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Event-driven simulation strategies were proposed recently to simulate
integrate-and-fire (IF) type neuronal models. These strategies can lead to
computationally efficient algorithms for simulating large-scale networks
of neurons; most important, such approaches are more precise than tradi-
tional clock-driven numerical integration approaches because the timing
of spikes is treated exactly. The drawback of such event-driven methods
is that in order to be efficient, the membrane equations must be solv-
able analytically, or at least provide simple analytic approximations for
the state variables describing the system. This requirement prevents, in
general, the use of conductance-based synaptic interactions within the
framework of event-driven simulations and, thus, the investigation of
network paradigms where synaptic conductances are important. We pro-
pose here a number of extensions of the classical leaky IF neuron model
involving approximations of the membrane equation with conductance-
based synaptic current, which lead to simple analytic expressions for the
membrane state, and therefore can be used in the event-driven frame-
work. These conductance-based IF (gIF) models are compared to com-
monly used models, such as the leaky IF model or biophysical models in
which conductances are explicitly integrated. All models are compared
with respect to various spiking response properties in the presence of
synaptic activity, such as the spontaneous discharge statistics, the tempo-
ral precision in resolving synaptic inputs, and gain modulation under in
vivo–like synaptic bombardment. Being based on the passive membrane
equation with fixed-threshold spike generation, the proposed gIF models
are situated in between leaky IF and biophysical models but are much
closer to the latter with respect to their dynamic behavior and response
characteristics, while still being nearly as computationally efficient as
simple IF neuron models. gIF models should therefore provide a useful
tool for efficient and precise simulation of large-scale neuronal networks
with realistic, conductance-based synaptic interactions.
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1 Introduction

Computational modeling approaches face a problem linked to the size of
neuronal populations necessary to describe phenomena that are relevant at
macroscopic biological scales, for example, at the level of the neocortex or
visual cortex. Tens to hundreds of thousands of neurons, each synaptically
linked with tens of thousands of others, organized in computational “mod-
ules” (e.g., Mountcastle, 1997), might be necessary to capture emergent
functional properties and realistic dynamic behaviors. However, simula-
tions of such modules are still beyond the limits of currently available con-
ventional computational hardware if the neuronal units, as building blocks
of the network module, are endowed with biophysically realistic functional
dynamics. In such a case, the only reasonable compromise is to trade off
complex dynamics in neuronal units with the achievable scale of the sim-
ulated network module. Indeed, reducing the neuronal dynamics down to
that of simple integrate-and-fire (IF) neurons allows the efficient modeling
of networks with tens to hundreds of thousands of sparsely interconnected
neurons (e.g., Brunel, 2000; Wielaard, Shelley, McLaughlin, & Shapley,
2001; Shelley, McLaughlin, Shapley, & Wielaard, 2002; Delorme & Thorpe,
2003; Mehring, Hehl, Kubo, Diesmann, & Aertsen, 2003; Hill & Tononi,
2005).

Another way for optimizing neural network simulations is to search
for more efficient modeling strategies. In biophysical models, neuronal dy-
namics is described by systems of coupled differential equations. Such
systems are in general not analytically solvable, and numerical meth-
ods based on a discretization of space and time remain the principal
simulation tool. A variety of techniques exist, which all have in com-
mon that the state variables of the system in question are evaluated for
specific points of a discretized time axis. In such synchronous or clock-
driven approaches, the algorithmic complexity and, hence, computational
load scale linearly with the chosen temporal resolution. The latter intro-
duces an artificial cutoff for timescales captured by the simulation and
in this way sets strict limits for describing short-term dynamical tran-
sients (Tsodyks, Mit’kov, & Sompolinsky, 1993; Hansel, Mato, Meurier, &
Neltner, 1998) and might have a crucial impact on the accuracy of simula-
tions with spike-timing depending plasticity (STDP) or dynamic synapses
(e.g., Markram, Wang, & Tsodyks, 1998; Senn, Markram, & Tsodyks,
2000).

Recently, a new and efficient approach was proposed (Watts, 1994;
Mattia & Del Giudice, 2000; Reutimann, Giugliano, & Fusi, 2003) that sets
the algorithmic complexity free from its dependence on the temporal res-
olution and, thus, from the constraints imposed on timescales of involved
biophysical processes. In such asynchronous or event-driven approaches, the
gain in accuracy is counterbalanced by the fact that the computational load
scales linearly with the number of events, that is, with the average activity,
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in the network. The latter strongly constrains the dynamic regimes which
can be simulated efficiently. However, a coarse evaluation of this activity-
dependent computational load suggests that the event-driven simulation
strategy remains an efficient and more exact alternative to clock-driven ap-
proaches if cortical activity typically seen in vivo is considered (for a review,
see Destexhe, Rudolph, & Paré, 2003).

The event-driven approach was successfully applied in a variety of con-
texts. These range from networks of spiking neurons with complex dy-
namics and focused on hardware implementations (Watts, 1994; Giugliano,
2000; Mattia & Del Giudice, 2000), up to networks of several hundreds of
thousands of neurons modeling the processing of information in the visual
cortex (Delorme, Gautrais, van Rullen, & Thorpe, 1999; Delorme & Thorpe,
2003). Recently, stochastic neuronal dynamics was made accessible to the
event-based approach based on the analytic expression of the probability
density function for the evolution of the state variable (Reutimann et al.,
2003). This approach is applicable in cases in which neuronal dynamics can
be described by stochastic processes, such as intrinsically noisy neurons or
neurons with synaptic noise stemming from their embedding into larger
networks. The latter provides an efficient simulation strategy for study-
ing networks of interacting neurons with an arbitrary number of external
afferents, modeled in terms of effective stochastic processes (Ricciardi &
Sacerdote, 1979; Lánský & Rospars, 1995; Destexhe, Rudolph, Fellous, &
Sejnowski, 2001).

So far, concrete applications of event-driven strategies of IF dynamics
have been restricted to current-based synaptic interactions (Mattia & Del
Giudice, 2000; Reutimann et al., 2003; Hines & Carnevale, 2004). However,
to simulate states of intense activity similar to cortical activity in vivo, in
particular high-conductance states with rapid synaptically driven transient
changes in the membrane conductance (Destexhe et al., 2003), it is nec-
essary to consider conductance-based synaptic interactions. In this letter,
we propose an extension of the classical leaky IF neuron model (Lapicque,
1907; Knight 1972), the gIF model, which incorporates various aspects of
presynaptic activity dependent state dynamics seen in real cortical neurons
in vivo. The relative simplicity of this extension provides analytic expres-
sions for the state variables, which allow this model to be used together
with event-driven simulation strategies. This therefore provides the basis
for efficient and exact simulations of large-scale networks with realistic
synaptic interactions. In the first half of this letter, we outline the basic
idea and introduce three analytic extensions of the classic leaky IF neuron
model that incorporate presynaptic-activity dependent state dynamics as
well as the state-dependent scaling of synaptic inputs. The second half of
the letter is dedicated to a detailed investigation of the dynamics of these
different models, specifically in comparison with more realistic biophysi-
cal models of cortical neurons as well as the widely used leaky IF neuron
model.
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2 Integrate-and-Fire Neuron Models with Presynaptic-Activity
Dependent State Dynamics

After a brief review of the leaky integrate-and-fire (LIF) neuron model,
the core idea behind the incorporation of specific aspects of presynaptic-
activity dependent state dynamics is presented. Based on this, three ex-
tended integrate-and-fire models of increasing complexity but with simple
analytic forms of their state variables are proposed.

2.1 The Classic LIF Neuron Model. In the simplest form of IF neuron
models, the leaky integrate-and-fire model (Lapicque, 1907; Knight, 1972),
the evolution of the state variable is described by the following first-order
differential equation,

τm
dm(t)

dt
+ m(t) = 0, (2.1)

where τm denotes the membrane time constant and m(t) the state variable
mrest ≤ m(t) ≤ mthres at time t. Upon arrival of a synaptic input at time t0,
m(t) is instantaneously updated by �m, that is, m(t0) −→ m(t0) + �m. After
that, the state variable decays exponentially with time constant τm toward a
resting state mrest (for the moment, we assume mrest = 0) until the arrival of a
new synaptic input at time t1 (see Figure 1A, cLIF). If m(t) crosses a threshold
value mthres (usually assumed to be mthres = 1), the cell fires a spike and is
reset to its resting value mrest, at which it stays for an absolute refractory
period tref. The simple form of equation 2.1 allows an explicit solution in
between the arrival of synaptic events, given by

m(t) = m(t0) e−
t−t0
τm , (2.2)

where t0 ≤ t < t1 and 0 ≤ m(t) ≤ 1.
Depending on the value of the membrane time constant τm, we will dis-

tinguish two different LIF models. First, a model with large τm, of the order
of membrane time constants typically observed in low-conductance states,
will be referred to as a classic leaky integrate-and-fire (cLIF) neuron model.
Second, a LIF model with small τm mimicking a (static) high-conductance
state will be referred to as a very leaky integrate-and-fire (vLIF) neuron
model.

2.2 LIF Neuron Models with Presynaptic-Activity Dependent State
Dynamics. In real neurons, the effect of synaptic inputs can be described
by transient changes in the conductance of the postsynaptic membrane.
This synaptic conductance component Gs(t) adds to a constant leak con-
ductance GL (the contribution of active membrane conductances will not be
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considered here for simplicity), yielding a time-dependent total membrane
conductance,

Gm(t) = GL + Gs(t) (2.3)

(see Figure 2A, top), which determines the amplitude and shape of postsy-
naptic potentials (PSPs) and, hence, the response of the cellular membrane
to subsequent synaptic inputs.

We will restrict what follows to two direct consequences of changes in
the membrane conductance caused by synaptic activity. First, a change in
Gm results in a change of the membrane time constant τm of the form

τm(t) =
C

Gm(t)
, (2.4)

where C denotes the membrane capacity (see Figure 2A, middle). This leads
to an alteration in the membrane integration time and, therefore, the shape
of the PSPs (see Figure 2A, bottom). For larger Gm, the PSP rising and decay
times will be shorter, whereas a lower Gm results in a slower membrane.
Second, a change in the membrane conductance will also result in a change
of the PSP peak height and, thus, the amplitude of the subthreshold cellular
response to synaptic stimulation.

Figure 1: Comparison of excitatory postsynaptic potentials (EPSPs) for different
neuron models. (A) The EPSP time course in biophysical models described by
a passive membrane equation with synaptic input following exponential time
course (BM exp/PME), α-kinetics (BM α), and two-state kinetics (BM 2-state) are
compared to that in a corresponding classic LIF neuron model (cLIF) for three
different total membrane conductances (1 × GL , 5 × GL , 10 × GL ; GL = 17.18 nS
corresponding to τ L

m = 22.12 ms). (B) Comparison of the EPSP time course for
the gIF models for membrane conductances as in A. (C) EPSP peak height (left)
and integral over the EPSP peak (right) for biophysical models as a function of
the total membrane conductance, given in multiples of GL . Whereas the EPSP
shape in classical IF neuron models (cLIF) remains constant, both the EPSP
peak height and integral decrease for increasing membrane conductance for the
biophysical models. (D) EPSP peak height (left) and integral over EPSP peak
(right) for the gIF models. Whereas the peak amplitude stays constant for the
gIF1 model, the decrease in the EPSP integral for this model as well as the
functional dependence of the peak height and integral for the gIF2 and gIF3
model compare well to the detailed models shown in C . Computational models
are described in appendix A; time courses of synaptic conductances and used
parameters are given in Tables 1 and 2.
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Generalizations of the IF model incorporating a time-dependent, more
precisely a spike-time-dependent (Wehmeier, Dong, Koch, & van Essen,
1989; LeMasson, Marder, & Abbott, 1993; Stevens & Zador, 1998a; Giugliano,
Bove, & Grattarola, 1999; Jolivet, Lewis, & Gerstner, 2004), membrane time
constant, have already been investigated in the context of the spike re-
sponse model (e.g., Gerstner & van Hemmen, 1992, 1993; Gerstner, Ritz,
& van Hemmen, 1993; Gerstner & Kistler, 2002). In this case, right after
a postsynaptic spike, the membrane conductance is increased due to the
contribution of ion channels linked to the spike generation. This leads to a
reduction of the membrane time constant immediately after a spike, which
shapes the amplitude and form of subsequent postsynaptic potentials (for
experimental studies showing a dependence of the PSP shape on intrinsic
membrane conductances, see, e.g., Nicoll, Larkman, & Blakemore, 1993;
Stuart & Spruston, 1998). However, in contrast to the spike response model
in which the membrane time constant is a function of the time since the
last postsynaptic spike and, hence, the postsynaptic activity, in this article
the time dependence results directly from synaptic inputs and, hence, is a
consequence of the overall presynaptic activity.

To study in more detail the scaling properties of the PSPs as a function
of the total membrane conductance, we investigated the peak amplitude
and integral of excitatory postsynaptic potentials (EPSPs) as a function of
a static membrane conductance GL for different models of postsynaptic

Figure 2: Integrate-and-fire models with presynaptic-activity dependent state
dynamics. (A) Synaptic inputs lead to transient changes in the total membrane
conductance Gm that depend on the synaptic kinetics and release statistics.
Exponential synapses, for instance, cause an instantaneous increase in the Gm,
followed by an exponential decay back to its resting (leak) value (left, top). This
change in Gm is paralleled by a transient change in the effective membrane
time constant τm (left, middle), and change in the membrane state variable m
(left, bottom). At high synaptic input rates (right), the membrane is set into a
high-conductance state with rapidly fluctuating membrane conductance and,
hence, membrane time constant. The resulting high-amplitude variations of the
membrane state variable m resemble those found in vivo during active network
states. (B) Comparison of high-conductance dynamics in the passive biophysical
model with two-state synaptic kinetics (BM), the classical LIF neuron model
(cLIF), and the gIF models (bottom). In each panel, the upper trace shows a
500 ms time course of the membrane time constant and the lower trace the
corresponding membrane state time course. The gIF3 model comes closest to
the dynamics seen in the detailed model. Computational models are described
in appendix A; time courses of synaptic conductances and used parameters are
given in Tables 1 and 2. Input rates were 10 Hz (A, left), 6 kHz (A, right), and
3 kHz (B).
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Table 1: Models and Parameters of Postsynaptic Membrane Conductances.

Exponential
Synapse α-Synapse Two-State Kinetics

Conductance
time course

G
exp
s (t) = G e− t

τs Gα
s (t) = G t

τs
e− t

τs G2s
s (t) =















Gr∞

(

1 − e−t A
)

for 0 ≤ t < tdur

Gr (tdur ) e−β(t−tdur )

for tdur ≤ t < ∞

Total conductance
per quantal
event

G
exp
total = G τs Gα

total = G τs G2s
total =

GTmaxα

A2β
× {βtdur A+

αTmax − αTmaxe−tdur A}

Excitatory G = 0.66 nS G = 0.66 nS G = 1.2 nS
conductance τs = 2 ms τs = 2 ms α = 1.1 (ms mM)−1

parameters β = 0.67 ms−1

Tmax = 1 mM
tdur = 1 ms

Inhibitory G = 0.632 nS G = 0.632 nS G = 0.6 nS
conductance τs = 10 ms τs = 10 ms α = 5 (ms mM)−1

parameters β = 0.1 ms−1

Tmax = 1 mM
tdur = 1 ms

Notes: The conductance time course, total quantal conductance, and conductance param-
eters used in this study are given for exponential synapses, α-synapses, and synapses
described by (pulse-based) two-state kinetic models (Destexhe et al., 1994, 1998; see sec-
tion A.1 for definitions). For simplicity, the time of the release t0 was set to 0. G denotes
the maximal conductance and τs the time constant describing the synaptic kinetics. In the

two-state kinetic model, tdur is the duration of transmitter release, and r∞ = αTmax
A with

A = β + αTmax, where Tmax denotes the transmitter concentration, α and β the forward
and backward transmitter binding rates, respectively. Conductance parameters for the

different models were chosen to yield the same total conductance: G
exp
total = Gα

total = G2s
total .

conductance dynamics (exponential synapse; α-synapse, see Rall, 1967;
synapse with two-state kinetics, see Destexhe, Mainen, & Sejnowski, 1994,
1998; computational models are described in appendix A). In all models,
the parameters were adjusted to yield the same total conductance applied
to the membrane for individual synaptic inputs (see Table 1). As expected,
the EPSP peak height declines for increasing membrane conductance, with
absolute amplitude and shape depending on the kinetic model used (see
Figures 1A and 1C, left). The integral over the EPSP was much less depen-
dent on the kinetic model, a consequence of the equalized total conductance
for each synaptic event, but decreased markedly for increasing GL (see Fig-
ure 1C, right).
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In the LIF neuron model, neither of these effects seen in the biophysical
model and experiments occurs. Both the EPSP peak height and the integral
over the EPSP (determined by the membrane time constant) are constant
(see Figures 1A and 1C). The question arising now is which modifications or
extensions of the LIF neuron model can account for EPSP peak height and
EPSP integral as functions of the membrane conductance. In what follows
we will present such extensions. The constructed models will be called
conductance-based (g-based) integrate-and-fire neuron models, which we refer to
as gIF neuron models.

