|2] = E

[(
K∑

a=1

λa

λa + ξl
|ul,a|2

)2]

(15)

The above (15) can be further averaged over the entries of U and

reformulated as [20], [34]:

̺k,l =
1

K(K + 1)

{

Eλ

[( K∑

a=1

λa

λa + ξl

)2
]

+ Eλ

[ K∑

a=1

( λa

λa + ξl

)2
]}

(16)

where Eλ[·] represents the expectation over the eigenvalues of

Ȟl,lȞ
H
l,l. Now we aim to calculate the expected values in (16) for

3GPP and NYUSIM channel models using the approximated PDFs

of eigenvalues derived above. For the first expectation term in (16),

it is recognized that

Eλ

[( K∑

k=1

λk

λk + ξl

)2
]

=Eλ

[
K∑

k=1

(
λk

λk + ξl

)2
]

+ Eλ

[
K∑

a=1

K∑

b=1
b 6=a

(
λa

λa + ξl

)(
λb

λb + ξl

)]

(17)

We begin by evaluating the first term on the right-hand side of (17),

yielding

sl = Eλ

[
K∑

k=1

(
λk

λk + ξl

)2
]

=
K∑

n=1

∞∫

0

λ2

(λ+ ξl)2
fλn

(λ)dλ

= K

[ ∞∫

0

λ2

(λ+ ξl)2
fλarb

(λ)dλ

]

(18)

where fλn
(·) denotes the approximated PDF for the n-th largest

eigenvalue as expressed in (7). By utilizing the joint density of

two arbitrary eigenvalues in (9), the second term on the right-hand

side of (17) can be written as (19). The second expectation in (16)

equals:

pl = Eλ

[ K∑

k=1

( λk

λk + ξl

)2
]

= sl (20)

Therefore, the expected signal power in (12) is given by:

δk,l =

(
PT

η̃lPLk,l,l

)[
2sl + ǫl

K(K + 1)

]

(21)

in which [29]

η̃l =E[||FRFl
FBBl

||2F ] ≈ Eλ

[
K∑

k=1

λk

(λk + ξl)2

]

=K

∞∫

0

λ

(λ+ ξl)2
fλarb

(λ)dλ (22)

where the approximation stems from the fact that the array response

vectors of FRFl
become orthogonal to each other as NT → ∞,

such that FH
RFl

FRFl
= INRF

T

(see (21) in [29]). Through numerous

numerical results we find that the eigenvalues of Ȟl,lȞ
H
l,l are at least

three orders of magnitude larger than ξl, thus λ
(λ+ξl)2

≈ λ
λ2 = 1

λ .

Consequently, (22) can be approximated as:

η̃l =K

∞∫

0

λ

(λ+ ξl)2
fλarb

(λ)dλ ≈ K

∞∫

λmin

1

λ
fλarb

(λ)dλ

=

K∑

n=1

∞∫

λmin

ban
n λan−2e−bnλ

Γ(an)
dλ

=

K∑

n=1

(
bn

Γ(an)
Υ
(

an − 1, bnλmin

))

(23)

where λmin = min(λarb), and Υ
(

an−1, bnλmin

)

is defined in (24)

in which Γ̃(·) represents the upper incomplete gamma function and

E1(·) denotes the exponential integral [20].

C. Expected Per-User Interference Power

The expected interference power at user k in cell l in (5) is given

by:

ςk,l =
∑

(m,i) 6=(k,l)

PT

η̃iPLk,l,i
E[|ȟk,l,ifBBm,i

|2]

=
PT

η̃lPLk,l,l

K∑

m=1
m 6=k

E[|ȟk,l,lfBBm,l
|2]

+

L∑

i=1
i 6=l

PT

η̃iPLk,l,i

K∑

m=1

E[|ȟk,l,ifBBm,i
|2]

(25)

The first term on the right-hand side of (25) denotes the inter-user

interference (IUI) within the same cell, and can be evaluated as

the difference between the total (signal plus intra-cell interference)

power from TP l to user k in cell l and the desired signal power at

user k in cell l [20]. The expected total power from TP l to user k
in cell l is given by:

γk,l =E[||ȟk,l,lFBBl
||2] = E

[ K∑

a=1

|uk,a|2λ2
a

(λa + ξl)2

]

=
1

K
Eλ

[ K∑

a=1

λ2
a

(λa + ξl)2

]

=
sl
K

(26)

where sl is given by (18). Consequently, the intra-cell interference

in (25) can be expressed as:

ςk,lIUI
=

PT

η̃lPLk,l,l

K∑

m=1
m 6=k

E[|ȟk,l,lfBBm,l
|2] = PT

η̃lPLk,l,l
γk,l − δk,l

=
PT

η̃lPLk,l,l

[
sl
K

− 2sl + ǫl
K(K + 1)

