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Analytical interpretation of nondiffusive phonon transport in thermoreflectance
thermal conductivity measurements
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We derive an analytical solution to the Boltzmann transport equation (BTE) to relate nondiffusive thermal
conductivity measurements by thermoreflectance techniques to the bulk thermal conductivity accumulation
function, which quantifies cumulative contributions to thermal conductivity from different mean free path energy
carriers (here, phonons). Our solution incorporates two experimentally defined length scales: thermal penetration
depth and heating laser spot radius. We identify two thermal resistances based on the predicted spatial temperature
and heat flux profiles. The first resistance is associated with the interaction between energy carriers and the surface
of the solution domain. The second resistance accounts for transport of energy carriers through the solution
domain and is affected by the experimentally defined length scales. Comparison of the BTE result with that from
conventional heat diffusion theory enables a mapping of mean-free-path-specific contributions to the measured
thermal conductivity based on the experimental length scales. In general, the measured thermal conductivity will
be influenced by the smaller of the two length scales and the surface properties of the system. The result is used
to compare nondiffusive thermal conductivity measurements of silicon with first-principles-based calculations of
its thermal conductivity accumulation function.
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I. INTRODUCTION

Nondiffusive thermal transport occurs when length or time
scales of a system are on the order of the mean free paths
(MFPs) or lifetimes of the energy carriers. As a result, a local
equilibrium temperature cannot be defined and the thermal
transport properties of the system can no longer be taken
as the bulk values. When system boundaries are decreased
below energy carrier MFPs, nondiffusive transport can be
described with a reduced, effective thermal conductivity [1–5].
Heat dissipation in light emitting diodes and transistors is
adversely impacted by reductions in thermal conductivity,
while thermoelectric energy conversion devices benefit.

Determination of the relationship between system dimen-
sions and effective thermal conductivity has been a research
focus for over 20 years and requires two fundamental pieces
of information: (i) the intrinsic (i.e., bulk) MFP-dependent
contributions of energy carriers to thermal conductivity
[6–8] k� and (ii) the relationship between system dimensions
and the modified MFPs of the energy carriers [9,10]. In
semiconducting materials, the former can be described by the
thermal conductivity accumulation function for phonons [11],
kaccum, which identifies cumulative contributions to thermal
conductivity from phonons having a MFP less than or equal to
the length scale �∗. Under the isotropic assumption,

kaccum(�∗) =
∫ �∗

0
k�d� =

∫ �∗

0

1

3
C�(�)v(�)�d�. (1)

Here, � is MFP, C� is volumetric heat capacity per unit MFP,
and v is group velocity. Thermal conductivity accumulation
functions have been determined theoretically for bulk and
nanostructured materials using analytical scattering relation-
ships [10], molecular dynamics simulations with empirical
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potentials [7], and by first-principles calculations [8,12,13],
but require experimental validation.

Recent attempts have been made to experimentally measure
kaccum by inducing nondiffusive thermal transport through
varying an experimentally controllable length scale Lc in a
range comparable to phonon MFPs. Techniques include tran-
sient thermal grating (TTG), where Lc is the period of a pulsed
optical grating that induces a spatially periodic temperature
profile [14] and thermoreflectance techniques including time
domain thermoreflectance (TDTR) and broadband frequency
domain thermoreflectance (BB-FDTR), where the experimen-
tal length scales are the spot size of a heating laser and the
thermal penetration depth of a temporally sinusoidal laser heat
flux [6,15–18]. An effective thermal conductivity as a function
of Lc is found by interpreting nondiffusive measurements with
a solution to the heat diffusion equation.

Initially, the interpretation to obtain kaccum was that energy
carriers with � > Lc do not contribute to the experimentally
measured thermal conductivity kexp and energy carriers with
� � Lc fully contribute, as they would in a purely diffusive
regime [6,15,16,18]. Mathematically, this assumption takes
the form

kexp(Lc) =
∫ Lc

0
k�d�. (2)

This mapping between Lc and MFP contributions to the
effective thermal conductivity leads to accumulation functions
that are consistent with first-principles predictions in silicon
and gallium arsenide [15,16,18] but lacks rigorous justifica-
tion. More generally,

kexp(Lc) =
∫ ∞

0
S(�,Lc)k�d�, (3)

where S(�,Lc) is known as the suppression function. In the
simple interpretation in Eq. (2), S(�,Lc) is a step function

1098-0121/2014/90(6)/064302(10) 064302-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.064302


K. T. REGNER, A. J. H. MCGAUGHEY, AND J. A. MALEN PHYSICAL REVIEW B 90, 064302 (2014)

from 1 to 0 at � = Lc. But discrepancies between BB-FDTR
[16] and TDTR [6] results using Eq. (2) demand a deeper
understanding of the suppression function.

Comparison of analytical [19] and numerical solutions
[20–22] of the Boltzmann transport equation (BTE) to the heat
diffusion equation for TTG leads to the functional dependence
of the suppression function on Lc and MFP and reconciles
nondiffusive TTG measurements and kaccum. Although the
form of the suppression function has been identified for
TTG, a new analysis is required for BB-FDTR and TDTR
since the experimental setups are physically different, i.e.,
Lc is different. Ding et al. predicted suppression due to
spot size in TDTR using a Monte Carlo–based numerical
solution to the BTE [23], but neither suppression due to
thermal penetration depth nor analytical analyses for these
experiments have been demonstrated in the literature. Three
important questions remain unresolved: (1) What is the form of
thermal-penetration-depth-based suppression? (2) What is its
interplay with spot-size-based suppression? (3) Under what
circumstances can BB-FDTR and TDTR measurements be
interpreted with the conventional heat diffusion equation?