2.3 gIF1—The Basic gIF Model. We consider the simplest transient
change in the total membrane conductance after a synaptic input, namely,
the exponential synapse. At the arrival of a synaptic event at time t0, the
synaptic contribution to Gm (see equation 2.3) rises instantaneously by a
constant value �Gs and decays afterward exponentially with time constant
τs to zero until the arrival of a new synaptic event at time t1:

Gs(t0) −→ Gs(t0) + �Gs ,

Gs(t) = Gs(t0) e−
t−t0
τs for t0 ≤ t < t1. (2.5)

Due to the additivity of conductances for this model, equations 2.5 hold
also for multiple synaptic inputs. This yields, in general, an average synap-
tic contribution to the membrane conductance whose statistical properties,
such as mean, variance, or spectral properties, are determined by the statis-
tics and functional properties of quantal synaptic release events (Rudolph
& Destexhe, 2005).

Due to the correspondence between membrane conductance and mem-
brane time constant (see equation 2.4), equations 2.5 can be translated into
corresponding changes in τm. The state of the membrane at time t is char-
acterized by a membrane time constant τm(t) obeying

1

τm(t)
=

1

τ L
m

+
1

τ s
m(t)

, (2.6)

where τ L
m = C/GL denotes the membrane time constant at the resting state

without synaptic activity and τ s
m(t) = C/Gs(t) the time-varying time con-

stant due to synaptic conductances. After the arrival of a synaptic input, τ s
m

rises instantaneously by �τ s
m = C/�Gs ,

1

τ s
m(t0)

−→
1

τ s
m(t0)

+
1

�τ s
m

. (2.7)

Due to the decay of Gs given in equation 2.5, the membrane time constant
τm increases (“decays”) after this change back to its resting value τ L

m
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according to

1

τm(t)
=

1

τ L
m

+
1

τ s
m(t0)

e−
t−t0
τs for t0 ≤ t < t1. (2.8)

This well-known translation of membrane conductance changes due to
synaptic activity into corresponding changes in the membrane time con-
stant now provides a simple way to incorporate the effect of conductance-
based synaptic activity into the IF neuron model framework. Replacing the
membrane time constant τm in the LIF model, equation 2.1, by the time-
dependent membrane time constant τm(t) given by equation 2.8, yields

τm(t)
dm(t)

dt
+ m(t) = 0, (2.9)

which describes the evolution of the neuronal state variable between two
synaptic arrivals. Equation 2.9 can be solved explicitly, leading to

m(t) = m(t0) exp

[

−
t − t0
τ L

m

−
τs

τ s
m(t0)

(

1 − e−
t−t0
τs

)

]

, (2.10)

where m(t0) and τ s
m(t0) are the membrane state and the synaptic contribution

to the membrane time constant after the last synaptic input at time t0. This
solution defines the core of the gIF models considered in this article. The
apparent difference to the LIF neuron model is that now the state variable
m(t) decays with an effective time constant that is no longer constant but
depends on the overall synaptic activity.

In contrast to the synaptic input modulated membrane dynamics in
between synaptic events, the membrane state m(t) is still updated by a
constant value �m upon arrival of a synaptic input, that is,

m(t0) −→ m(t0) + �m. (2.11)

This corresponds to a constant PSP peak amplitude, independent of the
current membrane state (see Figure 1D, left). However, due to the state-
dependent membrane time constant, the decay and, hence, shape of the
PSP will depend on the level of synaptic activity (see Figure 1B). This de-
pendence reflects in the change of the integral over the PSP, which decreases
with decreasing average membrane time constant and matches closely the
values observed in conductance-based models of synaptic kinetics (see
Figure 1; compare Figures 1C and 1D, right). We note that in subse-
quent gIF models introduced in the following sections, the constant �m in
equation 2.11 will be replaced by expressions that capture the effect of a
state-dependent scaling of the PSP peak amplitude.
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So far, only one conductance component and its impact on the membrane
time constant was considered (see equation 2.6). However, many studies in
anesthetized animals (e.g., Borg-Graham, Monier, & Frégnac, 1998; Hirsch,
Alonso, Reid, & Martinez, 1998; Paré, Shink, Gaudreau, Destexhe, & Lang,
1998; for a review, see Destexhe et al., 2003), as well as during wakefulness
and natural sleep periods, have directly shown that both excitatory and in-
hibitory synaptic conductance contributions shape the state of the cellular
membrane. Generalizing equations 2.5 to 2.10 to the situation of indepen-
dent excitatory and inhibitory synaptic inputs, we finally obtain a set of
state equations that define the dynamics of the gIF1 model. Specifically,
the inverse membrane time constant is a sum of resting state as well as
excitatory and inhibitory synaptic contributions:

1

τm(t)
=

1

τ L
m

+
1

τ e
m(t)

+
1

τ i
m(t)

. (2.12)

It “decays” with two different time constants τe and τi for excitatory and
inhibitory synaptic conductances, respectively, to its resting value τ L

m ,

1

τm(t)
=

1

τ L
m

+
1

τ e
m(t0)

e−
t−t0
τe +

1

τ i
m(t0)

e
−

t−t0
τi . (2.13)

With this, the solution of equation 2.9 is given by

m(t) = m(t0) exp

[

−
t − t0
τ L

m

−
τe

τ e
m(t0)

(

1 − e−
t−t0
τe

)

−
τi

τ i
m(t0)

(

1 − e
−

t−t0
τi

)

]

,

(2.14)

where τ e
m(t0) and τ i

m(t0) are the excitatory and inhibitory synaptic contribu-
tions to the membrane time constant at time t0. Upon arrival of a synaptic
event at time t0, the state variable and synaptic contributions of the mem-
brane time constant are updated according to

m(t0) −→ m(t0) + �m{e,i}, (2.15)

1

τ
{e,i}
m (t0)

−→
1

τ
{e,i}
m (t0)

+
1

�τ
{e,i}
m

, (2.16)

where the indices e and i denote excitatory and inhibitory synaptic inputs,
respectively.

2.4 gIF2—An Extended gIF Model. So far we have considered the effect
of synaptic activity only on the membrane time constant τm, whereas the
amplitude of individual synaptic events was kept constant. In other words,
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the update of the state variable m(t) by �m at the arrival of an synaptic
event (equations 2.11 and 2.15) was independent of the presynaptic activity.
However, for equal synaptic conductance time course and membrane state,
a leakier and, hence, faster membrane will result in an effective reduction
of the PSP amplitude (see Figures 1A and 1C, left). To extend the gIF1
model in this direction, we analytically solved the membrane equation for
a single synaptic input event described by an exponential conductance time
course (see section B.1) and approximated the obtained explicit expression
for the PSP time course by an α-function (see section B.2). This yields for the
update �m(τm(t0)) of the membrane state variable m(t) due to the arrival of
a synaptic input at time t0

m(t0) −→ m(t0) + �m(τm(t0)), (2.17)

with

�m(τm(t0)) = �m̃(τ̃m)

(

1

τ̃m
+

1

τs
+

1

�τ s
m

) (

1

τm(t0)
+

1

τs
+

1

�τ s
m

)−1

.

(2.18)

Here, τm(t0) denotes the actual membrane time constant at the time of the
synaptic event, and �m̃(τ̃m) is the reference value for the PSP peak ampli-
tude in a control state characterized by the membrane time constant τ̃m (see
section B.2). Throughout the text and in all numerical simulations, this state
was taken to be the resting state at m = mL = 0, that is, τ̃m ≡ τ L

m .
Equations 2.17 and 2.18 can be generalized to independent excitatory

and inhibitory synaptic input channels. In this case, the membrane state
variable m(t) is subject to an update

m(t0) −→ m(t0) + �m{e,i}(τm(t0)), (2.19)

with

�m{e,i}(τm(t0)) =�m̃{e,i}(τ̃m)

(

1

τ̃m
+

1

τ{e,i}
+

1

�τ
{e,i}
m

)

×

(

1

τm(t0)
+

1

τ{e,i}
+

1

�τ
{e,i}
m

)−1

. (2.20)

These equations describe the scaling of the PSP peak amplitude depending
on the actual membrane conductance (see Figure 1) and define together
with equations 2.12, 2.13, and 2.14 the dynamics of the gIF2 model.

2.5 gIF3—A gIF Model with Synaptic Reversal Potentials. Barrages
of synaptic inputs not only modulate the membrane time constant, but also
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result in a change of the actual membrane state variable due to the presence
of reversal potentials for synaptic conductances. In this case, excitatory
synaptic inputs push the membrane closer to firing threshold, whereas
inhibitory inputs in general will have the opposite effect. The average
membrane potential is determined by the actual values of inhibitory and
excitatory conductances, as well as the leak conductance, and their respec-
tive reversal potentials. To account for this effect, we extend the defining
equation for the LIF model, equation 2.9, by an actual “effective reversal
state” mrest (e.g., see Borg-Graham et al., 1998; Shelley et al., 2002) to which
the state variable m(t) decays with the membrane time constant τm(t) (see
section B.3):

τm(t)
dm(t)

dt
+

(

m(t) − mrest

)

= 0. (2.21)

Here, τm(t) is given by equation 2.8 and

mrest =

(

mL

τ L
m

+
ms

τ s
m(t0)

) (

1

τ L
m

+
1

τ s
m(t0)

)−1

, (2.22)

where mL denotes the true resting (leak reversal) state in the absence of
synaptic activity (usually assumed to be mL = 0), and ms is the value of the
state variable corresponding to the synaptic reversal. Note that in order to
allow a solution of equation B.3, mrest is assumed to stay constant between
two synaptic inputs. When a new synaptic event arrives, mrest is updated
according to equation 2.22 with a new value for τ s

m, thus endowing mrest

with an indirect time dependence.
Equation 2.21, which describes the evolution of the neuronal state vari-

able between two synaptic inputs in the presence of a synaptic reversal
potential, can be explicitly solved, yielding

m(t) = mrest +
(

m(t0) − mrest

)

exp

[

−
t − t0
τ L

m

−
τs

τ s
m(t0)

(

1 − e−
t−t0
τs

)

]

.

(2.23)

In the case of excitatory and inhibitory synaptic inputs, this solution gener-
alizes to

m(t) = mrest +
(

m(t0) − mrest

)

exp

[

−
t − t0
τ L

m

−
τe

τ e
m(t0)

(

1 − e−
t−t0
τe

)

−
τi

τ i
m(t0)

(

1 − e
−

t−t0
τi

)

]

, (2.24)
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with the generalized effective reversal state variable

mrest =

(

mL

τ L
m

+
me

τ e
m(t0)

+
mi

τ i
m(t0)

) (

1

τ L
m

+
1

τ e
m(t0)

+
1

τ i
m(t0)

)−1

. (2.25)

Finally, the change in the membrane state variable due to synaptic inputs
will bring the membrane closer to or farther away from the corresponding
synaptic reversal potential, thus yielding a change of the synaptic current
linked to the synaptic events. The latter results in an additional modulation
of the PSP peak amplitude (see Figure 3A), which appears to be particu-
larly important for inhibitory synaptic inputs. Because the synaptic reversal
potential lies in general between the resting state and the firing threshold,
inhibitory inputs can have both a depolarizing and hyperpolarizing effect
as the membrane state increases from its resting value to firing threshold
(see Figures 3A right and 3C left).

To incorporate this effect in the gIF3 model, we extended the solution
of the full membrane equation for a single exponential synaptic input (see
section B.3). From this we obtain a simple explicit expression for the PSP
peak amplitude, hence the update �m(τm(t0), m(t0)) of m(t) at arrival of a
synaptic input at time t0, as a function of both the actual total membrane
conductance and the actual membrane state (hence, the actual distance to
the reversal state):

m(t0) −→ m(t0) + �m(τm(t0), m(t0)), (2.26)

with

�m(τm(t0), m(t0)) = �m̃(τ̃m, m̃)
m(t0) − ms

m̃ − ms

(

1

τ̃m
+

1

τs
+

1

�τ s
m

)

×

(

1

τm(t0)
+

1

τs
+

1

�τ s
m

)−1

, (2.27)

where �m̃(τ̃m, m̃) denotes the reference value for the PSP peak amplitude
in a control state characterized by the membrane time constant τ̃m and
membrane state m̃ (taken to be the resting state at m = mL = 0), and ms is
the value of the state variable corresponding to the synaptic reversal.

Generalizing the model to scope with both excitatory and inhibitory
synaptic inputs, equations 2.26 and 2.27 take the form

m(t0) −→ m(t0) + �m{e,i}(τm(t0), m(t0)), (2.28)

with
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Figure 3: Excitatory and inhibitory postsynaptic potentials. (A) Comparison of
EPSPs (left) and IPSPs (right) in the two-state kinetic model (gray) and gIF3
model (black) for different membrane potentials. The arrow marks the reversal
potential for inhibition. (B) EPSP peak height for the two-state kinetic model
(left) and gIF3 model (right) as a function of the total membrane conductance,
given in multiples of the leak conductance GL = 17.18 nS, for different mem-
brane potentials ranging from the leak reversal (EL and mL , respectively) to
the firing threshold Ethres and mthres, respectively). (C) Comparison of IPSP peak
heights for the two-state kinetic model (left) and gIF3 model (right) as a function
of the total membrane conductance and different membrane potentials as in B.
Used parameters of synaptic kinetics and the time course of synaptic conduc-
tances are given in Tables 1 and 2. The membrane state values in the gIF3 model
were normalized as described in section A.3.
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�m{e,i}(τm(t0), m(t0)) = �m̃{e,i}(τ̃m, m̃)
m(t0) − m{e,i}

m̃ − m{e,i}

×

(

1

τ̃m
+

1

τ{e,i}
+

1

�τ
{e,i}
m

)

×

(

1

τm(t0)
+

1

τ{e,i}
+

1

�τ
{e,i}
m

)−1

, (2.29)

where m{e,i} denotes the synaptic reversal state variable for excitation
(index e) and inhibition (index i), respectively. The two last equations, to-
gether with equations 2.12, 2.13, 2.24, and 2.25, define the dynamics of the
gIF3 model. Due to the incorporation of the effect of the synaptic reversal
states, the gIF3 model is the most realistic of the introduced gIF models with
presynaptic-activity dependent state dynamics and state-dependent synap-
tic input amplitude, and describes best the behavior seen in the biophysical
model (see Figures 1 and 3).

3 Response Dynamics of gIF models

In this section, we compare the spiking response dynamics of the introduced
gIF models with presynaptic-activity dependent state dynamics to that of
biophysical models with multiple synaptic inputs described by two-state
kinetics, to the passive membrane equation with exponential conductance-
based synapses and fixed spike threshold, as well as with the behavior seen
in leaky IF neuron models. In the following section, we first characterize
the statistics of spontaneous discharge activity. In section 3.2, we study the
temporal resolution of synaptic inputs in the different models. Finally, in
section 3.3, we investigate the modulatory effect of synaptic inputs on the
cellular gain. Computational models are described in appendix A, with
parameters provided in Tables 1 and 2.