]

=
PT

η̃lPLk,l,l

[
(K − 1)sl − ǫl
K(K + 1)

]

(27)

where (21) is utilized to obtain the third equality. The second

term in (25) denotes the inter-cell interference, or OCI, and can

be formulated as:

E[|ȟk,l,ifBBm,i
|2] =E[tr{ȟ

H
k,l,iȟk,l,ifBBm,i

fHBBm,i
}]

=tr{E[ȟH
k,l,iȟk,l,i]E[fBBm,i

fHBBm,i
]}

=
1

K
tr{E[ȟH

k,l,iȟk,l,i]E[FBBi
FH
BBi

]}
(28)

The second equality in (28) holds because ȟk,l,i and fBBm,i



ǫl =Eλ

[
K∑

a=1

K∑

b=1
b 6=a

(
λa

λa + ξl

)(
λb

λb + ξl

)]

= K(K − 1)

∞∫

0

∞∫

0

(
λa

λa + ξl

)(
λb

λb + ξl

)

fλ,unord(λa, λb)dλbdλa

=

K∑

n=1

K∑

q=1
q 6=n

∞∫

0

∞∫

0

(
λa

λa + ξl

)(
λb

λb + ξl

)

(λaλb)
−1 ×

[(
φn(λa)

)2(
φq(λb)

)2 − φn(λa)φq(λa)φn(λb)φq(λb)
]

dλbdλa

=

K∑

n=1

K∑

q=1
q 6=n

{[ ∞∫

0

(
λa

λa + ξl

)
(
φn(λa)

)2
λ−1
a dλa

]2

−
[ ∞∫

0

(
λa

λa + ξl

)

φn(λa)φq(λa)λ
−1
a dλa

]2}

=

K∑

n=1

K∑

q=1
q 6=n

{[ ∞∫

0

(
λa

λa + ξl

)

fλn
(λa)dλa

]2

−
[ ∞∫

0

(
λa

λa + ξl

)

φn(λa)φq(λa)λ
−1
a dλa

]2}

(19)

Υ
(

an − 1, bnλmin

)

=







Γ̃
(
an − 1, bnλmin

)
if an > 1

E1(bnλmin) if an = 1

− (bnλmin)
an−1e−bnλmin

an−1 + 1
an−1 Γ̃

(

an, bnλmin

)

if 0 < an < 1

(24)

are independent, since fBBm,i
is only related to Ȟi,i which is

independent of ȟk,l,i when l 6= i according to (2). Note that

FBBi
= Ȟ

H
i,i(Ȟi,iȞ

H
i,i + ξiIK)−1, the second expectation in (28)

can be recast as:

E[FBBi
FH
BBi

] =E[Ȟ
H
i,i(Ȟi,iȞ

H
i,i + ξlIK)−2Ȟi,i]

=E[Ȟ
H
i,i(UΛUH + ξlIK)−2Ȟi,i]

=E[Ȟ
H
i,iU(Λ+ ξlIK)−2UHȞi,i] (29)

where the second equality stems from Ȟi,iȞ
H
i,i = UΛUH . For the

case NRF
T = K considered in this work, it follows from singular

value decomposition (SVD) that Ȟi,i = UΛ
1/2VH . Thus, (29) is

transformed to:

E[FBBi
FH
BBi

] =E[VΛ
1/2UHU(Λ+ ξlIK)−2UHUΛ

1/2VH ]

=E[VΛ
1/2(Λ+ ξlIK)−2

Λ
1/2VH ] (30)

For the first expectation in (28), one can denote Ȟ
H
l,iȞl,i = QH

ΣQ,

where Σ = diag(σ1, ..., σK), then the trace in (28) becomes:

κi =tr{E[ȟH
k,l,iȟk,l,i]E[FBBi

FH
BBi

]}

=
1

K
tr{E[ȞH

l,iȞl,i]E[FBBi
FH
BBi

]}

=
1

K
E[tr{QH

ΣQVΛ
1/2(Λ+ ξiIK)−2

Λ
1/2VH}]

=
1

K
E[tr{VHQH

ΣQVΛ
1/2(Λ+ ξiIK)−2

Λ
1/2}]

=
1

K
E

[
K∑

k=1

K∑

a=1

σa|wa,k|2
λk

(λk + ξi)2

]

(31)

where wa,k denotes the (a, k)-th entry of the unitary matrix QV.