In this work, we derive an analytical suppression function
for thermoreflectance techniques by solving the BTE. In ther-
moreflectance techniques, there are two experimental length
scales: (1) the thermal penetration depth Lp = √

2k/�C,
which characterizes the exponential decay length of the
temperature amplitude into a solid with thermal conductivity k

and volumetric heat capacity C due to sinusoidal laser heating
with angular frequency � at the surface, and (2) the e−2

radius of the Gaussian laser spot, ro. The presence of ro in
thermoreflectance experiments necessitates a comparison of
length scales rather than the time scales 1/� and phonon
lifetimes. In Secs. II and III, we account for both experimental
length scales in our expression for the suppression function.
The results are used in Sec. IV to interpret nondiffusive
measurements of phonon transport in silicon by BB-FDTR
and TDTR, although our solution does not account for the
multiple time scales in TDTR that arise from using a pulsed
laser.

II. SUPPRESSION FUNCTION IN A PLANAR GEOMETRY

As shown in Fig. 1(a), we first consider a planar medium
with a temporally oscillating surface temperature with angular
frequency � and amplitude Ts= 1 K, such that T (x = 0,t) =
Tse

i�t . Because we are solving for deviations from the
mean temperature, for convenience we define the temperature
T (x → ∞,t) = T∞ = 0 K. The one-dimensional (1D) nature
of this problem will yield an analytical solution that provides
insight into the functional dependence of the suppression
function on thermal penetration depth.

We begin with the gray, 1D BTE for phonons in Cartesian
coordinates under the relaxation time approximation in an
isotropic medium [24,25],

1

v

∂n

∂t
+ μ

∂n

∂x
= ne − n

τv
, (4)

where the nonequilibrium distribution function n(x,t ,μ) is the
phonon energy density per unit phonon frequency per unit
solid angle and equals �ωD(ω)g(x,t,μ)/4π . Here, � is the

n(x, t, μ) = 
n+(x, t), 0 < μ ≤ 1
n-(x, t), -1 ≤ μ ≤ 0

εne(Ts) =  εn-(x = 0, t) ρn-(x = 0, t)

T(x = 0, t) = Tse
iΩt

x

θ

(a)

CωTs

4π

θ

T(r = ro, t) = Tse
iΩt

n(r, t, μ) = 
n+(r, t), 0 < μ ≤ 1
n-(r, t), -1 ≤ μ ≤ 0

εne(Ts) = ε
n-(r = ro, t)

ρn-(r = ro, t)

ro

(b)

r

CωTs

4π

FIG. 1. (Color online) Schematic diagrams for (a) the 1D planar
system (Sec. II) and (b) the spherically symmetrical system (Sec. III),
both with oscillating surface temperatures. Here, μ is the directional
cosine, μ = cosθ . The parameters ε and ρ are the phonon emissivity
and reflectivity and are discussed further in Sec. IV.

reduced Planck constant, ω is the phonon frequency, D(ω)
is the phonon density of states, g(x,t ,μ) is the occupation
function, ne(x,t) is the equilibrium distribution function and is
specified for phonons when g is the Bose-Einstein distribution
gBE, τ is the gray lifetime �/v, v is the frequency-independent
phonon group velocity (i.e., sound velocity), and μ is the
directional cosine (μ = cos θ ) that accounts for the velocity
of phonons traveling at an angle θ from the x direction
[see Fig. 1(a)]. For small temperature variation, ne(x,t) ≈
�ωD(ω) dgBE

dT
|x,tT (x,t)/4π = CωT (x,t)/4π , where Cω is the

volumetric heat capacity per unit frequency and T (x,t) is
the departure from T∞ = 0 [19,20,27]. Thus, we solve for the
deviations from the equilibrium distribution function, which
are related to deviations of temperature from T∞.

Since the oscillating surface temperature determines the
temporal behavior of the solution, we separate variables such
that n(x,t,μ) = n̄(x,μ)ei�t , where n̄ is the component of n

that is only a function of x and μ. Substituting into Eq. (4)
yields

μ
dn̄

dx
+

(
i�

v
+ 1

τv

)
n̄ = n̄e

τv
. (5)

The difficulty in solving Eq. (5) arises from the fact that
we must account for phonons traveling over all directions
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μ. For TTG, Collins et al. demonstrated a Volterra integral
solution to a BTE of similar form [19], but the dependence on
μ in our formulation leads to a divergent integral. Henceforth,
we follow a two-flux procedure similar to that of the Milne-
Eddington approximation for radiative heat transfer [28]. This
method involves taking the zeroth and first moments of Eq. (5),
i.e., Eq. (5) is integrated over all directions after multiplication
with μ0= 1 (zeroth moment) and μ1 = μ (first moment). The
distribution moments are defined as

n̄l(x) = 2π

∫ 1

−1
n̄(x,μ)μldμ, l = 0,1, . . . . (6)

