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Abstract—In this paper, analytical relation for pulse width evolution
and broadening in fiber systems using the Volterra series transfer
function (VSTF) in linear and nonlinear cases are derived. This
evaluation is done for traditional and optimum dispersion compensated
fibers. Effects of group velocity dispersion (GVD) and self-phase
modulation (SPM) are taken into account. It is shown that the
analytical formulation can be applied to design and analysis the long
hauls practical systems, and is helpful in understanding the pulse
distortion caused by the interaction between SPM and GVD. The
proposed relations are extracted analytically and for the first time pulse
broadening factor in general case is derived.
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1. INTRODUCTION

High-speed communications and computations are the main industrial
and academic demands. Optical method is one of interesting
alternatives for doing this purpose. Optical fiber is a physical medium
for realization of optical communications which is the main method
applied for high speed data communications. The main drawbacks of
this physical medium are loss, dispersion and nonlinear effects.

Fiber nonlinearity has a great influence on the performance of
long-haul optical fiber systems. Recently long transmission distance
can be easily achieved by using erbium-doped fiber amplifiers [1, 2]
and conventional dispersion compensators. Numerical methods have
been widely used to study the fiber nonlinear effects because analytical
method for analysis of the pulse propagation cannot be obtained
except for the special cases of soliton transmission and the Volterra
series approach. Numerical simulations provide accurate results,
analytical expressions offer great advantages in estimation of various
parameters based on their influence on system performance. The pulse
broadening factor T (z)/T0 defined as the ratio of optical output width
to input pulse width, is widely used to evaluate the performance of
intensity modulation direct-detection (IM/DD) systems. A closed-
form analytical formula for T (z)/T0 in a linear dispersive regime of
fiber is given in [3]. Furthermore, approximate formulas with good
accuracy for T (z)/T0 in a uniform (fiber parameters do not vary
along fiber length), lossless and nonlinear fiber with small positive
group velocity dispersion (GVD) were derived in [4, 5]. Formulas
for T (z)/T0 in [6] and [7] are based on the idea that the effect
of self-phase modulation (SPM) can be approximately represented
by an effective intensity-dependent phase shift or frequency chirp
of input pulses. Here, the expression of the effective phase shift
should be determined first. However, how to rigorously derive this
expression is not very clear, especially for chained optical amplifier
systems with axially varying parameters of fiber dispersion including
dispersion management, nonequal amplifier spacing and nonequal
amplifier output power. In the paper, analytical formulas for pulse
width evolution in optical communication systems are derived using
the Volterra series transfer function [8]. It has been considered that
the system may have axially nonuniform parameters and the fiber
dispersion is not necessarily weak, hence the resulting formula is able
to operate in a wide range of applications with satisfactory accuracy.
Recently dispersion and nonlinear effects in optical fibers have been
studied extensively [9–28]. Although different aspects of fibers have
been considered but a low concentration on designing of the fiber using
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analytical formulation has been done. An expression for the effective
phase shift caused by the SPM has been derived which is identical to
one proposed by [7].

Organization of this paper is as follows.
In Section 2, the nonlinear Schrödinger equation governing the

evolution of pulse in the dispersive and nonlinear fiber is given. This
equation is solved by the Volterra series expansion. Simulation results
are presented in Section 3. Finally the paper ends with a short
conclusion.

2. MATHEMATICAL MODELING

In this section mathematical principle for pulse propagating through
nonlinear fiber optic based on the Volterra series is presented. Usually
for pulse propagation the nonlinear Schrödinger equation (NLS) is used
which can be given as follows (Eq. (1)).

∂A(t, z)
∂z

= −α

2
A(t, z) − j

2
β2(z)

∂2A(t, z)
∂t2

+ jγ |A(t, z)|2A(t, z) (1)

The Fourier transform of Eq. (1) is:

∂A(ω, z)
∂z

=

[
−α

2
+ j

ω2

2
β2(z)

]
A(ω, z)

+
jγ

4π2

+∞∫
−∞

+∞∫
−∞

A(ω1, z)A∗(ω2, z)A (ω−ω1+ω2, z)dω1dω2, (2)

where α, β2, γ and A are fiber loss, the group velocity dispersion,
nonlinear coefficient (Kerr coefficient) and amplitude of the electric
field respectively.

Based on the Volterra series [7–9] the following solution can be
applied for Eq. (2).

A(ω, z) = H1(ω, z)A(ω, 0)

+
+∞∫

−∞

+∞∫
−∞

H3 (ω1, ω2, ω − ω1 + ω2, z)A(ω1, 0)

A∗ (ω2, 0)A (ω − ω1 + ω2, 0) dω1dω2, (3)

where H1 and H3 are the first and the third order Kernels of the
Volterra series. After substituting the proposed solution into Eq. (2)
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the following differential equations for the kernels are obtained.