Let r = |wa,k|2, then the PDF of r is given by [34]:

fr(r) = (K − 1)(1− r)K−2, 0 ≤ r ≤ 1 (32)

which implies

E[|wa,k|2] =
1∫

0

r(K − 1)(1− r)K−2dr =
1

K
(33)

Therefore,

κi =
1

K
E

[
K∑

k=1

K∑

a=1

σaE[|wa,k|2]
λk

(λk + ξi)2

]

=
1

K2
E

[
K∑

k=1

K∑

a=1

σa
λk

(λk + ξi)2

]

=
1

K2
Eσ

[
K∑

a=1

σa

]

Eλ

[
K∑

k=1

λk

(λk + ξi)2

]

≈ 1

K
η̃i

∞∫

0

σfσarb
(σ)dσ

(34)

where the approximation follows from (22). Based on (11), the

integral in (34) can be recast as:

̟ =

∞∫

0

σfσarb
(σ)dσ =

1

K

K∑

n=1

∞∫

0

σ
dcnn σcn−1e−dnσ

Γ(cn)
dσ

=
1

K

K∑

n=1

Γ(cn + 1)

dnΓ(cn) (35)

Plugging (35) and (23) into (34) results in:

κi =
1

K
η̃i̟ (36)

Combining the results in (27), (28), and (36), the expected per-user

interference in (25) is:

ςk,l =
PT

η̃lPLk,l,l

[
(K − 1)sl − ǫl
K(K + 1)

]

+

L∑

i=1
i 6=l

PTκi

η̃iPLk,l,i

=
PT

η̃lPLk,l,l

[
(K − 1)sl − ǫl
K(K + 1)

]

+
L∑

i=1
i 6=l

PT̟

KPLk,l,i

(37)



D. Expected Per-User SINR and Expected Per-Cell Spectral Effi-

ciency

The expected per-user SINR in (5) can be now be expressed as

a function of δk,l and ςk,l, i.e.

E[SINRk,l] ≈
δk,l

ςk,l +N0
(38)

In the derivation of (38) from (4), four approximations are

made (excluding the approximations on eigenvalue densities), i.e.

in (5), (22), (23), and (34). The approximations in (22) and (34) are

tight (usually with a relative error within ±5%). The approximation

in (23) is larger than the true value if λmin = 0 and can equal the

true value for some λmin larger than 0. The aggregate tightness

of the approximations can be seen from the subsequent numerical

results. The expected ergodic spectral efficiency for cell l can be

approximated from E[SINRk,l] as:

E[Rl] = E

[
K∑

k=1

log2(1 + SINRk,l)

]

≈
K∑

k=1

log2
(
1 + E[SINRk,l]

)

(39)

Note that (39) applies to the full range of SNR and arouses an

approximation instead of an upper bound via Jensen’s inequality, as

the value of E[SINRk,l] is itself an approximation [20], [35]. The

generality of the results derived above is worth mentioning. The

results derived above are applicable for any link SNR and channel

model, including potential special cases such as the presence of

a fixed LOS component in the channel (as long as the necessary

eigenvalue densities are known). If there is a change in the transmit

or the receive dimension, then the analytical approach is still valid,

but the approximated gamma distributed eigenvalue densities need

to be re-fitted. This is because of the mathematical complexity of

finding closed-form expressions when using such advanced channel

models as the 3GPP and NYUSIM models, as well as the additional

presence of RF beamforming.

E. Numerical Results and Discussion

The accuracy of the derived expected per-user SINR in (38) and

expected per-cell spectral efficiency in (39) is evaluated in this

subsection through comparison with numerical results for the three-

cell homogeneous network introduced in Section II with three users

per cell and the HBF architecture in Fig. 1(b). In the simulations,

the number of TP antennas was 256, the number of UE antennas

was one, the number of RF chains at each TP was three, and

the cell radius was 200 m. For each channel model, 500 random

channel realizations were carried out for each set of parameter

settings. The cumulative distribution functions (CDFs) of simulated

and approximated expected per-user SINR and per-cell spectral effi-

ciency are illustrated in Figs. 3(a) and 3(b). The expected SINR and

spectral efficiency curves denote (5) (for simulated CDF) or (38) (for

approximated CDF) and (39), respectively, where the expectation is

taken over the small-scale fading with the distribution representing

the randomness in user location (i.e., large-scale path loss and

shadow fading). It is observed from Figs. 3(a) and 3(b) that the

derived SINR and spectral efficiency approximations closely follow

the corresponding simulated values over the entire probability range.