3.1 Spontaneous Discharge Statistics. Spontaneous discharge activity
in the investigated models was evoked by Poisson-distributed random re-
lease at excitatory and inhibitory synaptic terminals with stationary rates
that were selected independently in a physiologically relevant parameter
regime (see appendix A). In the biophysical model, 10,000 input chan-
nels for excitatory and 3000 for inhibitory synapses releasing in a range
from 0 to 10 Hz each were used, thus yielding total input rates from
νe = 0 to 100 kHz for excitation and from νi = 0 to 30 kHz for inhibition
(see section A.1). The cell’s output rate (νout) increased gradually for in-
creasing νe up to 300 Hz for extreme excitatory drive (see Figure 4, BM).
Moreover, in the investigated input parameter regime, a nearly linear rela-
tionship between excitatory and inhibitory synaptic release rates yielding
comparable output rates, indicated by a linear behavior of the equi-νout lines,
was observed.
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Table 2: Parameter Values for Integrate-and-Fire Neuron Models.

cLIF/vLIF gIF1 gIF2 gIF3

Membrane τ L
m = 22.12 ms τ L

m = 22.12 ms τ L
m = 22.12 ms τ L

m = 22.12 ms
properties (τ L

m = 4.42 ms) mL = 0
Excitatory �me = 0.0095 �me = 0.0095 �me = 0.0095 �me = 0.0076

inputs τe = 2 ms τe = 2 ms τe = 2 ms
�τ e

m =

575.96 ms
�τ e

m =

575.96 ms
�τ e

m = 575.96 ms
me = 2.667

Inhibitory
inputs

�mi = −0.0072 �mi =

−0.0072
�mi =

−0.0072
�mi = 0.0014

τi = 10 ms τi = 10 ms τi = 10 ms
�τ i

m =

601.3 ms
�τ i

m =

601.3 ms
�τ i

m = 601.3 ms
mi = 0.167

Notes: Values for the passive (leak) membrane time constant τ L
m , excitatory and inhibitory

synaptic time constants (τe and τi , respectively), synaptic reversal states (me and mi ), as
well as changes in the membrane state variables (�me and �mi ) and synaptic contribu-
tions to the membrane time constant (�τ e

m and �τ i
m) for excitatory and inhibitory synaptic

inputs, respectively, are given. For definitions, see section 2 and appendix A.

In the classic LIF (cLIF) neuron model, single independent input chan-
nels for excitatory and inhibitory synapses were used with rates that were
downscaled by a factor of 5 compared to the total input rates in the bio-
physical model (0 ≤ νe ≤ 20 kHz and 0 ≤ νi ≤ 5 kHz for excitatory and
inhibitory inputs, respectively) to account for the larger membrane time
constant (see section A.3). Although the firing rates were, in general, larger
than for corresponding input values in the biophysical model, also here a
linear dependence of the equi-νout lines was found (see Figure 4, cLIF). The
latter suggests that inhibitory inputs play a less crucial role in determining
the output rate.

A qualitatively similar behavior was also observed in the very leaky IF
(vLIF) neuron model, which mimics a (static) high-conductance state by
a small membrane time constant (see section A.3). In this case, two sin-
gle independent input channels for excitatory and inhibitory inputs with
rates equivalent to the total input rates in the biophysical model were used.
Although the firing rates were, in general, larger than for corresponding
input values in the cLIF as well as biophysical model (see Figure 4, vLIF),
the linear dependence of νout on νe and νi corresponded qualitatively to that
seen in both of these models, with a large slope as in the cLIF model. Both
the overall higher output rates and the diminished modulatory effect of
inhibitory inputs can be viewed as a direct consequence of a static mem-
brane time constant or, equivalently, membrane conductance. This contrasts
the situation seen in models driven with synaptic conductances, where the
intensity of synaptic inputs determines the conductance state of the mem-
brane. Here, at high input rates, the high membrane conductance will shunt
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Figure 4: Spontaneous discharge rate as function of the total frequency of in-
hibitory and excitatory synaptic inputs. The biophysical model with two-state
kinetic synapses (BM) is compared with the passive membrane equation (PME),
the classical leaky and very leaky IF (with five times reduced membrane time
constant) neuron models (cLIF and vLIF, respectively), as well as the gIF neu-
ronal models with presynaptic-activity dependent state dynamics (gIF1, gIF2,
gIF3). The synaptic input in the biophysical model consisted of 10,000 inde-
pendent excitatory and 3000 independent inhibitory channels, releasing with
individual rates between 0 and 10 Hz each. For all other models, two indepen-
dent input channels for excitation and inhibition releasing at rates between 0
and 100 kHz (for excitation) and 0 and 30 kHz (for inhibition) were used (ex-
cept for the leaky IF, in which case the rates varied between 0 and 20 kHz for
excitation and 0 and 6 kHz for inhibition). Used parameters of synaptic kinetics
and the time course of synaptic conductances are given in Tables 1 and 2 as well
as appendix A.
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the membrane and in this way effectively lower the impact of individual
synaptic inputs. The latter results in lower average firing rates compared
to models with smaller and fixed membrane conductance but comparable
synaptic input drive.

The modulatory effect of inhibitory inputs for an equivalent synaptic
input regime was larger in all gIF models (see Figure 4, gIF1 to gIF3).
Specifically, in the gIF1 and gIF3 models, the slope of the equi-νout lines
was smaller than in the LIF models. Indeed, the gIF3 model reproduced
best the qualitative behavior seen in the biophysical model, with only the
output rate being larger for comparable input settings. Major deviations
from the behavior seen in the biophysical model were observed only for the
gIF2 model. In this case, the equi-νout lines showed a nonlinear dependence
on νe and νi , with firing rates that were markedly lower in most of the
investigated parameter regime.

To explain this finding, we note that in the gIF2 model, only the im-
pact of the total conductance state on the PSP peak amplitudes is in-
corporated, while the current value of the membrane state variable and,
hence, the distance to synaptic reversal potentials is not considered (see
section 2.4). In general, a higher membrane conductance, as seen for higher
input rates of both excitation and inhibition, will yield smaller PSP ampli-
tudes. On the other hand, as described in section A.3, the amplitude of the
PSPs was adjusted to those seen in the biophysical model close to firing
threshold. Here, EPSPs have a smaller amplitude due to the smaller dis-
tance to the excitatory reversal potential, whereas for IPSPs, the opposite
holds. As observed in the gIF2 model, this will lead to an effective decrease,
or asymptotic “saturation,” of the firing rate, in particular for high input
rates where the PSP peak amplitudes are rescaled to smaller values due to
the shunting effect of the membrane. The output rate can be modulated by
tuning the amplitude values for PSPs (not shown), but without qualitative
change in the nonlinear behavior seen in Figure 4 (gIF2).

In order to decompose the effect of active and synaptic conductances
on the discharge activity, simulations of the passive membrane equation
with fixed spike threshold were performed (see section A.2). Interestingly,
the slope of the equi-νout lines was much smaller than in the biophysi-
cal as well as gIF3 model, and the firing rate increased much faster be-
yond 300 Hz for increasing νe than in all other investigated models (see
Figure 4, PME). This indicates that incorporating a realistic PSP shape alone
without the transient effects of spike-generating conductances on the mem-
brane time constant and spike threshold does not suffice to reproduce a
realistic spontaneous discharge behavior. Surprisingly, the gIF3 model, al-
though being dynamically simpler, reproduced the spiking behavior seen
in the biophysical model much better (see Figure 4). A possible explanation
for this observation might be that the instantaneous rise of the membrane
state variable on arrival of a synaptic inputs mimics a marked transient
increase in the total membrane conductance and, hence, a faster membrane
due to spike generation. This instantaneous update could effectively relax
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the lack of the temporal effect of active membrane conductances and thus
lead to a behavior closer to that seen in the biophysical model.

To further characterize the statistics of the discharge activity in the dif-
ferent models, we calculated the coefficient of variation CV , defined by

CV =
σISI

I SI
, (3.1)

where σISI denotes the standard deviation of the interspike intervals (ISIs)
and I SI the mean ISI. In all investigated models, higher firing rates led to a
more regular discharge, that is, smaller CV values (see Figure 5). However,
whereas in the biophysical model and for the passive membrane equation
the regime with high discharge variability was broad and increased for
higher input rates (see Figure 5, BM and PME), CV values around unity were
obtained in the LIF models only for a very tight balance between inhibitory
and excitatory drive. The latter depended in the investigated parameter
regime only minimally on the input rates (see Figure 5, cLIF and vLIF). This
finding of a tight balance is in agreement with previously reported results
(e.g., Softky & Koch, 1993; Rudolph & Destexhe, 2003). Interestingly, no
differences were observed between the cLIF and vLIF models, although the
membrane time constant in the vLIF model was five times smaller than in
the cLIF model, thus yielding a much faster decay of individual PSPs. This
indicates that the required higher input rates for excitation and inhibition
and the resulting quantitatively different random-walk process close to
threshold in the vLIF model did not relax the requirement of a narrow
tuning of the synaptic input rates.

Although qualitative differences were found among the gIF models, high
CV values were observed in a generally broader regime of input frequen-
cies (see Figure 5, gIF1 to gIF3) when compared with the LIF models. The
gIF3 model came closest to discharge behavior observed in the biophysical
model. This is interesting, as it suggests that a biologically more realistic
discharge statistics can indeed be obtained with a simple threshold model
without involvement of complex conductance-based spike-generating
mechanisms (Rudolph & Destexhe, 2003). Support of this was also found in
simulations with the passive membrane equation, although here a generally
broader input regime resulting in high CV values as well as smaller slope of
equi-CV lines compared to the biophysical and gIF3 models were observed
(see Figure 5, PME). The smaller slope of the equi-CV lines in the gIF models
compared to the LIF models further suggests that here inhibitory inputs can
tune the neural discharge activity in a much broader range of driving exci-
tatory inputs. However, comparing the results obtained for the gIF3 model
with the behavior observed for the gIF1 and gIF2 model (see Figure 5, gIF1
and gIF2), both the incorporation of the state-dependent PSP amplitude
and the effect of the reversal potential on the PSP amplitude are necessary
conditions to reproduce the discharge statistics of the biophysical model.
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Figure 5: Coefficient of variation CV as function of the total frequency of in-
hibitory and excitatory synaptic inputs. The CV is defined as CV = σISI/I SI ,
where σISI denotes the standard deviation of the interspike intervals and I SI the
mean interspike interval. The biophysical model with two-state kinetic synapses
(BM) is compared with the passive membrane equation (PME), the classical
leaky and very leaky IF (cLIF and vLIF, respectively), as well as the gIF models.
Used parameters of synaptic kinetics, the time course of synaptic conductances,
and synaptic release activity are the same as for Figure 4.

In order to fully reproduce the spontaneous discharge statistics seen in
experiments (e.g., Smith & Smith, 1965; Noda & Adey, 1970; Burns & Webb,
1976; Softky & Koch, 1993; Stevens & Zador, 1998b), the high irregularity
should also stem from a Poisson process; that is, the spike trains must be
both exponentially distributed according to a gamma distribution and in-
dependent (Christodoulou & Bugmann, 2001; Rudolph & Destexhe, 2003).
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Table 3: Specific Parameter Setup Used in Some of the Simulations.

νe νi νout CV

BM 24 kHz 9.3 kHz 13.5 Hz 1.09
PME 30 kHz 8.2 kHz 12.8 Hz 0.96
cLIF 6 kHz 1.68 kHz 13.7 Hz 0.36
vLIF 26 kHz 8.4 kHz 12.5 Hz 0.80
gIF1 32 kHz 8.4 kHz 12.2 Hz 0.92
gIF2 40 kHz 6.0 kHz 11.9 Hz 0.95
gIF3 20 kHz 10.2 kHz 13.9 Hz 0.91

Notes: For all models, the synaptic input rates for excitation and inhibition (νe and νi ,
respectively) were chosen to yield an output rate νout of about 13 Hz, a high discharge
variability CV around 1 (except for cLIF and vLIF), and in the conductance-based models
(BM, PME, gIF1, gIF2, gIF3) a total input conductance about five times larger than the
leak conductance and comparable to the leak conductance of the vLIF model. For both
the cLIF and vLIF models no combination of driving frequencies yields CV values around
1 at an output rate of 13 Hz. Therefore, in the vLIF model, the input rates were chosen
by taking the inhibitory rate of the gIF1 model and adjusting the excitatory rate to yield
the desired output rate of about 13 Hz. For the cLIF model, the inhibitory input rate was
then five times reduced and the excitatory rate adjusted to yield the same νout. Model
descriptions are given in appendix A.

To test this, we chose for each model a synaptic activity that resulted in
an average output rate around 13 Hz, a value consistent with the sponta-
neous discharge rate observed in cortical neurons in vivo (e.g., Evarts, 1964;
Steriade & McCarley, 1990). Moreover, in order to account for experimental
observations in the cortex in vivo (Borg-Graham et al., 1998; Paré et al.,
1998), in all models except the cLIF model, synaptic activity was chosen to
yield an about fivefold reduced membrane time constant compared to the
leak time constant (see appendix A and Table 3).

In all cases, the ISI histograms (ISIHs) could be well fit with gamma
distributions (see Figure 6). However, only in the biophysical and the gIF
models, the behavior expected from a Poisson process, namely, gamma-
distributed ISIs and a flat autocorrelogram (Figure 6, BM and gIF1 to gIF3),
was accompanied by a high CV value around unity (see Table 3). Indeed,
the discharge in both the cLIF and vLIF models was much more regular, al-
though the ISIHs resembled gamma distributions for the examples studied
(Figure 6, cLIF and vLIF). Surprisingly, for both LIF models, no parameter
setup in the investigated parameter space yielded both a high CV and a
desired output rate around 13 Hz at the same time. Moreover, the autocor-
relogram in the LIF model showed a peak at small lag times (Figure 6, cLIF,
star), indicating that subsequent output spikes were not independent. This
behavior was mirrored in simulations of the PME model (Figure 6, PME).
Here, despite the highly irregular discharge, a pronounced peak in the ISIH
at small interspike intervals also suggests deviations from a spontaneous
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Figure 6: Typical interspike-interval histograms (ISIH) and autocorrelograms
(insets) for the biophysical model (BM), the passive membrane equation (PME),
the classical and very leaky IF (cLIF and vLIF, respectively) as well as the three
gIF models. Synaptic input rates were chosen to yield comparable output rates
and, except for the cLIF model, a five-fold decrease in input resistance compared
to the quiescent case (see Table 3). ISIHs were fitted with gamma distributions
ρISI(T) = 1

q !
ar (rT)q e−rT , where ρISI(T) denotes the probability for occurrence of

ISIs of length T and r , a , and q are parameters. Fitted parameters are: q = 3,
r = 0.091 ms−1, a = 0.737 (BM); q = 1, r = 0.042 ms−1, a = 0.824 (PME); q = 10,
r = 0.159 ms−1, a = 0.965 (cLIF); q = 1, r = 0.029 ms−1, a = 0.970 (vLIF); q =

1, r = 0.031 ms−1, a = 0.873 (gIF1); q = 1, r = 0.028 ms−1, a = 0.845 (gIF2); q =

1, r = 0.034 ms−1, a = 0.868 (gIF3).

discharge that is both independent and Poisson distributed, thus indicating
limitations of a fixed threshold spike-generating mechanism to reproduce
realistic discharge statistics.

Finally, it is interesting to note that in the ISIH of all models, a small
peak for small ISIs was observed (see Figure 6). A possible explanation is
that the models here are driven by uncorrelated synaptic inputs. In general,
correlated input leads to an increase in the variability of the membrane
state (Rudolph & Destexhe, 2005), which translates into a higher firing
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rate. In order to obtain a desired output rate, the lack of correlation in
the synaptic input has to be “compensated” for by an increase in the ratio
between excitatory and inhibitory synaptic rates. The resulting pronounced
excitatory drive causes volleys of “preferential” firing, which show up as
peaks in the ISIH.