Furthermore, the distribution function is assumed to be
isotropic over the upper and lower hemispheres such that
n̄+(x) ≡ n̄(x,0 < μ � 1) and n̄−(x) ≡ n̄(x, − 1 � μ � 0)
[see Fig. 1(a)] [28]. From Eq. (6), the zeroth and first moments
are n̄0 = 2π (n̄+ + n̄−) = 3n̄2 and n̄1 = π (n̄+ − n̄−), which
can be physically related to temperature and heat flux [28].
Applying the two-flux method to Eq. (5) yields a coupled set
of equations:

dn̄0

dx
+ 3

(
i�

v
+ 1

τv

)
n̄1 = 0, (7a)

dn̄1

dx
+ i�

v
n̄0 = 0. (7b)

In formulating Eqs. (7a) and (7b), we use conservation
of energy for a gray medium to determine the equilibrium
distribution n̄e in terms of n̄0 as (Ref. [29])

n̄e = 1

2

∫ 1

−1
n̄dμ = n̄0

4π
. (8)

This coupled set of ordinary, linear, homogeneous differ-
ential equations is an eigenvalue problem and has a solution
of the form [n̄0

n̄1
] = c1v1e

−λx + c2v2e
λx , where c1 and c2 are

constants to be determined by the boundary conditions, ±λ

are the eigenvalues, and v1 and v2 are the eigenvectors. Since
the spatial domain is semi-infinite, c2 = 0 because n̄0 and n̄1

cannot increase unbounded. The boundary condition at x = 0
is depicted schematically in Fig. 1(a) and is [30,31]

n̄+(x = 0) = ε
CωTs

4π
+ ρn̄−(x = 0), (9)

where ε and ρ are the phonon emissivity and reflectivity,
both of which will be discussed in further detail in Sec. IV.
Physically, Eq. (9) states that the total energy carried by
phonons traveling in the positive x direction at the surface is
equal to the sum of the energy carried by phonons emitted due
to the induced surface temperature Ts and the energy carried by
phonons traveling in the negative x direction that are reflected
from the surface.

By solving the system of equations and integrating over
all phonon frequencies, the spatial temperature and heat flux
profiles are found to be

T̄BTE(x) = ∫∞
0 n̄0(x)dω

∫∞
0 Cωdω

= εTs

(1 + ρ) 4iβ

3η
+ (1 − ρ)

exp

(
− η

Lp
x

)
, (10a)

q̄ ′′
BTE(x) =

∫ ∞

0
vn̄1(x)dω

= εTsCv

2(1 + ρ) + (1 − ρ) 3η

2iβ

exp

(
− η

Lp
x

)
, (10b)

where η = √
2i − 2τ�, ß = �/Lp, and kbulk = 1

3Cv2τ . Since
we use the gray approximation, n̄0 and n̄1 are independent of ω

and the integral over ω only changes Cω to the total volumetric
heat capacity, i.e.,

∫ ∞
0 Cωdω = C. To generate figures in

this section and Sec. III, we use properties of bulk silicon
(C = 1.65×106 J m−3 K−1,kbulk = 145 W m−1 K−1, and
v = 8430 ms−1) [32,33] and determine Lp using kbulk.

The magnitudes of the spatial temperature profiles from the
diffusion solution [T̄diff(x) = Tsexp(−

√
2ix
Lp

)] and BTE solution
for ε = 1−ρ = 1 and �/Lp= 1 are shown in Fig. 2(a).
The spatial temperature profile from the diffusion solution
is a continuous exponential decay where the diffusive thermal
resistance can be defined as Rdiff,x = (Ts − T∞)/q̄ ′′

diff (x = 0).
The real part of the exponential in Eqs. (10a) and (10b)
represents the BTE prediction of penetration depth Lp-BTE,

(b)
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FIG. 2. (Color online) 1D planar geometry with temporally os-
cillating surface temperature and ε = 1−ρ = 1. (a) Magnitude of the
spatial temperature profiles from the diffusion and BTE solutions for
�/Lp = 1. The BTE solution has two distinct regions that correspond
to two distinct thermal resistances. (b) Magnitude of the thermal
resistances Rdiff,x and RBTE,x = Rε + Ri,x plotted as a function of
�/Lp and τ�.
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which can be written as

Lp-BTE = Lp√
(1 + τ 2�2)1/2 − τ�

. (11)

When τ � 
 1,Lp-BTE = Lp and T̄BTE(x) collapses to T̄diff(x),
but when τ � � 1,Lp-BTE → ∞, which indicates purely
ballistic transport. Thus, as �/Lp increases, the temperature
decay rate predicted by the BTE decreases.

The spatial temperature profile from the BTE solution
indicates two distinct regions: a surface temperature jump of
�Tε and a spatial temperature decay spanning �Ti. When ε

= 1−ρ, the total thermal resistance from the BTE solution
RBTE,x is comprised of two parts,

Rε = �Tε

q̄ ′′
BTE (x = 0)

= 4 − 2ε

εCv
, (12a)

Ri,x = �Ti

q̄ ′′
BTE (x = 0)

=
√

L2
p

2i
+ �2

3

kbulk
, (12b)

such that

RBTE,x = Rε + Ri,x . (12c)

The thermal resistances in Eqs. (12a), (12b), and (12c)
are complex. Complex thermal resistances are analogous to
impedance in alternating current circuit analysis. In the plots
throughout this paper, we plot the magnitude of such complex
thermal resistances.