Furthermore, the expected per-user SINR as a function of the cell-

edge SNR is illustrated in Fig. 3(c), where the average is performed

globally over both the link gains and the multipath fading. As

shown by Fig. 3(c), for both models, the analytical expressions

-20 -10 0 10 20

Expected Per-User SINR (dB)

0 

0.2

0.4

0.6

0.8

1

C
D

F

3GPP Simulated

3GPP Approximated

NYUSIM Simulated

NYUSIM Approximated

(a)

0 2 4 6 8 10 12 14

Expected Per-Cell Spectral Efficiency (bps/Hz)

0 

0.2

0.4

0.6

0.8

1

C
D

F

3GPP Simulated

3GPP Approximated

NYUSIM Simulated

NYUSIM Approximated

(b)

-20 -15 -10 -5 0 5

Cell-Edge SNR (dB)

-5

0

5

10

15

20

E
x
p
e
c
te

d
 S

IN
R

 (
d
B

)

3GPP Simulated

3GPP Approximated

NYUSIM Simulated

NYUSIM Approximated

(c)

Figure 3. (a) CDFs of expected per-user SINR and (b) CDFs of expected per-cell
spectral efficiency, with a cell radius of 200 m, a cell-edge SNR of 5 dB, and three
users per cell. (c) Expected per-user SINR versus cell-edge SNR with a cell radius
of 200 m and three users per cell.

remain sufficiently accurate over the entire cell-edge SNR range

investigated, revealing the tightness and generality of the derived

SINR approximations.

IV. MULTI-CELL MULTI-USER MULTI-STREAM HYBRID

BEAMFORMING

In this section, we investigate multi-cell multi-user HBF schemes

when multiple streams are transmitted from each TP to each of its

serving users. As the analytical derivation for the expected per-user

SINR is extremely cumbersome for the multi-stream-per-user case,

we resort to numerical simulations to evaluate the performance of

various multi-cell HBF approaches. Furthermore, it is found through

simulations that the spectral efficiency (not shown here due to

space limitations) obtained by using the TP HBF architecture in

Fig. 1(b) is lower than using the structure shown in Fig. 4, due to

the increased IUI in the former. Therefore, we focus on the HBF

architecture in Fig. 4 for multi-stream-per-user beamforming, where

at each TP the NRF
T RF chains are divided into K subsets with

MRF
T RF chains in each subset, such that the total number of TP

RF chains is NRF
T = KMRF

T . Additionally, there is a baseband

digital precoder which is connected to a subset dedicated to a user



Figure 4. Multi-cell HBF architecture at the TP in each cell. NS denotes the number
of data streams per user in each cell, K is the number of users in each cell, NRF

T

represents the total number of RF chains at each TP, MRF

T
is the number of RF

chains connected to the baseband precoder for one user, and NT denotes the number
of TP antenna elements in each cell.

in the home cell. At each user, there are NR antennas with NRF
R RF

chains and one baseband processing unit. Note that the architecture

in Fig. 4 is not suitable for the single-stream-per-user case discussed

in Section III, since for the single-stream case, there would be only

one RF chain connected with one baseband unit for each user at

the serving TP, which becomes analog beamforming, rather than

analog-digital HBF. For TP i and user k in cell l, the NR × NT

downlink channel is denoted as Hk,l,i, the NT×MRF
T RF precoding

matrix is FRFk,l
, and the MRF

T ×NS baseband precoding matrix is

FBBk,l
. The NR ×NRF

R RF combining matrix and the NRF
R ×NS

baseband combining matrix is WRFk,l
and WBBk,l

, respectively.

The received signal at user k in cell l is formulated as:

yk,l =

√

Pt

ηk,lPLk,l,l
WH

BBk,l
WH

RFk,l
Hk,l,lFRFk,l

FBBk,l
sk,l

︸ ︷︷ ︸

Desired Signal

+
∑

(m,i)
6=(k,l)

√

Pt

ηm,iPLk,l,i
WH

BBk,l
WH

RFk,l
Hk,l,iFRFm,i

FBBm,i
sm,i

︸ ︷︷ ︸

Interference

+ WH
BBk,l

WH
RFk,l

nk,l
︸ ︷︷ ︸

Noise

(40)

where Pt represents the transmit power for each user in Watts, and

is assumed to be constant regardless of the user number per cell and

the cell radius. PLk,l,i denotes the large-scale distance-dependent

path loss in Watts, including shadow fading, from TP i to user k in

cell l, ηk,l = ||FRFk,l
FBBk,l

||2F is a scaling factor to satisfy the per-

user transmit power constraint ||√PtFRFk,l
FBBk,l

/
√
ηk,l||2F = Pt.

sk,l represents the desired transmitted signal for user k in cell l
with E[sk,ls

H
k,l] = INS

, and nk,l ∼ CN (0, N0INR
) is circularly

symmetric complex Gaussian noise with variance N0. The spectral

efficiency of user k in cell l is calculated as in (41), where D in (41)

is given by:

D =
∑

(m,i)
6=(k,l)

Pt

ηm,iPLk,l,i
Hk,l,iFRFm,i

FBBm,i
FH
BBm,i

FH
RFm,i

HH
k,l,i

(42)

1) Baseline Case — No Coordination Among Cells: Let us first

consider the interference-ignorant baseline case where there is no TP

coordination among cells. Assuming only local CSI is available at

each TP, a reasonable precoding scheme is eigenmode transmission.