3.2 Temporal Resolution of Synaptic Inputs. As a second compara-
tive test of the considered models, we investigated to what extent synaptic
inputs could be temporally resolved. Due to a smaller membrane time
constant and, hence, faster membrane in high-conductance states, a better
temporal resolution of synaptic inputs is expected. To test this, we comple-
mented a fixed background activity (see Table 3) with a suprathreshold peri-
odic stimulus corresponding to a simultaneous activation of 30 synapses (6
synapses in the cLIF model). The frequency of the stimulus νstim was changed
in successive trials between 1 and 200 Hz, corresponding to interstimulus
intervals Tstim ranging from 1000 to 5 ms, respectively. The response of the
cell to the periodic stimulus results in peaks at corresponding interspike
intervals TISI in the ISIH (see Figure 7A). Due to limitations in the temporal
resolution capability of the membrane and the related low-pass filtering of
synaptic inputs, TISI will in general be larger than Tstim, especially for high-
frequency stimuli. We used this “deviation” from the ideal situation, for
which the stimulus would lead to a sharp peak in the ISIH at TISI = Tstim, as

Figure 7: Temporal resolution of periodic synaptic inputs. (A) In addition to
Poisson synaptic inputs (see Table 3), a periodic stimulus of frequency νstim

between 1 Hz and 200 Hz as well as an amplitude corresponding to the simul-
taneous activation of 30 synapses (6 synapse in the cLIF model) was used. The
temporal resolution was quantified by computing the ratio between the stimulus
interval Tstim and the mode of the corresponding ISIH at TISI (see equation 3.2).
If multiple peaks were present in the ISIH (see Figure 8), the interspike interval
TISI of the leading peak was used. (B) Output frequency νout as a function of
νstim for the biophysical model (BM), the passive membrane equation (PME),
the classical and very leaky IF (cLIF and vLIF, respectively), as well as the three
gIF models. Compared to the biophysical model, the LIF neuron models yield
much lower firing rates for all stimuli (left). Only in the gIF models were the
output rates comparable to those observed in the biophysical model (right).
(C) Temporal resolution as a function of stimulus frequency. For the chosen
parameter setup, the LIF models were not able to resolve higher frequencies
beyond 30 Hz (cLIF) and 80 Hz (vLIF; see left panel). Moreover, the temporal
resolution changed in this model abruptly due to mode locking (see text). This
behavior was not seen in the biophysical model and occurred in the gIF1 and
gIF2 model (right) in a reduced fashion for high νstim. In contrast, the gIF3 model
temporally resolved inputs above 120 Hz in a reliable fashion.
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a measure of temporal resolution (Destexhe et al., 2003), namely,

Temporal resolution =
Tstim

TISI

. (3.2)

Already for the output rates νout as a function of the stimulus frequency,
marked differences between the biophysical, PME and gIF models, on one
hand, and the leaky IF neuron models, on the other hand, were found
(see Figure 7B). In the conductance-based models, νout increased in coher-
ence with the input frequency, νout ∼ νstim, until an input frequency of about
80 Hz (see Figure 7B, solid lines). For the given parameter setup, this fre-
quency marks the stimuli for which temporal resolution started to decrease
(see below). In contrast, in the LIF models, the rise of the output rate as a
function of νstim was much smaller and, surprisingly, nearly independent of
the membrane time constant (see Figure 7B, dashed lines).

Larger membrane time constants impair the ability of the neuronal mem-
brane to temporally resolve fast synaptic inputs. Theoretically, no inputs
faster than the total membrane time constant can be reliably resolved, thus
making the neuronal membrane a low-pass filter. In agreement with this, in
the cLIF model, the temporal resolution dropped markedly at around 30 Hz
(see Figure 7C, light gray dashed line), whereas the smaller membrane time
constant in the vLIF model allowed resolving inputs up to 80 Hz (see
Figure 7C, dark gray dashed line). Although the membrane time constant
in the vLIF model corresponded to that in the biophysical model, in the
latter case no sharp drop but a smooth decrease in the temporal resolution
measure for increasing νstim was observed (compare the dark gray dashed
and black solid lines in Figure 7C).

This abrupt change in the response behavior is typical for IF neurons
and at least partially linked to the fixed firing threshold and current-based
(i.e., not state-dependent) update of the membrane state upon arrival of
a synaptic input or stimulus (for experimental and theoretical investiga-
tions, see, e.g., Brumberg, 2002; Fourcaud-Trocmé, Hansel, van Vreeswijk,
& Brunel, 2003; Gutkin, Ermentrout, & Rudolph, 2003). The ISIH in the bio-
physical model showed up to 200 Hz only one wide peak (see Figure 8, BM,
stars), indicating a reliable cellular response to the suprathreshold input,
which is jittered around the stimuli due to the presence of random synaptic
activity. This peak shifted toward smaller ISIs for increasing νstim. How-
ever, the higher the stimulating frequency, the more the low-pass property
of the membrane determined the response, leading to a limit in the tem-
poral resolution. Although at high νstim there was still a clear response of
the cell (see Figure 8, BM, right), this response became increasingly de-
coupled from the stimulus in the sense that the cell spikes at a designated
rate driven by the suprathreshold input, but independent of its temporal
characteristics.
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Figure 8: Typical ISIHs for all models at four different stimulation frequencies
(10 Hz, 50 Hz, 100 Hz, and 150 Hz; parameters of synaptic inputs are the same as
in Figure 7). The cLIF and vLIF model were not able to resolve higher frequencies
in a reliable fashion. Together with the gIF1 and gIF2 models, these LIF models
showed a locking to the stimulus frequency, thus leading to sudden jumps in
the temporal resolution (see Figure 7C). The gIF3 model and passive membrane
equation (PME) came closest to the behavior of the biophysical model (BM)
with respect to both temporal resolution of high frequencies (see the stars for
corresponding modes in the ISIHs) and the lack of locking behavior.
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In contrast, the response of the LIF models showed multiple peaks in the
ISIH (see Figure 8, cLIF and vLIF) as a result of mode skipping. As in the
biophysical model, the ISIs of the peaks decrease for increasing νstim. The
latter leads also to a decrease in the amplitude of the leading peak, indicating
that fewer and fewer responses can follow the temporal structure of the
driving stimulus. For some stimulation frequency and determined by the
membrane time constant, this leading peak disappears, and the following
peak must be viewed as the direct cellular response to the stimulus. Because
the TISI of the leading peak was used to estimate the temporal resolution
(see equation 3.2), this leads to an abrupt change in the temporal resolution,
as shown in Figure 7C (left) by the steplike decline. Although the cell
still responds locked to the stimulus for higher frequencies, modes of the
stimulus are persistently skipped (for a discussion of this issue, see, e.g.,
Gutkin et al., 2003).

Mode skipping was, although to a smaller extent, also observed in simu-
lations of the passive membrane equation (see Figure 7C, left, PME) as well
as the gIF1 and gIF2 model (see Figure 7C). In general, there were fewer
modes in the ISIH of the gIF models, indicated by the larger peaks (see Fig-
ure 8, gIF1 and gIF2; for the LIF models, many peaks occurred outside the
depicted ISI regime shown in Figure 8). Moreover, all gIF models as well as
the PME model resolved reliably synaptic inputs beyond 100 Hz frequency.
The gIF3 model best reproduced the response behavior found in the bio-
physical model with respect to both temporal resolution of high stimulating
frequencies and a graded decrease of the temporal resolution for very high
frequencies (see Figure 7C, right). Quantitative differences observed for the
temporal resolution between these two models are primarily attributable to
the effects of active membrane conductances, which are significant at high
stimulation frequency, as well as the activity-dependent spike threshold
present in the biophysical but not the gIF3 model. This conclusion is also
supported by the response behavior of the passive membrane with fixed
spike threshold, which mimicked that of the biophysical model in both out-
put rate and temporal resolution for a very broad regime at the low end of
driving input frequencies (see Figures 7B and 7C, left).

Finally, we note that the ISIHs of the PME and gIF3 models showed in
general only one peak (see Figure 8, gIF3 and PME, stars), in accordance
with the biophysical model. Only for very large νstim did a second peak occur
which, however, was at least for the gIF3 model always less pronounced
than the leading peak. These results suggest that not only the sharp firing
threshold and, thus, the lack of more realistic spike generation dynamics,
can be made responsible for mode skipping, but also the nature of the
synaptic inputs. The latter update the membrane state in the LIF model
in a state-independent and, thus, current input resembling fashion. This
state-independent update is also present in the gIF1 and partially in the
gIF2 model, despite the conductance-based dynamics that describes here
the cellular behavior in between synaptic inputs.
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3.3 Gain Modulation. In a final set of simulations, we addressed the
question to which extent the simplified models capture the modulatory
effect of synaptic background activity on the response gain. To that end,
we stimulated the cells periodically with 0 to 50 simultaneously releasing
excitatory synapses with parameter settings given in Table 2, thus leading
to synaptic stimuli of different amplitude. In addition, synaptic background
activity was altered by scaling the frequency of excitatory and inhibitory
inputs between 0.5 and 2.0 around the values given in Table 3. The behavior
was then characterized by the probability of emitting a spike in response to a
given excitatory stimulus. In all models, the response probability showed a
sigmoidal behavior as a function of the stimulation amplitude (see Figure 9).
Therefore, the amplitude for which the response probability takes 50% (mid-
amplitude) and maximum slope (gain) were used to further quantify the
response (see Figure 10A, left).

In all cases, synaptic background activity was efficient in modulating
the cellular response (see Figure 9), in particular the response gain. With
the exception of the gIF2 model, the response became more graded for
increasing frequency of the synaptic background, as indicated by the smaller
slope of the response curves for higher synaptic background activity (see
Figure 10C). In the LIF models, a sharp decrease of the slope to nearly zero
for synaptic background frequencies larger than the one found optimal (see
below) was observed (see Figure 10B, left, star). In the gIF2 model (see
Figure 9, gIF2), the response probability for a given stimulus amplitude
was, in general, higher for smaller synaptic background activity. This result
can again be explained by the membrane dynamics of the gIF2 model. In
this model, the PSP amplitude depends on the total membrane conductance
only and decreases for larger membrane conductance. Therefore, in high-
conductance states caused by intense synaptic inputs, the fluctuations of the
membrane state variable are reduced, which leads to an effective reduction
of the discharge rate and, hence, response probability.

Although the response curves in the different models showed a sig-
moidal behavior, only the gIF3 model came qualitatively close to the be-
havior seen in the biophysical model (see Figure 9; compare BM and gIF3),
closely followed by the passive membrane with fixed spike threshold (see
Figure 9, PME). In the LIF models, the mid-amplitude covered a huge
range of values as a function of the background intensity (see Figure 10B,
left, dashed lines). Our results indicate an optimal regime (see Figure 10B,
left, star) where the stimulation amplitude is smallest to evoke 50% of the
response. This behavior resembles that seen in the stochastic resonance phe-
nomenon; for small noise levels, stronger stimuli are needed to cross firing
threshold, whereas more intense synaptic background activity will cause
more spontaneous spikes, which interfere with the response to a stimulus
with given amplitude.

Although some indications of such an optimal response regime are
also present in the biophysical and gIF models (see Figure 10B, right), the
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Figure 9: Response probability as function of stimulation amplitude and synap-
tic background activity for the biophysical model (BM), the passive membrane
equation (PME), classic and very leaky IF (cLIF and vLIF, respectively), and
the three gIF models (gIF1 to gIF3). The stimulation amplitude is given by the
number of simultaneously releasing excitatory synapses (between 0 and 50;
see appendix A and Table 2 for parameters). The synaptic background activity
was changed by applying a common scaling factor (ranging from 0.5 to 2.0)
to the frequency of excitatory and inhibitory synaptic inputs given in Table 3.
The response probability shows, in general, a sigmoidal behavior, but only the
gIF3 (and to a lesser extend the gIF1) model was able to capture the qualitative
behavior of the response curves seen in the biophysical model.

total range of covered mid-amplitudes in these models was much smaller
than in the LIF models. This wider working range is a direct result of the
conductance-based nature of the given models. The total membrane con-
ductance increases with the level of synaptic activity, this way lowering the
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Figure 10: Gain modulation in the biophysical model (BM), the passive mem-
brane equation (PME), classic and very leaky IF (cLIF and vLIF, respectively),
and the three gIF models. (A) Left: Response probability ρ(gstim) (gray) as a func-
tion of the excitatory synapses. ρ(gstim) was fit with a sigmoidal function (black)
ρ(gstim) = (1 − exp(−agstim))/(1 + b exp(−agstim)), where a and b are free parame-
ters and gstim denotes the stimulation amplitude. From these fits, the stimulation
amplitude (number of simultaneously releasing excitatory synapses; see Figure
9) yielding a probability of 50% (mid-amplitude) and the slope were estimated
and plotted against each other for different levels of synaptic background ac-
tivity (right). (B, C) Mid-amplitude and slope of response probability curves as
functions of the synaptic background activity (SBA) for the different models.
In all cases, the synaptic background activity was changed by applying a com-
mon scaling factor (SBA scaling), ranging from 0.5 to 2.0, to the frequency of
excitatory and inhibitory synaptic inputs given in Table 3.
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probability for evoking a response for stimuli of given amplitude by shift-
ing the response curve to higher-stimulation amplitudes (shunting effect).
On the other hand, more intense synaptic activity increases the fluctuation
amplitude of the membrane state and thus fosters the (spontaneous) dis-
charge rate. The latter results in a shift of the response curve to smaller
stimulation amplitudes. Both effects robustly counterbalance, leaving the
mid-amplitude nearly unaffected in the investigated parameter regime.
This allows the cell to respond in a discriminating manner over a broad
synaptic input regime (see Figures 10B and 10C, solid), which may provide
the basis for more efficient computations and therefore add computational
advantages to single-cell dynamics. In contrast, in the LIF models, this
conductance-induced shift of the response curve is lacking, thus leaving
alone the observed increase in the mid-amplitude for increased synaptic
noise. This leads to a saturation of the cellular response for moderate total
synaptic input rates (see Figures 10B and 10C, dashed) and therefore nar-
rows the synaptic input regime that can be discriminated and utilized for
computations.

4 Event-Driven Implementation of gIF Models

The analytic form of the state variable m(t) (see equations 2.14 and 2.24) as
well as its update �m at arrival of a synaptic event (see equations 2.20 and
2.29) allow the introduced gIF models with presynaptic-activity dependent
state dynamics to be used together with event-driven simulation strategies.
In this section, we first recall briefly the basic ideas behind event-driven and
clock-driven simulation strategies, before we present a specific implemen-
tation of the proposed models in an event-driven framework along with a
coarse evaluation of its performance.

4.1 Clock-Driven vs. Event-Driven Simulation Strategies. In most
computational neuronal models, in particular biophysical models, neuronal
dynamics is described by systems of, in general, nonlinear coupled differ-
ential equations. The strict constraints in solving such systems analytically
let to the development of a variety of numerical techniques based on the
discretization of space and time. Due to the evaluation of neuronal state
variables on a discretized time axis, or time grid, and the fact that times
of occurring events, such as synaptic inputs or spikes, are assigned to dis-
crete grid points, such simulation techniques are called synchronous or clock
driven. While the algorithmic complexity, or computational load, scales with
the number of neurons in the modeled network as well as the number of
differential equations describing the single-neuron dynamics, it also scales
linearly with the used temporal resolution or time-grid constant. Although
the computational load is expected to be largely independent of the activity
in the network, the temporal discretization in numerical methods utilizing
in particular fixed-time steps introduces an artificial cutoff for timescales
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captured by the simulation. As a direct consequence, short-term dynamical
transients might not or only incompletely be captured (Tsodyks et al., 1993;
Hansel et al., 1998). Moreover, the artificial assignment of event times to
grid points might lead to a bias in dynamic behaviors, such as the emer-
gence of synchronous network activity or oscillating network states (e.g.,
Hansel et al., 1998; Shelley & Tao, 2001) or to an impact on the weight de-
velopment of synapses subject to spike-timing dependent plasticity that we
have observed.

