
Data-driven Induction of Functional Programs
Emanuel Kitzelmann1

Abstract. We present a new method and system, called IGOR2,
for the induction of recursive functional programs from few non-
recursive, possibly non-ground example equations describing a sub-
set of the input-output behaviour of a function to be implemented.

1 Introduction

Classical attempts to construct functional LISP-programs from
input/output-examples [10, 4] are analytical, i.e., a LISP-program
belonging to a strongly restricted program class is algorithmically
derived from examples. This is done by identifying repetitive syntac-
tical patterns in traces. More recent approaches, e.g. [3, 7], generate
and test programs until a program consistent with the examples is
found. Theoretically, large program classes can be induced generate-
and-test based. Yet although these latter systems use type informa-
tion, some of them higher-order functions, and further techniques for
pruning the search space, they strongly suffer from combinatorial ex-
plosion.

Also Inductive Logic Programming (ILP) [6] has originated some
methods capable of inducing recursive programs on inductive types
though ILP in general has a focus on classification. General purpose
systems capable of recursive program induction like FOIL [9] are
suitable to only a limited extent for program induction since they use
greedy search methods with inappropriate heuristics. Special purpose
systems [1] have problems similar to those described for functional
approaches.

The IGOR2 [5] method described here combines classical ana-
lytical methods with an enumerative approach in order to put their
relative strengths into effect. Induction is based on search in order
to avoid strong a priori restrictions as imposed by purely analytical
methods. But in contrast to the generate-and-test approach IGOR2
constructs successor programs during search using analytical meth-
ods. IGOR2 represents functional programs as sets of typed recursive
first-order equations. The effect of constructing these equations an-
alytically is that only equation sets entailing the example equations
are enumerated. In contrast to greedy search methods, the search is
complete—only programs known to be inconsistent are ruled out.

Compared to purely analytical systems, IGOR2 is a substantial ex-
tension since the class of inducible programs is much larger. E.g., all
sample programs from [4, page 448] can be induced by IGOR2 but
only a fraction of the sample problems in [5, Sect. 5] can be induced
by the system described in in [4]. Compared to ILP systems capable
of inducing recursive functions and recent enumerative functional
methods like FOIL [9] and MAGICHASKELLER [3] IGOR2 mostly
performs better regarding inducability of programs and/or induction
times [2].

1 University of Bamberg, Germany, email: emanuel.kitzelmann@uni-
bamberg.de

2 General Method
Given a set E of example equations of the form F (a) = r for any
number of target functions F to be implemented as well as for al-
ready implemented background functions which may be used by the
induced program IGOR2 returns a set of recursive equations P con-
stituting a functional program which is correct w.r.t. the example
equations in that it evaluates the left-hand sides (lhss) of the example
equations to their right-hand sides (rhss). Even if example equations
may contain variables, we call lhs arguments example input and rhss
example output in the following.

There are infinitely many correct solutions P , one of them E itself.
In order to select one or at least a finite subset of the possible solu-
tions at all and a “good” solution in particular, IGOR2—like almost
all inductive inference methods—is committed to a preference bias.
IGOR2 prefers solutions P which partition the examples in fewer
subsets, i.e., programs with fewer case distinctions. Case distinctions
are realised by disjoint patterns in the equation lhss. This concept is
known as pattern matching in functional programming. Additionally
simple forms of conditions to restrict the applicability of an equa-
tion like equality of pattern variables are used but not described in
this paper. The search for solutions is complete, i.e., programs with
the least number of case distinctions are found. This preference bias
assures that the recursive structure in the examples as well as the
computability by predefined functions is best possible covered.

Example From appropriate type declarations and the examples2

Rev([]) = [], Rev([X]) = [X],

Rev([X, Y]) = [Y, X], Rev([X, Y, Z]) = [Z, Y, X],

Rev([X, Y, Z, V]) = [V, Z, Y, X]

(1)

and the background equations

Last([X]) = X, Last([X, Y]) = Y,

Last([X, Y, Z]) = Z, Last([X, Y, Z, V]) = V

IGOR2 induces the following equations for Rev and an auxiliary
function Init :

Rev([]) = []
Rev([X|Xs]) = [Last([X|Xs])|Rev(Init([X|Xs]))]
Init([X]) = []
Init([X1, X2|Xs]) = [X1|Init([X2|Xs])]

The induction of a program is organised as a kind of best first
search. During search, a hypothesis is a set of equations entailing the
example equations and constituting a terminating program but poten-
tially with unbound variables in the rhss, i.e., with variables in the

2 We use a syntax for lists as known from PROLOG.

rhss not occurring in the lhss. We call such equations and hypotheses
containing them unfinished equations and hypotheses. A goal state is
reached, if at least one of the best—according to the preference bias
described above—hypotheses is finished. Such a finished hypothe-
sis is terminating by construction and since its equations entail the
example equations, it is also correct.

The initial hypothesis is a program with one equation per target
function, namely the least general generalisation [8] of the exam-
ple equations. In most cases (e.g., for all recursive functions) one
equation is not enough and the rhss remain unfinished. Then for one
unfinished equation successors are computed which leads to new hy-
potheses. Now repeatedly unfinished equations of currently best hy-
potheses are replaced until a currently best hypothesis is finished.

3 Computing Successor Sets of Equations
Three operations are applied to compute successor equations: (i) Par-
titioning of the inputs by replacing the pattern p of the equation by a
set of disjoint more specific patterns; (ii) replacing the rhs by a (re-
cursive) call of a defined function; and (iii) replacing the rhs subterms
in which unbound variables occur by calls to new subprograms.