Let us define the effective channel matrix Ȟk,l,k,l ∈ C
NRF

R
×MRF

T

for user k in cell l as 1√
PLk,l,l

WH
RFk,l

Hk,l,lFRFk,l
, where the

RF precoding and combining matrices FRFk,l
and WRFk,l

are

designed such that ||WH
RFk,l

Hk,l,lFRFk,l
||2F is maximized. The RF

beamforming approach in Eqs. (12)-(14) proposed in [36] is applied

to obtain FRFk,l
and WRFk,l

, in which the codebooks for FRFk,l
and

WRFk,l
consist of the TP and UE antenna array response vectors

corresponding to the AoDs and AoAs associated with the desired

user, respectively [27]. Specifically, maximization of the matrix

norm, ||WH
RFk,l

Hk,l,lFRFk,l
||2F , is summarized as follows [36]:

i Initialize WRFk,l
by maximizing ||WH

RFk,l
Hk,l,l||2F [36].

ii Compute HH
k,l,lWRFk,l

WH
RFk,l

Hk,l,l and set FRFk,l
=

1√
NT

ej∠U(:,1:MRF

T
), where ∠U(:, 1 : MRF

T ) denotes the

phases of the eigenvectors associated with the MRF
T largest

eigenvalues of HH
k,l,lWRFk,l

WH
RFk,l

Hk,l,l [36].

iii Compute Hk,l,lFRFk,l
FH
RFk,l

HH
k,l,l and set WRFk,l

=
1√
NR

ej∠V(:,1:NRF

R
), where ∠V(:, 1 : NRF

R ) denotes the

phases of the eigenvectors associated with the NRF
R largest

eigenvalues of Hk,l,lFRFk,l
FH
RFk,l

HH
k,l,l [36].

The baseband precoding matrix FBBk,l
is composed of the

dominant NS right singular vectors obtained from the SVD of

Ȟk,l,k,l, and the baseband combining matrix WBBk,l
is constituted

by the dominant NS left singular vectors obtained from the SVD

of Ȟk,l,k,lFBBk,l
.

2) SLAB: In SLAB, the RF beamforming is aimed at mitigating

the dominant leakage to all the other users while enhancing the

strength of the desired signal, improved based on the leakage-

suppressing and signal-maximizing HBF in [23] by adding UE

beamforming to enhance signal. First, the (K−1)NR×NT cascaded

channel matrix consisting of all the channel matrices in cell l except

the one for user k in cell l is obtained through CSI exchange among

TPs as:

Hk,l =

[

1
√

PL1,l,l

HT
1,l,l, ...,

1
√

PLk−1,l,l

HT
k−1,l,l,

1
√
PLk+1,l,l

HT
k+1,l,l, ...,

1
√
PLK,l,l

HT
K,l,l

]T

(43)

The columns of RF beamforming matrices at each TP and UE

are selected from pre-defined beamforming codebooks that consist

of antenna array response vectors aT and aR at the TP and UE,

respectively. The matrix AT and AR are composed of aT’s and

aR’s corresponding to the AoDs and AoAs associated with the

desired user, respectively [27]. The first MRF
T − 1 columns in

the RF precoding matrix FRFk,l
is chosen from AT such that

||Hk,lFRFk,l
(:, 1 : MRF

T − 1)||2F is minimized, whose physical

meaning is using the first MRF
T − 1 RF precoding vectors to

suppress the leakage to all the other users in cell l. The remaining

column in FRFk,l
and the columns in WRFk,l

are used to maximize

||WH
RFk,l

Hk,l,lFRFk,l
(:,MRF

T )||2F , the physical meaning of which is

utilizing the remaining RF precoding vector and all the RF combin-

ing vectors to maximize the desired signal power to user k in cell l.
The baseband precoding matrix FBBk,l

and the baseband combining

matrix WBBk,l
are designed in the manner as in the baseline. The

key difference between SLAB and the signal-to-leakage-plus-noise-



Rk,l =log2

∣
∣
∣
∣
∣
INS

+
Pt

ηk,lPLk,l,l

(
WH

BBk,l
WH

RFk,l
(N0INR

+ D)WRFk,l
WBBk,l

)−1

× WH
BBk,l

H̆k,l,k,lFBBk,l
FH
BBk,l

H̆
H

k,l,k,lWBBk,l

∣
∣
∣
∣
∣

(41)

ratio (SLNR)-based approach to be introduced next is that SLAB

utilizes the RF beamforming to mitigate leakage and enhance signal,

while the SLNR-based approach uses the baseband precoder to

maximize SLNR. Their performance difference will be shown via

numerical results in Section V.