The magnitude of the terms Rε, Ri,x , and RBTE,x are plotted
in Fig. 2(b) as a function of �/Lp and τ � with ε = 1−ρ

= 1 and are compared to the magnitude of Rdiff,x . The term
Rε is a resistance that arises from the interaction between
the surface and ballistic phonons originating within one MFP
of the surface and is associated with the surface temperature
jump in BTE [31,34–36] and radiative transfer [37] problems.
The term Rε is independent of any experimentally controllable
length scale but is always present. The term Ri,x is intrinsic to
the material and accounts for transport of phonons associated
with two length scales: Lp and �. It should be noted that Ri,x

says nothing about the surface properties (i.e., Ri,x is not a
function of ε). Thus, when �/Lp 
 1, RBTE,x = Rε + Ri,x =
Rε + Lp/(

√
2ikbulk) ≈ Lp/(

√
2ikbulk) and the BTE thermal

resistance converges to the diffusive thermal resistance be-
cause Ri,x dominates Rε. However, as the phonon MFP
approaches Lp, the second term in Ri,x and the Rε term become
non-negligible and the BTE thermal resistance becomes larger
than the diffusive thermal resistance. In the ballistic limit
(�/Lp � 1), RBTE,x = Rε + Ri,x = Rε + �/(

√
3kbulk) and

becomes independent of �. It should be noted that the total
thermal resistance is independent of whether a temporally
oscillating surface temperature or heat flux is imposed, the
latter of which is more consistent with the experiments.

As in the analysis of the experimental measurements, we
can now determine the effective thermal conductivity keff that
equates the complex diffusive thermal resistance (Rdiff,x =
1/

√
i�Ckeff) to the complex thermal resistance determined

by the BTE,RBTE,x [21,31]. Since, by definition, Ts is identical
in both systems, this procedure is equivalent to equating
surface heat fluxes from the diffusion and BTE solutions.
Furthermore, similar functional forms of the BTE and diffusion

solutions suggest that interpreting nondiffusive transport with
an effective, suppressed k is reasonable. We define the
suppression function for this planar geometry Sx(�,Lp,ε,ρ)
as the fractional contribution to thermal conductivity made by
a phonon with a MFP of � in a thermoreflectance experiment
with �, ε, and ρ and is

Sx(�,Lp,ε,ρ) = keff

kbulk
= 9ε2

2iβ2
[
2(1 + ρ) + (1 − ρ) 3η

2iβ

]2 . (13)

It should be noted that Sx(�,Lp,ε,ρ) is complex. Thus
the phase angle of the suppression function influences the
observed phase angle in thermoreflectance experiments, ulti-
mately influencing the value of thermal conductivity obtained.
In plots of the suppression function throughout the paper, we
plot its magnitude.

In Figs. 3(a) and 3(b), we plot the magnitude of the thermal
resistance of the system from the BTE and diffusion solutions
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FIG. 3. (Color online) 1D planar geometry with temporally os-
cillating surface temperature and ε = 1−ρ = 1, 0.5, and 0.1. (a)
Magnitude of the thermal resistance from the diffusion and BTE
solutions vs �/Lp and τ�. The BTE predicts a higher thermal
resistance than the diffusion solution, which can be accounted for by
reducing the effective thermal conductivity in the diffusion solution.
(b) Magnitude of the suppression function plotted as a function of
�/Lp and τ�. These curves are compared to the P1 solution to the
BTE for parallel, black, isothermal plates and to the step function
suppression function [Eq. (2)] [6,16,18].

064302-4



ANALYTICAL INTERPRETATION OF NONDIFFUSIVE . . . PHYSICAL REVIEW B 90, 064302 (2014)

and the magnitude of Sx(�,Lp,ε,ρ) as a function of �/Lp and
τ � for ε = 1−ρ = 1, 0.5, and 0.1. The suppression function
[Fig. 3(b)] accounts for the increase in thermal resistance
compared to the diffusion solution [Fig. 3(a)], and reduces the
effective thermal conductivity of the material. The suppression
function is different than that previously assumed [i.e., a step
function; see Eq. (2)] [6,16,18] in that phonons with �/Lp< 1
contribute less and phonons with �/Lp> 1 contribute more
near �/Lp = 1.

The effect of changing ε is highlighted in Figs. 3(a) and
3(b). In our BTE solution, the resistance associated with
the surface temperature jump Rε = (4 − 2ε)/εCv (for ρ =
1−ε) is independent of any experimentally controllable length
scale, i.e., Lp. Consequently, this resistance is always present
and of the same magnitude but only becomes non-negligible
when Ri,x is sufficiently small, which happens when the
penetration depth is on the order of or smaller than the MFP.
Decreasing ε increases Rε, increasing the surface temperature
jump, and hastening the onset of suppression. This fact can be
qualitatively understood with an analogy to radiative transfer,
i.e., the energy transfer rate from an isothermal gray surface
will be less than that from an isothermal black surface at a
given surface temperature. Reducing the phonon emissivity
reduces the number of phonons emitted from the surface and
hence reduces the energy transfer away from the surface,
increasing the thermal resistance and reducing the effective
thermal conductivity of the material in the nondiffusive regime.
Furthermore, it is reasonable that emissivity is related to the
interface resistance between the transducer and substrate in
a thermoreflectance experiment considering that emissivity
affects the size of the surface temperature jump [38]. The
effect of changing ε and ρ will be revisited in Sec. IV.