3.0.1 Refining a Pattern

Computing a set of more specific patterns, case (i), in order to in-
troduce a case distinction, is done as follows: A position in the pat-
tern p with a variable resulting from generalising the corresponding
subterms in the subsumed example inputs is identified. The inputs
are partitioned such that those with the same symbol at this posi-
tion belong to the same subset. This yields a partition of the example
equations. Now for each subset a new initial hypothesis is computed,
leading to a set of successor equations.

E.g., consider the examples (1) for Rev . The pattern of the initial
equation is simply a single variable Q, since the example inputs have
no common root symbol. The first example input consists of only
the constant []. All remaining example inputs have the list construc-
tor cons as root. I.e., two subsets are induced, one containing the
first example, the other containing the remaining examples. The lggs
of the example inputs of these two subsets are [] and [Q|Qs] resp.
which are the (more specific) patterns of the two successor equations.

3.0.2 Introducing (Recursive) Function Calls and Help
Functions

In cases (ii) and (iii) help functions are invented. This includes the
generation of examples from which they are induced. For case (ii)
this is done as follows: Function calls are introduced by matching the
currently considered outputs, i.e., those outputs whose inputs match
the pattern of the currently considered equation, with the outputs of
any defined function. If all current outputs match, then the rhs of the
current unfinished equation can be set to a call of the matched defined
function. The argument of the call must map the currently considered
inputs to the inputs of the matched defined function. For case (iii), the
example inputs of the new defined function also equal the currently
considered inputs. The outputs are the corresponding subterms of the
currently considered outputs.

For an example of case (iii) consider the Rev examples except the
first one as they have been put into one subset in the previous section.
The initial equation for these is:

Rev([Q|Qs]) = [Q2|Qs2] (2)

It is unfinished due two the two unbound variables in the rhs. Now
the two unfinished subterms (consisting of exactly the two vari-
ables) are taken as new subproblems. This leads to two new exam-
ple sets for two new help functions Sub1 and Sub2: Sub1([X]) =
X, Sub1([X, Y]) = Y, . . ., Sub2([X]) = [], Sub2([X, Y]) =
[X], The successor equation-set for the unfinished equa-
tion contains three equations determined as follows: The origi-
nal unfinished equation (2) is replaced by the finished equation
Rev([Q|Qs]) = [Sub1([Q|Qs] | Sub2[Q|Qs]] and from the new
example sets initial equations are derived.

Finally, as an example for case (ii), consider the examples for the
help function Sub2 and the unfinished initial equation:

Sub2([Q|Qs] = Qs2 (3)

The example outputs, [], [X], . . . of Sub2 match the example out-
puts for Rev . That is, the unfinished rhs Qs2 can be replaced by a
(recursive) call to the Rev -function. The argument of the call must
map the inputs [X], [X, Y], . . . of Sub2 to the corresponding inputs
[], [X], . . . of Rev , i.e., a new help function, Sub3 is needed. This
leads to the new example set Sub3([X]) = [], Sub3([X, Y] =
[X], . . . The successor equation-set for the unfinished equation (3)
contains the finished equation Sub2([Q|Qs] = Rev(Sub3([Q|Qs]))
and the initial equation for Sub3.

4 Conclusion and Future Research
IGOR2 integrates classical data-driven program induction techniques
with search. Comparisons show that this approach is competitive
with existing program induction methods regarding solvable prob-
lems and mostly solves problems faster [2]. In future work we will
extend IGOR2 to higher-order functions such that well known higher-
order functions like Map can be used in induced programs.

REFERENCES
[1] P. Flener and S. Yilmaz, ‘Inductive synthesis of recursive logic pro-

grams: Achievements and prospects’, Journal of Logic Programming,
41(2–3), 141–195, (1999).

[2] Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid, ‘Anal-
ysis and evaluation of inductive programming systems in a
higher-order framework’. Submitted to ECML’08, http:
//www.cogsys.wiai.uni-bamberg.de/publications/
ecml08submission.pdf, 2008.

[3] Susumu Katayama, ‘Systematic search for lambda expressions’, in Re-
vised Selected Papers from the Sixth Symposium on Trends in Func-
tional Programming, TFP 2005, ed., Marko C. J. D. van Eekelen, vol-
ume 6, pp. 111–126. Intellect, (2007).

[4] E. Kitzelmann and U. Schmid, ‘Inductive synthesis of functional pro-
grams: An explanation based generalization approach’, Journal of Ma-
chine Learning Research, 7, 429–454, (2006).

[5] Emanuel Kitzelmann, ‘Data-driven induction of recursive functions
from input/output-examples’, in Proceedings of the ECML/PKDD 2007
Workshop on Approaches and Applications of Inductive Programming
(AAIP’07), pp. 15–26, (2007).

[6] S. Muggleton and L. De Raedt, ‘Inductive logic programming: The-
ory and methods’, Journal of Logic Programming, Special Issue on 10
Years of Logic Programming, 19-20, 629–679, (1994).

[7] Roland Olsson, ‘Inductive functional programming using incremental
program transformation’, Artificial Intelligence, 74(1), 55–83, (1995).

[8] G. D. Plotkin, ‘A note on inductive generalization’, in Machine Intelli-
gence, volume 5, 153–163, Edinburgh University Press, (1969).

[9] J. R. Quinlan and R. M. Cameron-Jones, ‘FOIL: A midterm report’,
in Proceedings of the 6th European Conference on Machine Learning,
ed., P. Brazdil, LNCS, pp. 3–20, London, UK, (1993). Springer-Verlag.

[10] D.R. Smith, ‘The synthesis of LISP programs from examples: A
survery’, in Automatic Program Construction Techniques, eds., A.W.
Biermann, G. Guiho, and Y. Kodratoff, 307–324, Macmillan, (1984).