3) SLNR-Based Precoding: Directly maximizing the SINR in-

volves a challenging optimization problem with coupled variables,

thus the SLNR is utilized as an alternative optimization criterion.

In the SLNR-based TP coordination, the effective channel matrix

Ȟm,i,k,l ∈ C
NRF

R
×MRF

T is defined as 1√
PLm,i,l

WH
RFm,i

Hm,i,lFRFk,l
,

and the (KL− 1)NRF
R ×MRF

T leakage matrix is:

H̃k,l =
[

Ȟ
T
1,1,k,l, ..., Ȟ

T
k−1,l,k,l, Ȟ

T
k+1,l,k,l, ..., Ȟ

T
K,L,k,l

]T

(44)

The RF precoding and RF combining matrices FRFk,l
and WRFk,l

are designed to maximize ||WH
RFk,l

Hk,l,lFRFk,l
||2F , where

FRFk,l
and WRFk,l

are obtained in the same manner as in

the baseline case. The baseband precoding matrix FBBk,l
is

designed to maximize the SLNR as follows. The expected

received signal power prior to the baseband combining

process is given by E
[

Pt

ηk,l
sHk,lF

H
BBk,l

H̆
H

k,l,k,lH̆k,l,k,lFBBk,l
sk,l
]
,

the expected leakage power is expressed as

E
[ ∑

(m,i) 6=(k,l)

Pt

ηk,l
sHk,lF

H
BBk,l

H̆
H

m,i,k,lH̆m,i,k,lFBBk,l
sk,l
]
, and the

expected noise power is E
[
nH
k,lWRFk,l

WH
RFk,l

nk,l

]
. The SLNR

is hence formulated as in (45) [9], where H̃k,l is given by (44),

and the first equality in (45) holds since E[sk,ls
H
k,l] = INS

and E[nk,ln
H
k,l] = N0INR

. The optimal FBBk,l
that maximizes

the SLNR in (45) can be derived similarly to the precoding

matrix in [9] and is composed of the leading NS columns of

Tk,l which contains the generalized eigenvectors of the pair
{

H̆
H

k,l,k,lH̆k,l,k,l, H̃
H

k,lH̃k,l + γIMRF

T

}
, where γ satisfies:

tr(γFH
BBk,l

FBBk,l
) =

ηk,l
Pt

N0 tr(WRFk,l
WH

RFk,l
) (46)

WBBk,l
is designed as a matched filter at the receiver [9]:

WBBk,l
=

H̆k,l,k,lFBBk,l

||H̆k,l,k,lFBBk,l
||F

(47)

4) RZF: The fourth HBF strategy studied in this paper is the

HBF based on RZF transmission, which has the same RF precoding

and RF combining procedures as the baseline and SLNR-based

approaches. In RZF, the effective channel for user k in cell l after

RF precoding and combining is denoted as the NRF
R ×MRF

T matrix

Ȟm,i,k,l defined as

Ȟm,i,k,l =
1

√
PLm,i,l

WH
RFm,i

Hm,i,lFRFk,l
(48)

and the KLNRF
R ×MRF

T concatenated effective channel matrix is:

H̃k,l = [Ȟ
T
1,1,k,l, ..., Ȟ

T
k,l,k,l, ..., Ȟ

T
K,L,k,l]

T (49)

If NS = NRF
R , then the baseband precoding matrix can be set as

the NS(K(l−1)+k−1)+1th to the NS(K(l−1)+k)th columns

of FBB yielded by the RZF transmission matrix:

FBB = H̃
H

k,l

(

H̃k,lH̃
H

k,l +
KN0

Pt
I

)−1

(50)

where the regularization factor KN0

Pt
is set to maximize the SINR

of the desired user in a single cell based on Eq. (30) in [34]. The

optimal regularization factor for the multi-cell scenario is extremely

challenging to derive and is outside the scope of this paper and left

for future work. Note that RZF entails the dimension requirement

NS = NRF
R , which can be satisfied by turning off some receive RF

chains when necessary [23].

V. SIMULATION RESULTS AND ANALYSIS

Using the multi-cell MU-MIMO HBF procedures proposed above

and the system layout and settings demonstrated in Section II, spec-

tral efficiency is studied using both 3GPP [21] and NYUSIM [22]

models via MATLAB simulations. It is assumed that there are NRF
R

RF chains at each UE, and each TP communicates with each UE

via NS (NS ≤ NRF
R ) data streams. For each channel model, 400

random channel realizations were carried out for the three-user-

per-cell case, while 100 random channel realizations were carried

out for the 12-user-per-cell case. In each channel realization, UE

locations in each cell are randomly and uniformly generated with

2D T-R separation distances ranging from 10 m to the cell radius

(i.e., 50 m or 200 m).