To verify the behavior of our suppression function, we
compare it to a solution to the gray BTE for two infinite,
parallel, black (ε = 1), isothermal plates. This scenario is
similar to our problem except that we consider an oscillating
surface temperature that defines our length scale Lp. The
solution to this problem is obtained using the P1 approximation
and is plotted against the ratio of � and plate separation
distance in Fig. 3(b). A similar trend instills confidence in
our solution and suggests that although Lp is not a physical
boundary, it similarly suppresses contributions of phonons to
thermal transport.

III. SUPPRESSION FUNCTION IN
A SPHERICAL GEOMETRY

In BB-FDTR and TDTR experiments, there are two relevant
length scales: the thermal penetration depth and the spot size of
the heating laser. Thus, in order to obtain an accurate suppres-
sion function for relating thermoreflectance measurements to
kaccum, both length scales should be incorporated. The most
accurate solution would involve solving the spectral BTE in
cylindrical coordinates, under conditions of radially symmetric
Gaussian surface heating. While other studies have reached
numerical solutions to similar problems [23,39], it is our goal
to reach an analytical solution for a simpler problem.

As depicted in Fig. 1(b), we consider a sphere with
radius ro embedded in an infinite medium with tempera-
ture T (r → ∞,t) = T∞ = 0 K and a temporally oscillating

surface temperature at the sphere-medium interface. Solving
the BTE within the medium will provide a solution that is
dependent on Lp due to the periodic nature of the surface
temperature as well as the effect of spot size, which can be
captured by varying the radius of the embedded sphere. We
note that Chen solved a similar problem for a sphere with
steady-state heating [31]. While this geometry is not an exact
representation of a thermoreflectance experiment, the spherical
symmetry (1D in the radial direction) of the problem allows
us to derive an analytical solution for the suppression function
that is dependent on Lp and ro.

We begin with the 1D, gray BTE under the relaxation time
approximation in spherical coordinates in the radial direction
r (Ref. [24]),

1

v

∂n

∂t
+ μ

∂n

∂r
+ 1 − μ2

r

∂n

∂μ
= ne − n

τv
. (14)

The μ-dependence in Eq. (14) can be eliminated using the
method of spherical harmonics (PN approximation), which is a
generalization of the Milne-Eddington approximation and has
been thoroughly studied in spherically symmetrical geometries
in radiative transfer [28,40–42]. The method involves reducing
the governing equation into a set of N simpler partial
differential equations by taking advantage of the orthogonality
of spherical harmonics. Applying the PN approximation to
Eq. (14) yields

1

v

∂nl

∂t
+ l + 1

2l + 1

∂nl+1

∂r
+ l

2l + 1

∂nl−1

∂r
+ (l + 1)(l + 2)

r(2l + 1)
nl+1

− l(l − 1)

r(2l + 1)
nl−1 + nl

τv
= n0

τv
δ0l , (15)

where l = 0,1,2, . . . ,N and δ0l is the Kronecker delta. In the
limit where N → �, the exact solution is obtained. Here
we use the P1 approximation, which is accurate for scattering
media at large optical thicknesses with decreasing accuracy
as the optical thickness is decreased [28]. For our problem,
large optical thicknesses correspond to Lp � �. Using the P1

approximation and separating variables in a similar fashion as
Eq. (5), Eq. (14) reduces to

dn̄0

dr
+ 3

(
i�

v
+ 1

τv

)
n̄1 = 0, (16a)

dn̄1

dr
+ i�

v
n̄0 + 2

r
n̄1 = 0. (16b)

By employing an analogous boundary condition as used for
the planar solution, i.e., n̄+ (r = ro) = ε CωTs

4π
+ ρn̄− (r = ro),

we obtain closed-form solutions for the spatial temperature
and heat flux profiles for r � ro,

T̄BTE(r) = roεTs

r
[
(1 + ρ) 4i(βη+�)

3η2 + (1 − ρ)
]

× exp

[
− η

Lp
(r − ro)

]
, (17a)

q̄ ′′
BTE(r) =

βη r
ro

+ �

βη + �

r2
o εTsCv

r2
[
2(1 + ρ) + (1 − ρ) 3η2

2i(βη+�)

]
× exp

[
− η

Lp
(r − ro)

]
, (17b)
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FIG. 4. (Color online) Spherical particle embedded in an infinite
medium with oscillating temperature at the surface of the sphere (r =
ro) with ε = 1−ρ = 1. (a) Magnitude of the thermal resistance from
the diffusion and BTE solutions vs �/Lp and τ�. (b) Magnitude of
the suppression function plotted as a function of �/Lp and τ� for
different values of �/ro. For �/ro = 0, the results collapse to the 1D
planar case shown in Figs. 3(a) and 3(b).

where � = �/ro. The suppression function is found by de-
termining keff of the infinite medium that equates the complex
thermal resistance from the diffusion solution [Rdiff,r = 1/

(
√

i�Ckeff + keff/ro) [43] to the complex thermal resistance
defined by the BTE, which is equivalent to equating surface
heat fluxes [21,31] and is

Sr (�,Lp,ro,ε,ρ) = keff

kbulk
= γ + i

(
β

�

)2

− β

�

√
2iγ −

(
β

�

)2

,

(18)

where

γ = 3ε/�

2 (1 + ρ) + (1 − ρ) 3η2

2i(βη+�)

. (19)

In Fig. 4(a), the magnitude of the complex thermal
resistance is plotted as a function of �/Lp and τ � at different
values of �/ro with ε = 1−ρ = 1 for both the diffusion
and BTE solutions. The thermal resistance from the diffusion
equation (solid lines) highlights the interplay between ro and

Lp. When Lp 
 ro, the solution converges to the planar
solution [Fig. 3(a)], and when Lp � ro, the diffusive thermal
resistance becomes independent of �/Lp.