A more accurate way for simulating neural activity is to keep the exact
event times and to evaluate state variables at the times of occurring events,
thus setting the algorithmic complexity free from its dependence on the
temporal resolution. Such an asynchronous or event-driven approach was pro-
posed recently (Watts, 1994; Mattia & Del Giudice, 2000; Reutimann et al.,
2003). It makes use of two ideas. First, in biological neural networks, interac-
tion between neurons occurs primarily by synaptic interactions, which can
be viewed as discrete events in time. Second, at least in mammalian cortex,
the average firing rate is low (around 10 Hz for spontaneous activity dur-
ing active states; see Evarts, 1964; Hubel, 1959; Steriade, 1978; Matsumura,
Cope, & Fetz, 1988; Holmes & Woody, 1989; Steriade, Timofeev, & Grenier,
2001). Therefore, synaptic events occur rather isolated, and a single neuron
is dynamically decoupled from the network for most of the time. If the dif-
ferential equations describing the biophysical dynamics allow an analytic
solution of the state variables (for a relaxation of this requirement, see Hines
& Carnevale, 2004; Lytton & Hines, 2005), the neuronal state at a time t can
be explicitly determined from an initial state at an earlier time t0 and the
elapsed time interval t − t0 without iteratively updating state variables at
a discrete time step in between t0 and t. This uncouples the computational
load from the numerical accuracy of the simulation and, thus, from con-
straints imposed on timescales of involved biophysical processes. However,
it does so at the expense of the requirement for an analytically describ-
able evolution, either exact or approximated, of the neural state variables.
Moreover, although the computational load still depends on the number
of neurons in the same way as in clock-driven approaches, it scales now
in addition linearly with the number of events, that is, with the average
activity, in the network.

However, evaluating the activity-dependent computational load in the
event-driven simulations with that of clock-driven simulations with reason-
able temporal resolution suggests that the event-driven simulation strategy
remains a highly efficient alternative to clock-driven approaches if network
activity typically seen in the cortex in vivo is considered. For instance,
assuming a network of N neurons each interconnected by 104 synapses
(Szentagothai, 1965; Cragg, 1967; Gruner, Hirsch, & Sotelo, 1974; DeFelipe
& Farĩnas, 1992; DeFelipe, Alonso-Nanclares, & Arellano, 2002) and with an
average discharge rate of 10 Hz for each neuron (e.g., Steriade et al., 2001),
the total number of events generated is of the order of N · 105 per second.
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This number equals that of state variable updates, which need to be per-
formed within the same time interval. On the other hand, in clock-driven
simulations, N · dt state variable updates have to be performed, where dt
denotes the temporal resolution of the simulation. Thus, for dt = 0.01 ms,
the number of state updates is the same in both simulation approaches.
However, the event-driven simulation will be superior in accuracy com-
pared to the approach with fixed temporal binning, as the precision is
constrained only by the limitations set by the machine precision.

4.2 A Specific Event-Driven Implementation. In its most efficient im-
plementation, an event-driven simulation strategy makes use of an analytic
form of the state equations describing the evolution of the membrane state
variables in between the arrival of synaptic events. This way, the sole knowl-
edge of the membrane state at the last synaptic event along with the time
difference is sufficient to calculate and update the state variables at the ar-
rival time of a new synaptic event. This allows “jumping” from event to
event rather than evaluating the membrane state variables on a temporal
grid that defines synchronous or clock-driven simulation strategies.

In all IF neuron models with presynaptic-activity dependent state dy-
namics proposed here (gIF1 in section 2.3, gIF2 in section 2.4, and gIF3 in
section 2.5), the equations describing the membrane state and its update at
arrival of synaptic events are analytically closed and, hence, applicable in
event-driven simulations. We incorporated the gIF models in the NEURON
simulation environment (Hines & Carnevale, 1997, 2004), which provides
an efficient and flexible framework for event-driven modeling (scripts for
the gIF models are available online at http://cns.iaf.cnrs-gif.fr/), as well as
a custom C/C++ software tool for large-scale network simulations. In these
implementations, the following steps are executed on arrival of a synaptic
event at time t1:

Step 1. At the arrival of a synaptic event, independent of the current state
of the membrane, the actual membrane time constant τm(t1) and its synaptic

contributions τ
{e,i}
m (t1) are calculated using equation 2.13 (for gIF1, gIF2, and

gIF3) with the values of the synaptic contributions to the membrane time

constant τ
{e,i}
m (t0) for the previous synaptic event at time t0.

Step 2. In the gIF3 model, the effective reversal state mrest(t1) is calculated
(see equation 2.25) based on the value of the synaptic contributions to the

membrane time constants τ
{e,i}
m (t1) at time t1 (calculated in step 1).

Step 3. If the neuron is not in its refractory period, the state variable
m(t1) is calculated using equation 2.14 for the gIF1 and gIF2 models or
equation 2.24 for the gIF3), in which t0 denotes the time of the previous

synaptic event, m(t0) is the membrane state, and τ
{e,i}
m (t0) are the excitatory
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and inhibitory synaptic contribution to the total membrane time constant
at time t0. For the gIF3 model, in addition, the actual effective reversal state
mrest(t1) (calculated in step 2) is used.

Step 4. If the neuron is not in its refractory period, the state vari-
able m(t1) is updated by �m{e,i} = const (for gIF1 model), �m{e,i}(τm(t1))
(for gIF2 model, equation 2.20), or �m{e,i}(τm(t1), m(t1)) (for gIF3 model,
equation 2.29), where the indices e and i denote excitatory and inhibitory
synaptic inputs, respectively.

Step 5. Depending on the type of synaptic input received at time t1,
the corresponding synaptic contribution to the membrane time constant

τ
{e,i}
m (t1) is updated by �τ

{e,i}
m = const (see equation 2.16 for gIF1, gIF2 and

gIF3).

Step 6. If the updated m(t1) exceeds the firing threshold mthres, a spike is
generated and the cell enters an absolute refractory period after which the
state variable is reset to its resting value mrest. The spike event is added to an
internal event list and causes, after a transmission delay, a synaptic event
in each target cell.

Note that this implementation constitutes only one possibility, as the
order of updating state variables can be modified.

4.3 Performance Evaluation. As outlined in the previous section, the
analytic form of the state equations allows the use of the gIF models in
precise and efficient simulation strategies—in particular, event-driven sim-
ulation approaches. However, due to a more complex dynamics of the gIF
models compared to the LIF neuron models, a reduction in performance
compared to their LIF counterparts must be expected. To investigate this
issue in more detail, we analyzed the performance of all neuron models by
comparing the time needed to simulate 100 s of neural activity in the NEU-
RON simulation environment (Hines & Carnevale, 1997, 2004), running on
a 3 GHz Dell Precision 350 workstation (see appendix A). In the LIF and gIF
models, synaptic inputs were chosen to be Poisson distributed with a rate
between 4 and 80 kHz for the excitatory channel and between 1 and 20 kHz
for the inhibitory channel. Both rates were varied proportionally, such that
the total average rate took values between 5 and 100 kHz. In the biophysical
model, 8000 excitatory and 2000 inhibitory channels were driven by Poisson
distributed inputs with average rates between 0.5 and 10 Hz, thus yielding
the same total average rate. Synaptic and cellular properties were the same
as in the previous models (see Tables 1 and 2 as well as appendix A).

In the investigated input parameter regime, the total simulation time,
consisting of both the updates of the neural state variables and the
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generation of random synaptic inputs, was at least two orders of magnitude
smaller for the IF neuron models compared to the biophysical model (see
Figure 11A). Moreover, as expected, for lower and biophysically more real-
istic input rates around 20 kHz, the event-driven simulation strategy was
more efficient than the clock-driven simulation approach (see Figure 11A;
compare the solid and dashed lines). However, event-driven simulations
were at higher rates due to their approximately linear scaling of the simula-
tion time with number of events (note the logarithmic scale in Figures 11A
to 11C; for linear plots, see the insets), outperformed by corresponding
clock-driven simulations (see Figure 11A, star). The performance of the
latter was nearly independent on the input drive.

Considering the time needed for updating the neuronal state variables
only, no significant differences between clock-driven and event-driven sim-
ulation strategies were observed in the case of the LIF and gIF models
(see Figure 11B; compare the gray dashed and solid lines). Whereas the
performance of the biophysical model as well passive membrane model
with fixed spike threshold remained nearly independent on the input
drive (see Figure 11B, black solid and dashed lines), both the LIF and gIF
models showed an approximately linear scaling with total input rate (see
Figure 11B, gray solid and dashed lines; see also the inset), independent
of which simulation strategy was used. This linear scaling behavior with
the number of events is expected for event-driven simulation strategies. Its
unexpected appearance in clock-driven simulations, where the simulation
time depends ideally on only the chosen temporal resolution, can be ex-
plained by the use of a common optimization scheme as well as the relation
between temporal resolution tres of the simulation and the number of occur-
ring events. Although in the ideal clock-driven approach, the neuronal state
is evaluated at each point on a fixed time grid, optimization can be achieved
if the state variable is not updated because no synaptic event was present
within the preceding time interval of length tres . Thus, the state updates,
which constitute the major part of the computational load in the considered
models, are mainly driven by input events as long as the number of events
(total input rate) is smaller than 1/tres . This leads to a scaling comparable
to that expected for pure event-driven simulation strategies. Accordingly,
due to the use of a time resolution of 0.01 ms (see section A.3), for biophys-
ically rather unrealistic rates beyond 100 kHz, the clock-driven simulations
no longer scaled with the input rates and therefore ran faster than corre-
sponding event-driven simulations. A better performance for clock-driven
simulations was also achieved by lowering the temporal resolution, but not
without crucial impact on the precision (for a discussion of this subject, see
Hansel et al., 1998; Shelley & Tao, 2001).

Finally, the LIF neuron model outperformed the biophysical model on
average by a factor of about 600 and the passive membrane model by a
factor of 15, whereas the gIF models were, on average, only a factor of three
slower than the corresponding LIF simulations (see Figures 11C and 11D).
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Figure 11: Performance evaluation of the biophysical model (BM), the passive
membrane equation (PME), the leaky IF (LIF) as well as the three gIF models
(gIF1 to gIF3). (A) Total time needed for simulating 100 s neural activity (neural
dynamics and generation of random synaptic inputs) as a function of the total
synaptic input rate. Whereas in clock-driven simulations (solid lines) the simu-
lation time was nearly independent of the input rate, a linear scaling with input
rate was observed in event-driven simulations (dashed lines; see the linear plot
in the inset). The star marks the setting for which the efficacies of clock- and
event-driven stimulation approaches change (see text). (B) Total time needed for
simulating 100 s neural activity (neural dynamics without generation of random
synaptic inputs) as a function of the total synaptic input rate. Both simulation
strategies yield the same qualitative scaling behavior, with the gIF models only
minimally slower than the LIF neuron model. The inset shows a linear plot of the
simulation times for the LIF and gIF models. (C) Performance ratios relative to
the clock-driven simulation of the LIF neuron model as a function of total input
rate (neural dynamics only; see B). Whereas the gIF models were only about
three times slower than the LIF neuron models in the investigated input pa-
rameter regime, the biophysical model showed about a 600 times performance
deficit, and also the clock-driven simulation of the passive membrane equation
(PME) remained about 15 times slower that equivalent simulations with the
LIF model. (D) Comparison between the performance, normalized to the clock-
driven simulation of the LIF neuron model (BM: 592.8; PME: 15.65; IF, clock
driven: 1.04 ± 0.31; gIF1 to gIF3, clock driven: 2.82 ± 0.86, 2.70 ± 0.59, 2.95 ±

0.59; gIF1 to gIF3, event driven: 3.06 ± 0.66, 3.05 ± 0.69, 3.01 ± 0.73).
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This performance deficit is a direct consequence of the more complicated
neuronal dynamics defining the gIF models. The latter contains the calcu-
lation of additional exponentials, which constitute the main computational
load in the implementation. Without major impairment of precision, this
load can be dramatically reduced by the use of look-up tables as well as
the reduction of memory and function call overheads by optimized C/C++
programming. Preliminary results using an event-driven implementation
of the classic IF model in custom C/C++ software show that 100 million
events could be simulated in less than 90 s using a standard PC-based work-
station (see appendix A). From these, about 97.8% (approximately 88 s)
account for the generation of random synaptic inputs as described above,
and 2.2% (approximately 2 s) for the update of the neural state variable of
the IF model. This compares to about 860 s and 70 s for generating ran-
dom synaptic inputs and updating neural state variables in the classical
IF neuron model, respectively, if the same number of events is handled
in the NEURON simulation environment, thus indicating a further perfor-
mance gain of at least one order of magnitude with customized C/C++
implementations. The latter would allow simulating in real time medium-
scale neural networks of a few thousand neurons with biophysically more
realistic conductance-based dynamics and average rates of a few Hz.

5 Discussion

The leaky integrate-and-fire neuron model, whose dynamics is character-
ized by an instantaneous change of the membrane state variable upon
arrival of a synaptic input, followed by a decay with fixed time constant,
has proven to be an efficient model suitable for large-scale network sim-
ulations. However, due to its simple dynamics, in particular, the current-
based handling of synaptic inputs, the use of the LIF model for simulating
biophysically more realistic neural network behavior is strongly limited.
In this article, we proposed a simple extension of the LIF neuron toward
conductance-based dynamics, the gIF model, which is consistent with the
impact of synaptic inputs under in vivo–like conditions. Below we sum-
marize and discuss the basic approach we followed here, along with an
evaluation of the performance and possible extensions of the proposed gIF
models with conductance-based state dynamics.

5.1 The gIF Neuron Models. With respect to their dynamical complex-
ity, gIF models are situated in between the LIF and full conductance-based
IF models, which were modeled here by a passive membrane equation with
fixed spike threshold. Whereas the membrane state still undergoes an in-
stantaneous change upon arrival of a synaptic input, the following decay
is governed by a time-dependent membrane time constant whose value
is the result of synaptic activity. This state-dependent dynamics captures
the primary effect of synaptic conductances on the cellular membrane and
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therefore describes a simple implementation of time-varying conductance
states, as found in cortical neurons during active network states in vivo.

Extensions of the model investigated in this article include the incor-
poration of the scaling of postsynaptic potentials as a function of the total
membrane conductance (gIF2 model) as well as take into account changes
in the driving force due to the presence of synaptic reversal potentials (gIF3
model). As we have shown, in all cases, the state-dependent membrane
state dynamics of the gIF models is described by simple analytic expres-
sions, thus providing the basis for an implementation of these models in
exact event-driven simulation strategies. The latter have proven to be an
efficient alternative to the most commonly used clock-driven approaches
for modeling medium- and large-scale neural networks with biophysically
realistic activity.

5.2 Response Characteristics of gIF Neuron Models. To test the valid-
ity of the proposed models, the spiking response behavior was compared
with that of LIF neurons, a model of a passive membrane with exponential
synapses and fixed spike threshold, as well as of a biophysically detailed
model of cortical neurons with Hodgkin-Huxley spike-generation mecha-
nism and two-state kinetic synapses. Three aspects of neural dynamics were
investigated. First, the statistical investigation of the spontaneous discharge
activity with respect to firing rate and irregularity for corresponding synap-
tic input parameters showed that, compared to the LIF models, the gIF1 and
gIF3 models reproduced much better the behavior seen in the biophysical
model. Second, due to the explicit incorporation of presynaptic-activity
dependent state dynamics, only the gIF1 and gIF3 models showed a tem-
poral resolution of synaptic inputs, which was comparable to that seen in
the more realistic biophysical model. Finally, due to the synaptic input-
dependent dynamics of the gIF models, aspects of gain modulation seen
in the biophysical model were much better captured by the gIF1 and gIF3
models than in corresponding LIF neuron models. Interestingly, despite its
mathematically simpler structure, the response behavior of the gIF3 model
came generally closer to the biophysical model, as compared to the PME
model. This marked gain in a more realistic biophysical dynamics capturing
faithfully crucial aspects of high-conductance states in vivo was a trade-off,
with only a minor decrease in computational performance compared to the
LIF neuron model.