The CDFs of per-user spectral efficiency in the three-cell MU-

MIMO system are illustrated in Fig. 5 for different cell radii and

user numbers with two steams per user. Fig. 5 shows that for

both models, the SLNR-based CoMP HBF outperforms all the

other HBF schemes in most cases, revealing its effectiveness in

suppressing both intra-cell and inter-cell interference and noise.

Another distinguishing feature is that non-CoMP SLAB appears

more effective in NYUSIM than in 3GPP as the dominant leakage is

stronger, and yields even higher spectral efficiency than the SLNR-

based CoMP method. This implies that CoMP does not necessarily

outperform non-CoMP approaches in sparse spatial channels like

NYUSIM, especially for UEs located closer to the TP. NYUSIM

predicts higher spectral efficiency as compared to the 3GPP model,

likely due to the stronger two dominant eigenmodes per user yielded

by NYUSIM channel matrices. Moreover, by comparing Figs. 5(a)

and 5(c), or Figs. 5(b) and 5(d), we see that for the majority (about

70%-90%) of the users, the spectral efficiency for the 200 m cell

radius is lower than the 50 m cell radius for all the proposed

HBF schemes with the same user number per cell and the same

transmit power per user, except for the peak spectral efficiency.

This indicates that path loss/noise, rather than interference, dictates

the spectral efficiency, since the 200 m cell radius corresponds to

weaker interference but has lower spectral efficiency in most cases.

Next, we consider the case where each TP communicates with

each of its home-cell users via one, two, and four data streams

per user. Fig. 6 depicts the 5%, 50%, and 95% CDF points of the

per-user spectral efficiency for both models for one to four streams



SLNR ≈
E

[
Pt

ηk,l
sHk,lF

H
BBk,l

H̆
H

k,l,k,lH̆k,l,k,lFBBk,l
sk,l

]

E

[

∑

(m,i) 6=(k,l)

Pt

ηk,l
sHk,lF

H
BBk,l

H̆
H

m,i,k,lH̆m,i,k,lFBBk,l
sk,l

]

+ E
[
nH
k,lWRFk,l

WH
RFk,l

nk,l

]

=
tr( Pt

ηk,l
FH
BBk,l

H̆
H

k,l,k,lH̆k,l,k,lFBBk,l
)

tr(
∑

(m,i)
6=(k,l)

Pt

ηk,l
FH
BBk,l

H̆
H

m,i,k,lH̆m,i,k,lFBBk,l
) +N0tr(WRFk,l

WH
RFk,l

)

=
tr(FH

BBk,l
H̆

H

k,l,k,lH̆k,l,k,lFBBk,l
)

tr(FH
BBk,l

H̃
H

k,lH̃k,lFBBk,l
) +

ηk,l

Pt
N0tr(WRFk,l

WH
RFk,l

)
(45)
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Figure 5. CDFs of the spectral efficiency per user with (a) a 50 m cell radius and 12 users per cell, (b) a 50 m cell radius and three users per cell, (c) a 200 m cell radius
and 12 users per cell, and (d) a 200 m cell radius and three users per cell, in the three-cell multi-user MIMO system. Each TP has four RF chains per user, and 48 and
12 TP RF chains for 12 and three users.

with a cell radius of 50 m and 12 users per cell. As revealed by

Fig. 6, for the one-stream case, SLNR and RZF yield the highest

and comparable spectral efficiency using both channel models.

In contrast, for the two-stream and four-stream cases, non-CoMP

SLAB provides comparable or even better performance than CoMP

SLNR and RZF, especially for non-cell-edge users, indicating that

SLAB is more capable of suppressing inter-stream interference, and

that coordinated scheduling/beamforming may only be needed for

cell-edge users.

Besides spectral efficiency, energy efficiency is also an important

performance metric for wireless systems [3], [4]. In fact, the

original motivation to consider HBF in [27] was to reduce hardware,

complexity, and power consumption — to thereby improve energy

efficiency. To investigate energy efficiency of mmWave systems

using HBF and the 3GPP and NYUSIM channel models, we

compare the energy efficiency using SLNR HBF for corresponding

to the spectral efficiency shown in Fig. 5(a), with a 100 MHz RF

bandwidth, where power consumptions of the RF components in

this table are based on [37]. Table III lists the energy efficiency

comparison results, which demonstrates that NYUSIM generally

yields higher energy efficiency.

VI. CONCLUSIONS

In this paper, we considered multi-cell multi-user communication

in mmWave systems, derived analytical expressions for expected

SINR and spectral efficiency for the single-stream-per-user case, and



Table III
ENERGY EFFICIENCY COMPARISON BETWEEN 3GPP AND NYUSIM MODELS USING SLNR HBF FOR CORRESPONDING TO THE SPECTRAL EFFICIENCY SHOWN IN

FIG. 5(A), WITH A 100 MHZ RF BANDWIDTH. POWER CONSUMPTIONS OF THE RF COMPONENTS IN THIS TABLE ARE BASED ON [37]. P DENOTES POWER

CONSUMPTION.