Similar to the planar solution, the total thermal resistance
from the BTE is the sum of a surface component Rε =
(4 − 2ε)/εCv (for ε = 1−ρ), which is the same as for the
planar solution, and an intrinsic component Ri,r ,

Ri,r = η2

2ikbulk
(

η

Lp
+ 1

ro

) . (20)

As in the planar solution, Ri,r includes no effect from
the surface properties (Ri,r is not a function of ε when ε =
1−ρ). For a given value of ε, Ri,r converges to the diffusion
solution when �/Lp 
 1 and asymptotes to �/(

√
3kbulk)

when �/Lp � 1. But since the diffusive resistance decreases
with increasing �/ro when �/Lp 
 1, Rε becomes non-
negligible, and even dominates, when ro is commensurate or
smaller than the MFP. Because the total thermal resistance is
the sum of Rε and Ri,r , the BTE and diffusion solutions do
not converge when �/Lp 
 1 at larger values of �/ro. When
�/ro = 0, the BTE solution converges to the planar solution
from Eq. (10), as shown in Fig. 3(a).

The magnitude of the suppression function
Sr (�,Lp,ro,ε,ρ) is plotted in Fig. 4(b) for ε = 1−ρ =
1. In the limit when ro → ∞, the solution converges to the
planar solution given in Eq. (13) and shown in Fig. 3(b).
Changes in the suppression function with �/ro over all �/Lp

illustrate the interactions between the two length scales.
In general, the smaller of Lp or ro dominates suppression.
For example, when �/Lp 
 1, suppression is solely due to
decreasing particle radius and is consistent with the TDTR
experimental measurements by Minnich et al. of k vs ro

that were independent of heating frequency [15] and Chen
in the case of steady-state heating [31]. According to the
BTE solution, if either Lp or ro are much smaller than the
phonon MFP, that phonon will not contribute to kexp. Under
these circumstances, BB-FDTR and TDTR are inadequate for
measuring the bulk thermal conductivity of a material.

The magnitude of the thermal resistance from the BTE
and diffusion solutions and the magnitude of Sr (�,Lp,ro,ε,ρ)
are plotted in Figs. 5(a) and 5(b) as a function of �/ro for
different values of �/Lp with ε = 1−ρ = 1. As heating
frequency increases (�/Lp increases), additional suppression
occurs from Lp, even at very low �/ro. In Fig. 5(c), we
compare our analytical solution for Sr in the low � limit
(�/Lp = 0) with Chen’s exact solution from Ref. [31] for a
sphere with steady-state heating and the suppression function
from Ref. [23] found numerically by solving the spectral
BTE for a Gaussian-shaped laser spot. Due to our use of
the P1 approximation, we find that Eq. (18) and the exact
solution for a sphere with steady-state heating from Ref. [31]
differ by a factor of 2 on the horizontal axis. We assert that
this factor is not significant considering that the range of
MFP spans four orders of magnitude in typical crystalline
semiconductors [7,8,12]. We also find that using a value of
3ro in Eq. (18) yields a suppression function that compares
well with the suppression function from Ref. [23]. We expect
that there should be a correction factor to the spot size in
our suppression function as a result of the geometry we have

064302-6



ANALYTICAL INTERPRETATION OF NONDIFFUSIVE . . . PHYSICAL REVIEW B 90, 064302 (2014)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1.0

 

Λ/ro

Ref. 31

Ref. 23

Eq. (18), 3ro

Eq. (18), ro

|S
r  

(Ω
 =

 0
)|

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1.0

 

 

Λ/ro

 

Λ/Lp = 0.1

Λ/Lp = 1

Λ/Lp = 3

Λ /Lp = 0

|S
r|

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

 

 

Λ/ro

Diffusion Solution
BTE Solution

Λ/Lp = 1

Λ/Lp = 0.1

Λ/Lp = 0

Λ/Lp = 3

|R
di

ff,
r| 

or
 |R

B
TE

,r| 
(m

2 -K
/W

)
(a)

(b)

(c)

FIG. 5. (Color online) Spherical particle embedded in an infinite
medium with oscillating temperature at the surface of the sphere
(r = ro) with ε = 1−ρ = 1. (a) Magnitude of the thermal resistance
from the diffusive and BTE solutions vs �/ro for different values of
�/Lp. (b) Magnitude of the suppression function plotted as a function
of �/ro for different values of �/Lp. (c) Comparison of Eq. (18) when
�/Lp = 0 for a particle with radius ro and a particle with radius
3ro, the exact solution for a sphere with steady-state heating from
Ref. [31], and the suppression function found numerically by solving
the spectral BTE for a Gaussian-shaped laser spot from Ref. [23].
Using a particle radius of 3ro in our analytical result compares well
with numerical results from Ref. [23].

chosen to generate an analytical solution, i.e., we approximate
our spot as a finite sphere in an infinite medium while the
actual experimental geometry is a Gaussian spot incident on a
semi-infinite medium.