The gIF2 model, however, failed to qualitatively and quantitatively re-
produce the response behavior seen in the gIF1 and gIF3 models, as well
as the biophysical model. Recalling its definition, the cellular dynamics
of this intermediate model captures only the impact of the actual total
membrane conductance, or membrane time constant, on the amplitude of
PSPs, but not their dependence on the actual membrane state and, hence,
distance to corresponding synaptic reversal potentials. The reported obser-
vations therefore suggest that both the total membrane conductance and



2186 M. Rudolph and A. Destexhe

membrane state dependent scaling of the postsynaptic potentials are crucial
to recover a more realistic conductance-driven neuronal state dynamics.

5.3 Limits of the gIF and LIF Neuron Models. An overall evaluation of
response characteristics of the gIF models, in particular the gIF3 model, in
comparison with those of the LIF neuron models suggests that the former
provide a better description of neural dynamics observed in the detailed
biophysical model or real cells. However, the simple analytic description
of these models also strictly limits the dynamic behaviors which can be
faithfully reproduced. As our simulations show, the most notable quantita-
tive differences between the gIF3 and biophysical model are found in the
spontaneous discharge activity (see Figure 4). Although the general depen-
dence of the output rate νout on the excitatory and inhibitory input rates is
reproduced, the firing rates in the gIF3 model cover a much broader regime
than in the biophysical model, especially at higher input rates. The primary
reason for this difference is the missing description of conductance-based
spike-generating mechanisms, which, especially at high firing rates, will
lead to an additional contribution to the total membrane conductance and
modulate the shunting properties of the membrane and shape the response
to the driving synaptic inputs. This conclusion was confirmed by using a
purely passive model with a fixed threshold mechanism replacing a more
realistic spike generation. Surprisingly, the deviations from the biophysical
model were stronger than in the gIF3 model, probably due to the difference
in handling the update of the membrane state upon arrival of a synaptic
input. Indeed, this observation suggests that the instantaneous update of
the membrane state could effectively mimic the fast transient changes of
membrane conductance and time constant caused by the activation of spike-
generating conductances. However, despite the excellent match between
the gIF3 and biophysical model, the deviations at high input and firing
rates resulting from the additional effect of active membrane conductances
constitute one crucial limit of the gIF models. On the other hand, the LIF
neuron models incorporate neither of these activity-dependent shunting ef-
fects and must, in this respect, be considered a less faithful approximation
of biophysical neuronal dynamics.

The fixed threshold description of spike generation in the gIF models will
also have an impact on the achievable variability of spontaneous responses.
Although the gIF3 model came qualitatively closest to reproducing the in-
put dependence of the spontaneous discharge variability (see Figure 5), the
CV was in general lower than in the biophysical model, although well in the
experimentally observed regime (e.g., see Rudolph & Destexhe, 2003). This
indicates that the lack of faithful description of spike generation might set
another crucial limit in the dynamic behaviors that can be captured by the
gIF models or any other passive model with fixed spike threshold. Specifi-
cally, a variable spike threshold and fast transient changes in the membrane
conductance linked to spike generation provide other sources of variability
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in the neuronal discharge in conjuction with the synaptic input drive. In-
deed, the upper limit of achievable CV values in the gIF model, as in the
PME model, is defined by the synaptic inputs (for independent Poisson
inputs CV ≤ 1), whereas active membrane conductances linked to spike
generation can lead to a CV ≫ 1, for example, in bursting cells (Svirskis &
Rinzel, 2000). Fusing simple IF neuronal models incorporating biophysi-
cally more realistic membrane dynamics (e.g., Lytton & Stewart, in press)
with the idea behind the gIF models could provide a way for reproducing
the full diversity of irregular discharge behaviors seen experimentally. In
the classical LIF model considered here, the limiting factors are the fixed
spike threshold and current-based description of synaptic activity, which
were shown to yield generally lower CV values (e.g., Rudolph & Destexhe,
2003).

Finally, other quantitative differences between the gIF3 model and the
biophysical model were observed, such as the enhanced temporal resolu-
tion for input frequencies above 100 Hz (see Figure 7C) or the shallower
scaling of the response gain as a function of overall synaptic activity (see
Figure 10) in the gIF3 model. These differences can be traced back to the
absence of a biophysically realistic spike-generating mechanism, although
these can be incorporated (see below). However, the observed differences
between the gIF, in particular the gIF3, and biophysical models were less
crucial than between the biophysical and the passive model with fixed spike
threshold, despite the fact that the latter reproduced realistic PSP shapes
and thus should capture temporal aspects of membrane dynamics to a
better extent. Much more crucial were the differences observed between
the biophysical model and the LIF model, in which both spike-generating
mechanisms as well as conductance-based synaptic activity are absent. In
this case, not just quantitative differences in the investigated response be-
havior were observed, but qualitative differences such as a sensitive scaling
of the spontaneous discharge, which is responsible for the narrow regime
where highly irregular activity can be observed (see Figure 5) or the fail-
ure to faithfully resolve high-frequency synaptic inputs (see Figure 7). The
missing activity-dependent membrane dynamics also results in a modula-
tion of response gain that markedly deviates from those observed in real
cells (see Figure 10; e.g., Chance et al., 2002; Fellous, Rudolph, Destexhe, &
Sejnowski, 2003; Prescott & De Koninck, 2003; Shu, Hasenstaub, Badoual,
Bal, & McCormick, 2003).

5.4 Possible Extensions of gIF Neuron Models. The proposed simple
extensions of the LIF model concern only synaptic inputs. Neither active
membrane conductances, such as those considered in the spike response
model (e.g., Gerstner & van Hemmen, 1992, 1993; Gerstner et al., 1993;
Gerstner & Kistler, 2002), nor simplifications of spike-generation mecha-
nism (e.g., based on Hodgkin-Huxley kinetic models; Hodgkin & Huxley,
1952), such as those considered in the various instances of nonlinear
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IF neuron models (e.g., Abbott & van Vreeswijk, 1993; Fourcaud-Trocmé
et al., 2003; for a general review, see Gerstner & Kistler, 2002), were incorpo-
rated into the gIF models. The gIF models presented here are also different
from mathematically more abstract models (e.g., Izhikevich, 2001, 2003)
and will not capture intrinsic phenomena like bursting or spike rate adap-
tation. Moreover, the instantaneous update of the membrane state variable
upon arrival of a synaptic input abstracts from a more realistic shape of
the membrane potential following synaptic stimulation (for a model that
considers this aspect, see, e.g., Kuhn, Aertsen, & Rotter, 2004). Therefore,
aspects of neuronal dynamics that depend on both the exact form of PSPs
or the presence of intrinsic state-dependent membrane currents cannot be
captured by the gIF models proposed here.

However, as we show, a great variety of principal spiking response char-
acteristics for both spontaneous and stimulated synaptic activity can be
faithfully described by models incorporating a synaptically driven fluctu-
ating membrane time constant, that is, a presynaptic-activity dependent
state membrane dynamics, alone. This includes spontaneous activity typi-
cally seen in high-conductance states in cortical networks in vivo, as well
as the response to transient synaptic stimuli occurring during such states.
We suggest that this crucial but restricted gain in realistic biophysical dy-
namics capturing characterizing aspects of high-conductance states in vivo
is a fair trade for the simplicity of the considered extensions, which allow
the efficient application in large-scale network models.

Various extensions of the gIF model are currently under investigation
(see also appendix C). First, the gIF1 to gIF3 models do not incorporate
realistic PSP time courses, but instead are described by an instantaneous
update of the membrane state upon arrival of a synaptic input. To relax this
restriction and approach biophysically more realistic situations, analytic
approximations of the full solution of the membrane equation can be used.
A first attempt in this direction is presented in section C.1 for the PSPs
of a passive leaky membrane subject to synaptic inputs with exponential
conductance time course. The obtained approximation (gIF4 model; see
equation C.4) describes excitatory and inhibitory postsynaptic potentials to
an excellent extent (see Figures 12A to 12C). Moreover, the mathematical
form of this approximation is sufficiently simple to allow implementation
of the resulting model in the framework of the event-driven simulation
strategy. However, for this purpose, the latter needs to be modified by
incorporating the prediction of threshold crossings to scope with responses
that, due to the PSP time course, occur now temporally separated from the
synaptic input (see Figure 12D).

Second, the gIF1 to gIF3 models do not incorporate spike-generating
mechanisms but instead are based on purely passive membrane dynam-
ics. To relax this restriction, simplified models describing active mem-
brane conductances need to be considered. First attempts in this direction
are presented in sections C.2 and C.3, where the quadratic IF (Latham,
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Richmond, Nelson, & Nirenberg, 2000; Feng, 2001; Hansel & Mato, 2001;
Brunel & Latham, 2003; Fourcaud-Trocmé et al., 2003) and the exponential
IF (Fourcaud-Trocmé et al., 2003) neuron models, respectively, are extended
within the context of the gIF model approach. Although in all cases con-
sidered so far, the defining state equation cannot be solved analytically,
appropriate approximations of their solutions might provide a sufficiently
exact and mathematically simple description of active membrane dynam-
ics close to spike threshold. With such descriptions, the modified event-
driven simulation strategy mentioned above can be utilized to implement
the resulting models for efficient and precise network simulations. This
approach might also be extendable to linearized versions of active mem-
brane currents described by Hodgkin-Huxley kinetics (e.g., Mauro, Conti,
Dodge, & Schor, 1970; Koch, 1999) and yield analytically simple expressions
for the membrane state equations, thus allowing the capture of aspects of
subthreshold activity of active conductances in a computationally efficient
way.

Third, the gIF1 to gIF3 models do not incorporate specific intrinsic cel-
lular properties, such as adaptation or bursting. However, the fact that the
passive membrane equation B.1 can still be solved analytically in the pres-
ence of an exponentially decaying function coupled to a linear function of
the membrane state variable allows modeling biophysically more realistic
membrane dynamics in an exact and efficient way (e.g., Lytton & Stewart,
in press).

Fourth, so far the emergence of high-conductance states requires an
intense synaptic activity modeled by individual synaptic input channels.
Although this is assumed to occur naturally in large-scale neural net-
works with self-sustained activity, this requirement might not be fulfilled
in smaller network models or sparsely connected networks. The gIF mod-
els could be extended by including effective noise sources, as proposed by
Reutimann et al. (2003) in the context of event-driven simulation strategies.

Finally, the gIF1 to gIF3 models incorporate synaptic dynamics described
by an exponential conductance time course. To relax this restriction, neu-
ronal dynamics can be extended to other and more realistic synaptic kinetic
models, such as conductance changes following α-functions (Rall, 1967),
n-state kinetics (Destexhe et al., 1994, 1998; Destexhe & Rudolph, 2004),
or a frequency-dependent dynamics (e.g., Lytton, 1996; Markram et al.,
1998; Giugliano, 2000). The availability of exact event times in event-driven
simulation approaches also allows the straightforward implementation of
spike-timing dependent plastic changes (e.g., according to models in Song
& Abbott, 2001; Froemke & Dan, 2002).

5.5 Future Directions. In addition to the different extensions of the
gIF models outlined in the previous section, possible future research di-
rections also include a more detailed study of each model with respect to
specific dynamic behaviors. So far, only basic response characteristics, such
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as the spontaneous discharge (see section 3.1) or the response to periodic
synaptic drive (see sections 3.2 and 3.3), were investigated. Other response
characteristics, such as the cellular response to oscillating input currents
in high-conductance states, in particular the frequency-response behavior
(Brunel, Chance, Fourcaud, & Abbott, 2001; Fourcaud-Trocmé et al., 2003)
and instantaneous spike frequency (Rauch, La Camera, Lüscher, Senn, &
Fusi, 2003), or the detection of brief transient changes in statistical properties
of the synaptic inputs, such as the temporal correlation among the activity
of individual input channels (Rudolph & Destexhe, 2001), could provide
further insight into the validity and limitations of the proposed simplified
neuron models. Furthermore, differences in behaviors seen among these
models, in particular between current-based and conductance-based mod-
els, will reveal basic requirements that neuronal models have to fulfill in
order to reproduce specific dynamic behaviors faithfully. The latter could be
used to constrain the complexity of neuronal models used in large-scale net-
work simulations, thus allowing the construction of more efficient network
models.

Another important aspect linked to the faithful reproduction of spe-
cific and biophysically realistic neuronal behaviors using simplified mod-
els is the correct choice of model parameters. In this article, the subthresh-
old dynamics, specifically the characteristics of synaptic inputs as well as

Figure 12: A gIF model with realistic PSP time course. (A) Comparison of exci-
tatory (top) and inhibitory (bottom) postsynaptic potentials in the gIF4 model
(black traces; equation C.2) and the LIFcd model (gray traces; numerical solution
of equation B.1). Traces are shown for different membrane potentials ranging
from the leak reversal EL to the firing threshold Ethres, as well as for three dif-
ferent total membrane conductances given in multiples of the leak conductance
GL (GL = 17.18 nS). Used model parameters for the simulations are given in
Tables 1 and 2. (B) Relative error (VLIFcd(t) − VgIF4(t))/(VLIFcd(t) − Ethres) between
the numerical solution of the PSP time course in the LIFcd model (VLIFcd(t)) and
the gIF4 model (VgIF4(t)) at firing threshold as a function of time after synaptic
input. Results are shown for the three total membrane conductances used in
A. In all cases, the error was smaller than 1% for times covering the PSP peak
(gray area), suggesting the possibility of precise prediction of spike times based
on the simple analytic state equation describing the gIF4 model (equation C.4).
(C) Example of a membrane potential time course resulting from a barrage of
synaptic inputs. The numerical solution of the LIFcd model (gray) is compared
with the gIF4 model (black) for identical synaptic input pattern (total input
rate 100 Hz). (D) Generalization of the event-driven simulation strategy. Upon
arrival of a synaptic event at time t, the membrane state (black) is updated from
its value at t0. Threshold crossing is predicted (ts) and overwritten (t′

s) if another
synaptic event arrives at t1 < ts .
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postsynaptic potentials, of a biophysically detailed model were used to
adjust parameters in the simpler LIF and gIF models. Other studies used
suprathreshold response characteristics, such as the output firing rate (e.g.,
Rauch et al., 2003) or static as well as the dynamic response properties
(Fourcaud-Trocmé et al., 2003), to fit model parameters in conductance-
driven and current-driven LIF models. In further investigations, techniques
for fitting high-dimensional parameter spaces, typical for detailed biophys-
ical models and experimental recordings, to low-dimensional ones, must
be evaluated with respect to their applicability and quality.

Finally, the most challenging task for the future is to evaluate and under-
stand neuronal dynamics at the network level, in particular under in vivo–
like conditions, as well as the emergence of specific functional neuronal
behaviors if neuronal models are endowed with self-organizing capabili-
ties, such as plastic synapses. We hope that the simplified models proposed
in this article will provide useful and efficient tools to facilitate this task. The
evaluation of this method from experimental data and the assessment of its
sensitivity at the network level will be the subject of forthcoming studies.

Appendix A: Computational Models and Methods

In this appendix, we briefly describe the biophysical model (BM;
section A.1), the IF model based on the passive membrane equation and
fixed threshold for spike generation (PME; section A.2), and the various IF
neuron models (cLIF, cLIF, gIF; section A.3), and summarize the parameters
used for numerical simulations.

A.1 Biophysical Model. In what we refer to as the biophysical model
(BM), membrane dynamics was simulated using a single-compartment neu-
ron, described by the active membrane equation,

dV(t)

dt
= −

1

τ L
m

(

V(t) − EL

)

−
1

C
Iact(t) −

1

C
Isyn(t) . (A.1)

Here, V(t) denotes the membrane potential, EL = −80 mV the leak reversal
potential, τ L

m = C/GL the membrane time constant, C = aCm the membrane
capacity (specific membrane capacity Cm = 1 µF cm−2, membrane area a =

38, 013 µm) and GL = agL the passive (leak) conductance (leak conductance
density gL = 0.0452 ms cm−2).