TP
RF Chains #→P Phase Shifters #→P PAs #→P Splitters #→P Combiners #→P DACs #→P

4→163.2 mW 1024→2048 mW 4→6622.6 mW 4→78 mW 256→4992 mW 4→3200 mW

UE
RF Chains #→P Phase Shifters #→P LNAs #→P Splitters #→P Combiners #→P ADCs #→P

4→163.2 mW 32→64 mW 4→156 mW 8→156 mW 4→78 mW 4→3200 mW
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Figure 6. CDFs of the per-user spectral efficiency of the three-cell multi-user
MIMO system using the HBF algorithms proposed in this paper for 3GPP [21]
and NYUSIM [22] channel models for the cases of (a) two streams, and (b) four
streams per user.

proposed and compared four HBF approaches for the multi-stream-

per-user case based on the assumption that base stations in different

cells have full CSI and can exchange the CSI, but not the user data,

among each other, such that they can take into account both intra-

cell and inter-cell interference when designing precoding matrices.

Numerical results show that the derived analytical expected SINR

and spectral efficiency have good accuracy and analytical tractabil-

ity. Non-CoMP HBF methods (e.g., SLAB) can provide comparable

or even higher spectral efficiency than CoMP based on coordinated

scheduling/beamforming in most cases, thus CoMP may only be

needed for cell-edge users. Moreover, the behaviors of the four

proposed multi-stream HBF approaches are affected by the model

used, and the interference and SNR level proportional to the cell

radius, the number of users per cell, and the number of streams per

user.
APPENDIX

Eigenvalue distribution in (9): The joint density of the ordered

eigenvalues λ1 ≥ ... ≥ λK of Ȟl,lȞ
H
l,l is given by [14]:

fλ,ordered(λ1, ..., λK) =A−1
K∏

n=1

fλn
(λn)

K∏

n<j

(λn − λj)
2,

λ1 ≥ ... ≥ λK ≥ 0 (51)

where A is a normalizing factor. The unordered eigenvalues then

have the density [14]:

fλ(λ1, ..., λK) =(K!A)−1
K∏

n=1

fλn
(λn)

K∏

n<j

(λn − λj)
2

(52)

Note that
∏K

n<j(λn − λj) is the determinant of a Vandermonde

matrix [14]. By applying the Gram-Schmidt orthogonalization pro-

cedure to the sequence 1, λ, ..., λK−1 in the space of real-valued

functions with the orthogonality relationship:

∞∫

0

φn(λ)φj(λ)λ
−1dλ = δnj (53)

(52) can be transformed to:

fλ(λ1, ..., λK) =C
∑

α,β

(−1)per(α)+per(β)
∏

n

φαn
(λn)φβn

(λn)λ
−1
n

(54)

where the sum is over all possible permutations α, β of {1, ...,K},

and per(·) denotes the sign of the permutation. Integrating the right



hand side of (54) over λ2, ..., λK , we obtain:

f(λ1) =C
∑

α,β

(−1)per(α)+per(β)φα1
(λ1)φβ1

(λ1)λ
−1
1

∏

n≥2

δαnβn

=C(K − 1)!

K∑

n=1

(
φn(λ1)

)2
λ−1
1

=
(K − 1)!

K!

K∑

n=1

(
φn(λ1)

)2
λ−1
1 =

1

K

K∑

n=1

(
φn(λ1)

)2
λ−1
1

(55)

where the third equality follows from the fact that
(
φn(λ1)

)2
λ−1
1

integrates to unity and hence C must equal 1/K!. Comparing (55)

with (8), we observe that

φn(λ) =

√

ban
n λane−bnλ

Γ(an)
(56)

Integrating the right hand side of (54) over λ3, ..., λK , we obtain

the joint density in (9):

f(λ1, λ2) =C
∑

α,β

(−1)per(α)+per(β)φα1
(λ1)φβ1

(λ1)λ
−1
1

× φα2
(λ2)φβ2

(λ2)λ
−1
2

∏

n≥3

δαnβn

=
(K − 2)!

K!

K∑

n=1

K∑

q=1
q 6=n

(λ1λ2)
−1
[(
φn(λ1)

)2(
φq(λ2)

)2

− φn(λ1)φq(λ1)φq(λ2)φn(λ2)
]

=
1

K(K − 1)

K∑

n=1

K∑

q=1
q 6=n

(λ1λ2)
−1
[(
φn(λ1)

)2(
φq(λ2)

)2

− φn(λ1)φq(λ1)φn(λ2)φq(λ2)
]

(57)
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