IV. RELATING EXPERIMENTS AND kaccum USING
THE SUPPRESSION FUNCTION

The suppression function can be used to relate experimental
measurements to kaccum by mapping length scales to phonon
MFPs. For example, kaccum can be obtained using Eq. (3) with
thermoreflectance thermal conductivity measurements and the
suppression function from Eq. (18) as inputs to the solution of
an inverse problem, which was done by Minnich for TTG using
convex optimization [21]. Alternatively, as we will do here,
the experimental measurement can be predicted given k� as
an input, which can be obtained from models (e.g., Callaway,
Born–von Karman–Slack, first-principles, etc.) [8,10,18]. This
approach is less mathematically complex and allows for a
direct comparison to the measurements.

We compare experimental measurements on silicon made
by TDTR and BB-FDTR with predicted kexp in Figs. 6(a)
and 6(b). The solid lines are the predicted accumulation
functions from first-principles calculations for silicon plotted
as a function of MFP at temperatures of 80 and 300 K [44].
Using Eq. (3) with the suppression function from Eq. (18),
we transform this data into a predicted kexp as would be
measured by BB-FDTR or TDTR, shown as the dashed lines in
Figs. 6(a) and 6(b). To make this transformation, we use a spot
size of 3ro, which is found by comparing Eq. (18) to the sup-
pression function for a Gaussian-shaped spot from Ref. [23]
[see Fig. 5(c)] and a temperature-independent value of ε =
1−ρ in Eq. (18) that yields the best fit between experimental
data and Eq. (3), i.e., ε is used as a fitting parameter.

In Fig. 6(a), we transform the kaccum vs � data from the
first-principles calculations into predicted kexp vs 3ro using
Eqs. (3) and (18). We find that a value of ε = 1−ρ = 0.88
fits the TDTR measurements from Ref. [23] at temperatures
of 80 and 300 K well. Here, we used a heating frequency of
106 Hz to determine �/Lp. We note that the interface between
the transducer and substrate for the TDTR data presented is
Al/Si. It is reasonable that the value of ε obtained by fitting is
related to the properties of this interface. We also plot predicted
kexp vs 3ro for a heating frequency of 107 Hz with ε = 1−ρ

= 0.88 to show how increased TDTR heating frequency is
expected to further suppress kexp.

In Fig. 6(b) we transform kaccum vs � data from the first-
principles calculations into predicted kexp vs Lp using Eqs. (3)
and (18). Here, Lp is determined using predicted kexp instead
of kbulk to be consistent with our previous presentation of the
experimental measurements [16]. We find that a value of ε =
1−ρ = 0.6 best describes the BB-FDTR measurements from
Ref. [16] at temperatures of 80 and 300 K. In the BB-FDTR
results presented, the interface between the transducer and
substrate is Cr/Si rather than Al/Si, and it is reasonable that
there is a difference in the fitted value of ε for BB-FDTR
compared to TDTR.

For silicon at a temperature of 300 K, the predicted kexp

vs Lp for TDTR in Fig. 6(b) shows Lp-dependence over the
measurement range although the experimental measurements
show no Lp-dependence. The TDTR spot size used is the
average of the range given in Ref. [6] (3ro = 32.25 μm).
For BB-FDTR (3ro = 10.2 μm), the prediction compares
well to experimental results at smaller Lp. The experimental
measurements should plateau at larger Lp due to the effect
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FIG. 6. (Color online) Comparison of thermal conductivity mea-
surements and predicted kexp for silicon. (a) kaccum from first-principles
calculations (solid lines) is transformed into predicted kexp vs 3ro

(dashed lines) by Eq. (3) using the suppression function from Eq. (18).
A value of ε = 0.88 results in the best fit to TDTR measurements at
T = 300 K and T = 80 K from Ref. [23] with a heating frequency of
106 Hz. Predicted kexp vs 3ro for a heating frequency of 107 Hz with
ε = 0.88 is shown for comparison. In TDTR, the transducer/substrate
interface is Al/Si. (b) kaccum from first-principles calculations is
transformed into kexp vs Lp by Eq. (3) using the suppression function
from Eq. (18). A value of ε = 0.6 results in the best fit to BB-FDTR
measurements (circles) at T = 300 K and T = 80 K from Ref. [16].
In BB-FDTR, the transducer/substrate interface is Cr/Si. Predicted
kexp vs Lp with ε = 0.88 is compared to TDTR measurements from
Ref. [6] (diamonds).

of spot size, but this effect is not observed. More suppression
is observed in BB-FDTR relative to TDTR for the available
range of TDTR data because a smaller spot size was used and
the surface emissivity is lower. At T = 80 K, Eqs. (3) and
(18) compare well with BB-FDTR experimental results over
all Lp. At this temperature, phonons have longer MFPs and
are significantly suppressed by the finite spot size, i.e., even
for very large Lp, kexp will only attain approximately 30% of
kbulk due to the spot size restriction. In Figs. 6(a) and 6(b) we
compare only against the overarching modulation frequency
and have neglected the multiple time scales in TDTR that arise
from using a pulsed laser.