In equation A.1, Iact(t) denotes the active current responsible for spike
generation. Voltage-dependent conductances were described by Hodgkin-
Huxley type models (Hodgkin & Huxley, 1952), with kinetics taken from
a model of hippocampal pyramidal cells (Traub & Miles, 1991) and ad-
justed to match voltage-clamp data of cortical pyramidal cells (Huguenard,
Hamill, & Prince, 1988). Models for sodium current INa and delayed-rectifier
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potassium current IK d were incorporated into the model, with conductance
densities of 36.1 ms cm−2 and 7 ms cm−2, respectively.

The synaptic input current,

Isyn(t) = G2s
e (t) (V(t) − Ee ) + G2s

i (t)(V(t) − Ei ), (A.2)

was described by a sum over a large number of individual excitatory and
inhibitory synaptic conductances,

G2s
{e,i}(t) =

N{e,i}
∑

n=1

G{e,i} m
(n)
{e,i}(t) (A.3)

(see also Table 1) with respective reversal potentials Ee = 0 mV and
Ei = −75 mV. In the last equation, Ne = 10,000 and Ni = 3000 denote the
total number of excitatory and inhibitory synapses, modeled by α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic (AMPA) and γ -aminobutyric acid
(GABAA) postsynaptic receptors with quantal conductances Ge = 1.2 nS

and G i = 0.6 nS, respectively (Destexhe et al., 1994). The functions m
(n)
e (t)

and m
(n)
i (t) represent the fractions of postsynaptic receptors in the open state

at each individual synapse and were described by the following pulse-based
two-state kinetic equation,

dm{e,i}(t)

dt
= α{e,i} T(t − t0)

(

1 − m{e,i}(t)
)

− β{e,i} m{e,i}(t), (A.4)

for t ≥ t0, where t0 denotes the release times at the synapse in question, α{e,i}

and β{e,i} are forward and backward rate constants for opening of the excita-
tory and inhibitory receptors, respectively. T(t) denotes the concentration of
released neurotransmitter in the synaptic cleft at time t and is considered to
be a step function with T(t) = Tmax for a short time period t0 ≤ t < tdur after
a release and T(t) = 0 afterward (pulse kinetics). The parameters of these
kinetic models of synaptic currents were obtained by fitting the model to
postsynaptic currents recorded experimentally (Destexhe et al., 1998), and
are given in Table 1.

To simulate synaptic background activity, all synapses were activated
randomly according to independent (temporally uncorrelated) Poisson pro-
cesses with mean rates νe and νi between 0 and 10 Hz for both AMPA and
GABA synapses, respectively. This yielded total input rates from νe = 0 to
100 kHz for excitation and from νi = 0 to 30 kHz for inhibition.
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In some simulations, in particular for evaluating the state dependence of
the shape and amplitude of excitatory and inhibitory postsynaptic poten-
tials, synaptic models with exponential conductance time course

G
exp
{e,i}(t) =







0 for t < t0

G{e,i} exp
[

− t−t0
τ{e,i}

]

for t ≥ t0
(A.5)

or α-kinetics

Gα
{e,i}(t) =







0 for t < t0

G{e,i}
t−t0
τ{e,i}

exp
[

− t−t0
τ{e,i}

]

for t ≥ t0
(A.6)

were used. Here, G{e,i} and τ{e,i} denote quantal conductances and synaptic
time constants for excitation and inhibition, respectively. Corresponding
parameter values are given in Table 1.

Simulations of 100 to 1,000 s neural activity with a temporal resolution of
0.1 ms were performed using the NEURON simulation environment (Hines
& Carnevale, 1997), running on a 3 GHz Dell Precision 350 workstation
(Dell Computer Corporation, Round Rock, TX) under the SUSE 8.1 LINUX
operating system.

A.2 Passive Membrane Equation with Fixed Spike Threshold. In what
we refer to as the passive membrane equation with fixed spike threshold (PME),
membrane dynamics was simulated using a single-compartment neuron,
described by the passive membrane equation,

dV(t)

dt
= −

1

τ L
m

(

V(t) − EL

)

−
1

C
Isyn(t), (A.7)

with parameter values and synaptic activity described in section A.1. Spike
generation was described by a fixed voltage threshold (Ethres = −50 mV)
and reset potential (Erest = −80 mV).

Simulations of 1000 s neural activity with a temporal resolution of 0.01 ms
were performed using the NEURON simulation environment (Hines &
Carnevale, 1997), running on a 3 GHz Dell Precision 350 workstation (Dell
Computer Corporation, Round Rock, TX) under the SUSE 8.1 LINUX oper-
ating system.

A.3 IF Neuron Models. Integrate-and-fire (IF) neuron models were
modeled according to the state equations given in section 2.1 for the clas-
sical and very leaky integrate-and-fire neuron models (cLIF and vLIF, re-
spectively), as well as sections 2.3, 2.4, and 2.5 for the gIF1, gIF2, and gIF3
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neuron models, respectively. Membrane properties as well as parameter
values for excitatory and inhibitory synaptic inputs (see Table 2) were cho-
sen by a normalization of the IF models between the resting state (mrest = 0
corresponding to Vm = EL = −80 mV) and the firing threshold (mthres = 1,
corresponding to Vm = −50 mV). Average EPSP and IPSP peak amplitudes
were estimated by numerical simulations of the passive membrane equa-
tion with synaptic models described by two-state kinetics (see section A.1),
and were found to be 0.28 mV for EPSPs and −0.21 mV for IPSPs at firing
threshold (used for estimating �m in the cLIF, vLIF, gIF1, and gIF2 mod-
els; see sections 2.1, 2.3, and 2.4, respectively) as well as 0.46 mV (EPSPs)
and 0.043 mV (IPSPs) at rest (used for estimating �m in gIF3 model; see
section 2.5).

Synaptic inputs in the gIF models were simulated by exponential con-
ductance changes (see equation A.5) with parameter values given in Table 2.
Due to the additivity of synaptic inputs for this case, in all IF models, synap-
tic inputs were simulated by single independent input channels for excita-
tion and inhibition, with total rates of 0 ≤ νe ≤ 100 kHz and 0 ≤ νi ≤ 30 kHz,
respectively. These rates correspond to those used in the biophysical model
(see section A.1). In conjunction with the cLIF neuron model, an additional
model with small static membrane time constant (the vLIF model) was
considered to mimic high-conductance states with a static synaptic conduc-
tance. In this case, synaptic rates were 0 ≤ νe ≤ 20 kHz and 0 ≤ νi ≤ 6 kHz,
respectively. The refractory period in all cases was tref = 1 ms.

To evaluate the computational performance of the constructed mod-
els, simulations utilizing the clock-driven simulation strategy (time resolu-
tion 0.01 ms) as well as the event-driven simulation strategy (Watts, 1994;
Mattia & Del Giudice, 2000; Reutimann et al., 2003) were used. In all cases,
simulations of 1000 s neural activity were performed.

Appendix B: The Membrane Equation with Exponential Synaptic
Conductance Time Course

In section B.1, we briefly outline the explicit solution of the membrane
equation,

dV(t)

dt
= −

1

τ L
m

(V(t) − EL ) −
1

C
G

exp
s (t) (V(t) − Es), (B.1)

for a single synaptic input event arriving at time t0 and described by an
exponential conductance time course:

G
exp
s (t) =

{

0 for t < t0

G e−
t−t0
τs for t ≥ t0.

(B.2)



2196 M. Rudolph and A. Destexhe

In equation B.1, EL and Es denote the leak and synaptic reversal potentials,
respectively. G in equation B.2 denotes the maximal conductance linked
to the update of the membrane time constant τm at time t0 by �τ s

m = C/G
(see equations 2.6 and 2.7). In sections B.2 and B.3, this solution is then
approximated, and simple analytic expressions for the PSP peak amplitude
as a function of the actual membrane state under incorporation of the effect
of synaptic reversal potential are deduced. These expressions constitute the
basis for describing the membrane updates upon arrival of a synaptic input
in the gIF2 and gIF3 models and are applicable in event-driven simulation
strategies due to their analytic form.

B.1 Solution of the Membrane Equation. To simplify notation but
without restriction of generality, we solve equations B.1 and B.2 for
t0 = 0. With the boundary condition V(t)|t→−∞ −→ EL , equation B.1 yields
V(t) = EL for t < 0. For t ≥ 0, explicit integration gives

V(t) = exp

[

−
t

τ L
m

+
τs

�τ s
m

e− t
τs

]

×

{

EL e
− τs

�τ s
m +

∫ t

0

ds exp

[

−
s

τs
+

s

τ L
m

−
τs

�τ s
m

e− s
τs

]

×

(

Es

�τ s
m

+
EL

τ L
m

e
s
τs

)

}

. (B.3)

The integral expression, which is of general form

X(t) :=

∫ t

0

ds exp
[

A1e− s
τs

]

{

A2eA3s + A4eA5s
}

with

A1 = − τs

�τ s
m

, A2 = Es

�τ s
m

, A3 = − 1
τs

+ 1
τ L

m
,

A4 = EL

τ L
m

, A5 = 1
τ L

m
,

can be rewritten in terms of gamma functions. To that end, we expand the
factor exp[A1e−t/τs ]:

X(t) =

∞
∑

n=0

∫ t

0

ds
An

1

n!
e− s

τs
n

{

A2eA3s + A4eA5s
}

=

∞
∑

n=0

∫ t

0

ds
An

1

n!

{

A2e−
n−A3τs

τs
s
+ A4e−

n−A5τs
τs

s
}
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=

∞
∑

n=0

An
1

n!

{

A2τs

A3τs − n

(

e−
n−A3τs

τs
t
− 1

)

+
A4τs

A5τs − n

(

e−
n−A5τs

τs
t
− 1

)

}

= A2τs(−A1)A3τs

{

Ŵ[−A3τs,−A1 e− t
τs ] − Ŵ[−A3τs,−A1]

}

+A4τs(−A1)A5τs

{

Ŵ[−A5τs,−A1 e− t
τs ] − Ŵ[−A5τs,−A1]

}

,

where the incomplete gamma function Ŵ[z, a ] =
∫ ∞

a dt tz−1e−t was used.
With z Ŵ[−z, a ] = a−ze−a − Ŵ[−z + 1, a ] and the fact that A3τs = A5τs − 1,
we obtain after insertion of X(t) into equation B.3,

V(t) = exp

[

−
t

τ L
m

+
τs

�τ s
m

e− t
τs

]

×

{

EL e
− τs

�τ s
m − Es

(

e
− τs

�τ s
m − exp

[

t

τ L
m

−
τs

�τ s
m

e− t
τs

])

+

(

Ŵ

[

−
τs

τ L
m

,
τs

τ s
m

]

− Ŵ

[

−
τs

τ L
m

,
τs

�τ s
m

e− t
τs

])

×

(

τs

�τ s
m

)
τs
τ L
m τs

τ L
m

(Es − EL )

}

. (B.4)

The latter can be further simplified by noting that

Ŵ

[

−
τs

τ L
m

,
τs

�τ s
m

e− t
τs

]

= Ŵ

[

−
τs

τ L
m

,
τs

�τ s
m

e− t
τs ,

τs

�τ s
m

]

+ Ŵ

[

−
τs

τ L
m

,
τs

�τ s
m

]

,

where Ŵ[z, a , b] =
∫ b

a dt tz−1e−t denotes the generalized incomplete gamma
function. We obtain

V(t) = exp

[

−
t

τ L
m

+
τs

�τ s
m

e− t
τs

]

×

{

EL e
− τs

�τ s
m − Es

(

e
− τs

�τ s
m − exp

[

t

τ L
m

−
τs

�τ s
m

e− t
τs

])

−Ŵ

[

−
τs

τ L
m

,
τs

�τ s
m

e− t
τs ,

τs

�τ s
m

] (

τs

�τ s
m

)
τs
τ L
m τs

τ L
m

(Es − EL )

}

(B.5)

as the general form of the membrane potential (i.e., postsynaptic poten-
tial) time course following a single synaptic stimulation described by an
exponential conductance time course.
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B.2 Analytic Approximation of the PSP Peak Height. Equation B.5
provides a rather complicated expression for the PSP time course and is,
therefore unsuitable for directly deducing a simple equation for the PSP
peak amplitude we are looking for. However, guided by the general shape
of the PSP, we will approximate equation B.5 using an α-function,

Vα(t) = Vα0
t

τα

e− t
τα + EL , (B.6)

where Vα0 denotes the maximum and τα the time constant of the α-function.
The desired peak amplitude is then given by Vmax = Vα0 e−1.

In order to approximate V(t), equation B.5, with Vα(t), we power-expand
the difference V(t) − Vα(t) up to second order in t at t = 0. This yields the
equations

0 = (EL − Es) τα + �τ s
mVα0 ,

0 = (EL − Es) τ 2
α

(

�τ s
mτs + τ L

m

(

�τ s
m + τs

))

+ 2τ L
m

(

�τ s
m

)2
τs Vα0,

from which the parameters Vα0 and τα can be deduced. We obtain

Vα0 =
2(Es − EL )τ L

mτs

�τ s
mτs + τ L

m

(

�τ s
m + τs

) , (B.7)

which yields for the PSP peak amplitude

Vmax =
2e−1(Es − EL ) τ L

mτs

�τ s
mτs + τ L

m

(

�τ s
m + τs

) . (B.8)

In equation B.8, �τ s
m denotes the change in the membrane time constant at

arrival of a synaptic input, and τ L
m is the membrane time constant before the

arrival of the synaptic input, which, due to the chosen baseline (membrane
at rest for t < 0), equals the passive (leak) membrane time constant. How-
ever, in the general situation, τ L

m has to be replaced by the total membrane
time constant τm(t) at time t0 of the arrival of a new synaptic event, which
contains leak as well as synaptic contributions.

To optimize the applicability of equation B.8 in event-driven simulation
strategies, we consider the relative change of the PSP peak amplitude as a
function of the actual state with respect to a control state. Let Ṽmax denote the
PSP peak amplitude in the control state (e.g., the resting state) characterized
by the total membrane time constants τ̃m. Then equation B.8 yields

Vmax(t) = Ṽmax

(

1

τ̃m
+

1

τs
+

1

�τ s
m

)(

1

τm(t)
+

1

τs
+

1

�τ s
m

)−1

(B.9)
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for the PSP peak amplitude following a synaptic input in the actual state at
time t characterized by a total membrane time constant τm(t).

B.3 Incorporation of the Synaptic Reversal Potential. Equation B.5
shows that the full solution for the PSP depends not only on the average
membrane conductance (see the previous section), but also on the actual
membrane state V(t) and, hence, the distance to the corresponding synap-
tic reversal potential Es . Moreover, in the presence of synaptic reversal
potentials, for example, for excitation and inhibition, the membrane will
have an effective reversal state to which it decays exponentially with a time
constant associated with the total membrane conductance. This effective
reversal state is determined by the synaptic conductance contributions and
the leak conductance, as well as the “distance” of the current membrane
state to the respective reversal potentials of the conductances and leak.