To generate predicted kexp vs Lp in Figs. 6(a) and 6(b),
we used a suppression function derived from the gray BTE
[Eq. (18)] and applied it to the full phonon spectrum, where

the MFP is frequency-dependent. A similar approach was used
by Collins et al. for TTG, in which a gray suppression function
was applied to the full phonon spectrum to obtain predictions
of thermal diffusivity as a function of grating period [19]. The
results were compared to predictions of thermal diffusivity as
a function of grating period calculated from the spectral BTE
using phonon properties from first-principles calculations.
The authors found favorable comparison in that the predicted
effective thermal diffusivity varied by less than 7% over grating
periods from 10−1 to 106 nm compared to the full spectral
models of Si and PbTe at a temperature of 300 K.

The parameters ε and ρ in Eq. (18) arise from the analogy
with radiative transfer and describe the ability of the surface to
emit and reflect phonons. In our comparisons with experimen-
tal results we use ε as a fitting parameter but propose that ε is
related to the properties of the transducer/substrate interface in
BB-FDTR and TDTR experiments. One interpretation is that
the phonon emissivity is equal to the transmission coefficient
of phonons from the transducer into the substrate [30].

Phonon transmission coefficients are used in the
Landauer formulation to make predictions of interface thermal
resistance. Following Ref. [33], the total interface resistance
Rtotal = 2RT + RL, where RT and RL are the contributions
from transverse and longitudinal acoustic phonons, can be
derived in a similar manner as thermal conductivity. Beginning
with Eqs. (2.10) and (2.11) in Ref. [46] and using a truncated
Debye dispersion and Debye density of states,

R−1
T = αk4

BT 3

8π2�3v2
T

∫ θT/T

0

y4ey

(ey − 1)2
dy, (21a)

R−1
L = αk4

BT 3

8π2�3v2
L

∫ θL/T

0

y4ey

(ey − 1)2
dy, (21b)

where kB is the Boltzmann constant, vT and vL are the
transverse and longitudinal speeds of sound, θT and θL are the
temperatures associated with the transverse and longitudinal
Brillouin zone edge frequencies, y = �ω/kBT , and α = ε is
the transmission coefficient. Using Eq. (21) with values of vT,
vL, θT, and θL from Ref. [33] and our best-fit values for α = ε,
we find that Rtotal = 3.85 m2 K GW−1 for a Cr/Si interface and
Rtotal = 2.63 m2 K GW−1 for an Al/Si interface at T = 300 K.
These values compare well with measured values reported
in Refs. [16,15] at T = 300 K (Rtotal = 4.76 m2 K GW−1

for Cr/Si interface and Rtotal = 2.78 m2 K GW−1 for Al/Si
interface). Furthermore, because ε influences the onset of
suppression, we hypothesize that the interface properties
contribute to the discrepancy between room temperature BB-
FDTR and TDTR heating frequency-dependence for silicon
[see Fig. 6(b)], though a spectral phonon model that includes
the transducer may be required to reconcile this unresolved
question.

It is important to note that previous nondiffusive mea-
surements have been solely attributed to reduced thermal
conductivity, i.e., the interface resistance between the substrate
and the transducer is assumed constant in diffuse interpre-
tations of the experiments [6,15,16,18]. In our formulation,
we are comparing a thermal resistance from the BTE that
includes a surface temperature drop in the BTE domain to
a diffusion solution that does not account for an interface
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thermal resistance (no surface temperature drop). As a result,
we are including the effect of Rε [Eq. (12a)] in our definition of
keff . To generate a suppression function that does not include
the surface temperature drop, one can equate the appropriate
complex diffusive thermal resistance to Ri,x or Ri,r , resulting in
Si = 1/(1 + iτ�). This result is equivalent for both the planar
and spherical geometries and is independent of the particle
radius. In Ref. [16], a suppression function was determined
from a numerical solution to the 1D, gray BTE for phonons
traveling in the positive and negative x directions (μ = 1 or
−1). The result is related to Si; the difference being a factor of
π/2 on the x axis, which stems from considering −1 � μ � 1
when determining Si [47].

To include heating frequency-dependent interface resis-
tance between the transducer and the substrate, a BTE
formulation that explicitly includes an interface could be
considered and compared to a diffusion solution including an
interface. How the transducer affects nondiffusive transport,
which is important in interpreting the experiments, has not
been explicitly addressed, though it may contribute to the
discrepancy between heating frequency-dependent measure-
ments of silicon by BB-FDTR and TDTR.

V. CONCLUSIONS

An analytical suppression function for a system geometri-
cally similar to a thermoreflectance experiment was obtained

by solving the BTE for a gray medium. The result accounts
for the two dominant length scales in thermoreflectance
experiments: thermal penetration depth and heating laser spot
radius. We used the suppression function to predict kexp vs Lp

and kexp vs 3ro to make a direct comparison to experimental
measurements by both BB-FDTR and TDTR. Our results
corroborate the use of BB-FDTR and TDTR as tools for
identifying kaccum by generating nondiffusive transport and
provide insight and understanding of the measurements.
Furthermore, our results suggest that if either Lp or ro are much
smaller than the phonon MFPs that dominate k, BB-FDTR
and TDTR are inadequate for measuring the bulk thermal
conductivity of a material. The phonon surface properties ε and
ρ affect suppression and may explain discrepancies between
TDTR and BB-FDTR measurements of similar samples with
different transducers. It is clear that powerful new insight is
offered by nondiffusive thermal transport measurements paired
with the experiment-specific suppression function to map data
into real energy carrier properties.
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