To incorporate both effects in a simple approximation of the PSP peak
amplitude, this way extending the result in equation B.9, we start from the
membrane equation B.1. In the case of a single synaptic input, it can be
rewritten in the form

dV(t)

dt
+

1

τm(t)

(

V(t) − Vrest(t)
)

= 0, (B.10)

where

Vrest(t) =

(

EL

τ L
m

+
Es

τ s
m(t)

)(

1

τ L
m

+
1

τ s
m(t)

)−1

, (B.11)

1

τm(t)
=

1

τ L
m

+
1

τ s
m(t)

, (B.12)

1

τ s
m(t)

=
1

τ s
m(t0)

e−
t−t0
τs for t ≥ t0 . (B.13)

Due to the time dependence of Vrest(t), equation B.10 does not provide a
closed-form solution (see equation B.5) simple enough to build a basis for
an IF neuron model usable within an event-bases simulation approach. In
order to obtain such a form, we use the fact that a single synaptic input has
only a minimal contribution to the total membrane time constant. Therefore,
we can truncate the explicit time dependence of Vrest(t) by replacing the
synaptic contribution to the membrane time constant, τ s

m(t) with its value
at time t0, that is, at the arrival of the synaptic event. Equation B.11 then
yields

Vrest(t) ∼ Vrest =

(

EL

τ L
m

+
Es

τ s
m(t0)

)(

1

τ L
m

+
1

τ s
m(t0)

)−1

. (B.14)
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Note that Vrest will still indirectly depend on time, because τ s
m(t0) is updated

whenever a synaptic event arrives.
To make the impact of synaptic reversal potentials on the PSP peak

amplitude explicit, we extend the membrane equation B.1 by a constant
stimulating current I0:

dV(t)

dt
= −

1

τ L
m

(

V(t) − EL

)

−
1

C
Gs(t)

(

V(t) − Es

)

+
1

C
I0 . (B.15)

Different values of I0 will hold the membrane potential at different base
values, from which we will deduce the desired dependence of the PSP

peak height. Defining E ′
L = EL +

τ L
m

C
I0 as the effective leak reversal in the

presence of a constant current, equation B.15 can be brought into a form

dV(t)

dt
= −

1

τ L
m

(

V(t) − E ′
L

)

−
1

C
Gs(t)

(

V(t) − Es

)

, (B.16)

which has the same functional form as the original membrane equation B.1.
Therefore, and because I0 is assumed to be constant, we can proceed along
the lines outlined in sections B.1 and B.2 and obtain for the PSP peak
amplitude

Vmax =
2e−1(Es − E ′

L ) τ L
mτs

�τ s
mτs + τ L

m (�τ s
m + τs)

. (B.17)

Note that E ′
L denotes the base potential over which the PSP arises and

therefore corresponds to the actual state of the membrane at the time of the
synaptic input.

Finally, we deduce the relative change of the PSP peak amplitude with
respect to a control state as a function of the actual state of the membrane. Let
the actual state be characterized by the membrane time constant τm(t) and
the membrane state variable V(t). Let Ṽmax denote the PSP peak amplitude
in the control state (e.g., the resting state) characterized by the time constant
τ̃m and state variable Ṽ. Then we obtain for the PSP peak amplitude in the
actual state

Vmax(t) = Ṽmax
V(t) − Es

Ṽ − Es

(

1

τ̃m
+

1

τs
+

1

�τ s
m

)(

1

τm(t)
+

1

τs
+

1

�τ s
m

)−1

.

(B.18)

The first factor (V(t) − Es)/(Ṽ − Es) is responsible for the effect of the dis-
tance of the actual membrane state to the reversal potential, whereas the
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second term describes the scaling of the PSP peak amplitude as a function
of the membrane time constant in accordance with equation B.9.

Appendix C: Extension to Nonlinear IF Neuron Models

In this appendix, we briefly present first attempts to generalize the idea
behind the gIF models to neuronal models that contain, in addition to
synaptic conductances, state-dependent currents due to active membrane
conductances used, for example, to describe spike generation. We begin by
analytically approximating the time course of a passive membrane after
synaptic input in order to incorporate a more realistic PSP shape into the
model (see section C.1). State equations for the quadratic integrate-and-
fire (QIF, section C.2) and exponential integrate-and-fire (EIF, section C.3)
neuronal models with conductance-based synaptic interactions will be pre-
sented. A complete description of this work as well as a detailed evaluation
of the behavior of these models will be presented in a forthcoming study.

C.1 gIF Models with Realistic PSP Time Course. In appendix B.1,
we simplified the exact solution (see equation B.3) of the passive mem-
brane equation with exponential synaptic conductance time course (see
equation B.1) in order to obtain an analytic expression for the PSP peak
amplitude as a function of the actual membrane state and total membrane
time constant (see sections B.2 and B.3). The advantage of this approach was
that the deduced simple expression for the PSP peak amplitude allowed its
use in the gIF neuron models as an instantaneous update value of the mem-
brane state upon the arrival of a synaptic input. However, the temporal
shapes of EPSPs and IPSPs are neglected, which might have a subtle impact
on the cellular response characteristics, in particular its temporal aspects.
Here, we analytically approximate the full solution and provide a simple
expression for the PSP shape that can be used in event-driven simulation
strategies.

Equation B.3 can be rewritten as

V(t) = eQ1(t)

{

EL e
− τs

�τ s
m +

∫ t

0

ds eQ2(s)

{

Es

�τ s
m

+
EL

τ L
m

e
s
τs

}}

(C.1)

with

Q1(t) =−
t

τ L
m

+
τs

�τ s
m

e− t
τs ,

Q2(t) =
t

τ L
m

−
t

τs
−

τs

�τ s
m

e− s
τs .

Power-expanding Q1(t) and Q2(t) up to first order at t = 0 and using the
boundary conditions V(t) −→ EL for t → 0 and t → ∞, equation C.1 can
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be approximated by

VPSP(t) = EL +
Es

�τ s
m

(

1

τs
−

1

τ L
m

−
1

�τ s
m

)−1 {

e
−t

(

1

τ L
m

+ 1
�τ s

m

)

− e− t
τs

}

. (C.2)

We note that this general form of the PSP time course as a difference between
two exponentials was already suggested in the context of the spike response
model (Jolivet & Gerstner, 2004) and quadratic integrate-and-fire models
(Latham et al., 2000).

If the synaptic input arrives at time t0 on top of a barrage with synaptic
inputs, equation C.2 can be generalized to provide the desired expression
of the PSP time course as a function of the actual membrane state V(t0) and
membrane time constant τm(t0). Following the argumentation presented in
section B.3, we obtain for t ≥ t0

VPSP(t) = EL +
(

V(t0) − EL

)

e
−(t−t0)

(

1
τm (t0) +

1
�τ s

m

)

+ Q Es

(

1

τ s
m(t0)

+
1

�τ s
m

) (

1

τs
−

1

τm(t0)
−

1

�τ s
m

)−1

×

{

e
−(t−t0)

(

1
τm (t0) +

1
�τ s

m

)

− e−
t−t0
τs

}

, (C.3)

where τ s
m(t0) denotes the synaptic contribution to the membrane time con-

stant at time t0 and �τ s
m the update of τ s

m(t0) due to the synaptic input (see
equation 2.6). Q is a PSP scaling factor that was introduced in generaliz-
ing the approximation of equation C.1 to arbitrary effective reversal states.
It primarily depends on the distance of the actual membrane state to the
synaptic reversal potential, and a good approximation of Q is given by the
first factor in equation B.18, thus yielding

VPSP(t) = EL +
(

V(t0) − EL

)

e
−(t−t0)

(

1
τm (t0) +

1
�τ s

m

)

+
Es

�τ s
m

V(t0) − Es

EL − Es

(

1

τ s
m(t0)

+
1

�τ s
m

) (

1

τs
−

1

τm(t0)
−

1

�τ s
m

)−1

×

{

e
−(t−t0)

(

1
τm (t0) +

1
�τ s

m

)

− e−
t−t0
τs

}

. (C.4)

This defines, along with equations 2.6, 2.7, and 2.8 for updating the mem-
brane time constant upon arrival of a synaptic input, the basis of a gIF4
model.

In order to evaluate the validity of the gIF4 model, we compared the
EPSP and IPSP time course obtained from the analytic approximation,
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equation C.4, with the numerical solution of the underlying passive mem-
brane equation B.1 (LIFcd model). For both excitatory and inhibitory synap-
tic inputs, the gIF4 model described remarkably well the postsynaptic mem-
brane potential time course (see Figure 12A) for all membrane potentials
ranging from the leak reversal EL up to the firing threshold Ethres. For the
realistic synaptic and cellular parameter values used here, the deviation,
or relative error, was smaller for leakier and, hence, faster membranes (see
Figure 12B) and did not exceed 1% for times that covered the PSP peak (see
Figure 12B, gray area). The latter suggests that an exact and computationally
fast prediction of spike times based on the analytic form of the approximated
EPSP time course given by equation C.4 should be possible. However, al-
though an excellent agreement of the gIF4 model with the LIFcd model
was reached for small or medium synaptic input rates (see Figure 12C),
total input rates above 1 kHz led to deviations from the numerical simu-
lation. The reason for this can be found in the approximative character of
the PSP time course, in particular, the PSP peak amplitude scaling (factor Q
in equation C.3). This error could be reduced by fine-tuning the quantal
conductance of the synaptic input or the scaling factor Q. To what extent
the observed deviations for high input rates compensate the simplicity
and, thus, computational efficiency of the obtained analytic approximation
remains to be investigated.

In contrast to the instantaneous update of the membrane state charac-
teristic for the integrate-and-fire neuron models presented in section 2, the
incorporation of a realistic PSP shape in the gIF4 model (equation C.4) no
longer allows the application of the basic event-driven simulation strategy
presented in section 4.1. Indeed, in models with instantaneous rise of the
membrane potential, the firing threshold can be crossed only at the time of
the synaptic input, whereas in models with EPSP time course, the mem-
brane state can cross the threshold and thus generate an output spike even
milliseconds after the synaptic input occurred. The latter makes the predic-
tion of a future threshold crossing based on the EPSP time course necessary.
In this case, a generalization of the event-driven simulation strategy (Hines
& Carnevale, 2004) provides both an exact and computationally efficient
way to simulate neural activity (see Figure 12D). First, upon arrival of a
synaptic event at time t, the actual membrane state V(t) is calculated from
the membrane state V(t0) at the time t0 of the previous synaptic input using
equation C.4, and the membrane time constant τm(t) is updated using
equations 2.7 and 2.8. Then equation C.4 is used to predict the time ts
of a possible future threshold crossing, which is emitted as an event into
the network. If another synaptic input arrives before t1 < ts , the membrane
potential is updated, and a possible new spike time t′

s will overwrite the
previous prediction ts . An implementation of this approach for the gIF4
model using the simple analytic form of the PSP time course, equation C.4,
as well as evaluation of its precision and efficiency, will be the subject of a
forthcoming study.
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C.2 gQIF—A Conductance-Based Quadratic IF Model. In order to de-
scribe the effect of state-dependent currents due to active membrane con-
ductances, we generalize the passive membrane equation B.1 by incorpo-
rating a nonlinear current Iact(V(t)),

dV(t)

dt
= −

1

τ L
m

(

V(t) − EL

)

−
1

C
Iact(V(t)) −

1

C
Isyn(t) , (C.5)

where Isyn(t) defines the synaptic current (e.g., Fourcaud-Trocmé et al., 2003).
Depending on the functional form of Iact(V(t)), different models can be de-
fined. In this and the following sections, we give the explicit form of the state
equation for various models in the presence of synaptic conductance, thus
defining the basis for nonlinear IF neuron models with presynaptic-activity
dependent state dynamics. However, a detailed analytical and numerical
investigation exceeds the framework of this article and will be the subject
of a forthcoming study.

The quadratic integrate-and-fire (QIF) neuronal model is defined by
(Latham et al., 2000; Feng, 2001; Hansel & Mato, 2001; Brunel & Latham,
2003; Fourcaud-Trocmé et al., 2003)

Iact(V(t)) = −
C

2�T τ L
m

(

V(t) − ET

)2
−

C

τ L
m

(

V(t) − EL ) + IT , (C.6)

where ET , defined by

d Iact(V)

dV

∣

∣

∣

∣

V=ET

= −
C

τ L
m

, (C.7)

denotes the threshold membrane state at which the slope of the I–V curve
vanishes,

IT =
C

τ L
m

(

ET − EL

)

+ Iact(ET ) (C.8)

denotes the corresponding threshold current, and

�T = −C

(

τ L
m

d2 Iact(V)

dV2

∣

∣

∣

∣

V=ET

)−1

(C.9)

the spike slope factor. If the synaptic input current exceeds the threshold
current IT , the membrane potential diverges in finite time to infinity. The lat-
ter can be used to define the discharge of a spike, after which the membrane
potential is reset to a resting value.

If the synaptic current takes the form Isyn(V(t)) = G
exp
s (t)

(

V(t) − Es

)

with

synaptic conductance G
exp
s (t) given by equation B.2, we can define the basic
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state equation for a QIF model with presynaptic-activity dependent state
dynamics (gQIF model):

dV(t)

dt
=

1

2�T τ L
m

(

V(t) − ET

)2
−

1

C
IT −

1

τ s
m(t)

(

V(t) − Es

)

(C.10)

for t ≥ t0 with the time-dependent synaptic contribution to the membrane
time constant τ s

m(t) given by equation B.13. The latter is updated upon
arrival of a synaptic event at time t0 according to equation 2.7.

Unfortunately, equation C.10 is difficult to solve analytically due to the
explicit time dependence of τ s

m(t). However, if the conductance increment
caused by a single synaptic input is small compared to the total membrane
conductance (in the realistic cases considered here, the conductance change
following a synaptic input is about 30 times smaller than the leak conduc-
tance; see Table 2), a good approximate solution of equation C.10 can be
obtained by assuming a constant τ s

m(t) between the arrival of two synaptic
inputs at t0 and t1. When a new synaptic input arrives, τ s

m(t0) is updated
according to equations 2.6 and 2.7. This approach was also used in the gIF3
model for the effective reversal state (equations 2.25 and B.14) and provided
a good approximation even for low input rates. A detailed numerical anal-
ysis along with an analytical investigation of equation C.10 with respect to
divergencies defining spiking events exceeds the framework of this article
and will be the subject of a forthcoming study.

C.3 gEIF—A Conductance-Based Exponential IF Model. Along the
lines outlined in the last section, an exponential integrate-and-fire (EIF)
neuron model (Fourcaud-Trocmé et al., 2003) can be defined with

Iact(V(t)) = −
C �T

τ L
m

e
V(t)−ET

�T , (C.11)

where ET and �T are defined in equations C.7 and C.9, respectively. With
a conductance-based synaptic current, we obtain the basic state equation
for an EIF model with presynaptic-activity dependent state dynamics (gEIF
model):

dV(t)

dt
= −

1

τm(t)

(

V(t) − Vrest(t)
)

+
�T

τ L
m

e
V(t)−ET

�T , (C.12)

where the effective reversal state Vrest(t) is given by equation B.11, and τm(t)
obeys equations B.12 and B.13 with update �τ s

m upon arrival of a synaptic
event (see equation 2.7) at time t0. As in the case of the gQIF model, the
state equation C.12 is not analytically solvable exactly. Again, for efficient
use in event-driven simulation strategies, approximations remain the only
tool to assess the membrane state at time t based on the state at the time
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of the previous synaptic event t0 and to predict possible threshold crossing
for spike generation.
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Borg-Graham, L. J., Monier, C., & Frégnac, Y. (1998). Visual input evokes tran-

sient and strong shunting inhibition in visual cortical neurons. Nature, 393, 369–

373.

Brumberg, J. C. (2002). Firing pattern modulation by oscillatory input in supragran-

ular pyramidal neurons. Neurosci., 114, 239–246.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and in-

hibitory spiking neurons. J. Comp. Neurosci., 8, 183–208.

Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of synaptic

noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett.,

86, 2186–2189.

Brunel, N., & Latham, P. E. (2003). Firing rate of the noisy quadratic integrate-and-fire

neuron. Neural Comput., 15, 2281–2306.

Burns, B. D., & Webb, A. C. (1976). The spontaneous activity of neurons in the cat’s

visual cortex. Proc. R. Soc. London B, 194, 211–223.

Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background

synaptic input. Neuron, 15, 773–782.

Christodoulou, C., & Bugmann, G. (2001). Coefficient of variation vs. mean interspike

interval curves: What do they tell us about the brain? Neurocomputing, 38–40,

1141–1149.

Cragg, B. G. (1967). The density of synapses and neurones in the motor and visual

areas of the cerebral cortex. J. Anat., 101, 639–654.

DeFelipe, J., Alonso-Nanclares, L., & Arellano, J. I. (2002). Microstructure of the

neocortex: Comparative aspects. J. Neurocytol., 31, 299–316.
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