∂H1(ω, z)
∂z

= G1(ω, z)H1(ω, z), (4)

∂H3

∂z
(ω1, ω2, ω−ω1+ω2, z) = G1(ω, z)H3 (ω1, ω2, ω − ω1 + ω2, z)

+G3 (ω1, ω2, ω−ω1+ω2)H1 (ω1, z)
H∗

1 (ω2, z)H1 (ω − ω1 + ω2, z) , (5)

where G1(ω, z) = −α
2 + j ω2

2 β2(z) and G3(ω1, ω2, ω − ω1 + ω2) =
j

(
1 + ω

ω0

)
[a0 +QRSR(ω1 − ω2)] is the fiber nonlinear kernel [7–9].

The first order differential equations (4) and (5) can be solved
using conventional techniques in this field. For this purpose the
following factor of integration is defined.

λ = e

z∫
0

(
−α

2
+j ω2

2
β2(z)

)
dz

= e

[
α
2

z−j ω2

2

z∫
0

β2(z)dz

]
(6)

Considering the following boundary conditions first and third
order kernels can be obtained as follows.

H1(ω, 0) = 1
H3(ω1, ω2, ω−ω1−ω2, 0) = 0

H1(ω, z) = e

[
−α

2
z+j ω2

2
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0

β2(z)dz

]
(7)
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2
z+j ω2
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β2(z)dz

]

× jγ
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e
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β2(z)dz

]
dz (8)

Therefore, the solution of the NLS equation in frequency domain is
given as:
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Now, we consider a Gaussian pulse profile as an example:

A(t, 0) = a0e

(
− t2

T2
0

)

The Fourier Transform of the Gaussian pulse is:

A(ω, 0) = A0e

(
−ω2T2

0
2

)
,

where A0 =
√

2πT0a0.
Therefore, the solution of the NLS equation is:

A(ω, z) = e

[
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}
dz

For simplicity the following definition is introduced.

B
∆=

z∫
0

β2(z)dz (10)

For the Gaussian input pulse the intensity is given by:

I(z) =
+∞∫

−∞

+∞∫
−∞

e[j(ω2
1−ω(ω1−ω2)−ω1ω2)B]

×e
(
−ω2

1T2
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2

)
e

(
−ω2

2T2
0

2

)
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(
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0
2

)
dω1dω2

After some mathematical simplification the final form is derived
as follows.

I(z) =
2πσ2

0 e

(
− ω2

2σ2
0

)
√
σ4
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where σ0 = 1
T0

.
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Using mathematical tools, amplitude of the electric field in
frequency domain is obtained as follows.

A(ω, z) = A0e
(−α

2
z)e

(
− 1−jσ2

0B

2σ2
0

ω2

)

+e

(
−α

2
z+j ω2

2
B

)
jγ

4π2
A3

0

z∫
0

e−αzI(z)dz (11)

Now, for simplicity we consider three cases.
A- Linear case (γ = 0)
B- Nonlinear case (β2(z) = 0)
C- Linear and Nonlinear case simultaneously

A- Linear case (γ = 0),
In this case effect of dispersion is only considered. Considering

Eq. (11) and inserting γ = 0, the following field amplitude is obtained.

A(ω, z) = A0e
(−α

2
z)e


−

[
1−jσ2

0

z∫
0

β2(z)dz

]
T2
0

2
ω2




(12)

Using the inverse Fourier transform the following field in time domain
is derived.

A (ω, z) = A0e
(−α

2
z)e


− t2

2

[
1−jσ2

0

z∫
0

β2(z)dz

]
T2
0




Using standard methods for calculation of root mean square the width
of propagating pulse at arbitrary distance can be calculated as follows.
For this purpose the variance of electric field is defined as follows.

V ar =
〈
A2

〉
− 〈A〉2 (13)

Also, in the following average value in general case is given.

Ap =

+∞∫
−∞

tp|A(t, z)|2dt

+∞∫
−∞

|A(t, z)|2dt
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where P is integer number.
For this case after mathematical simplification variance of the

electric field in linear case and finally the pulse broadening factor in
position dependence compensated fibers are obtained.
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+∞∫

−∞
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+∞∫
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(15)

B- Nonlinear case (β2(z) = 0)
In this case only the effect of nonlinear term is considered.

Considering Eq. (11) with β2(z) = 0, the following field amplitude
is obtained.

A(ω, z) = A0e
−α

2
ze−

T2
0
2

ω2
+

jγ

4π2
e−

α
2

zLeff
2π√
3T 2

0
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0e

−T2
0
6

ω2
(16)

Using inverse Fourier transform the following form is obtained in time
domain.

A(t, z) = a0e
−α

2
z

[
e
− t2

2T2
0 +

jγLeffa
2
0√

3
e
− t2

6T2
0

]

After some mathematical calculations the following relation for
variance and then for pulse broadening factor is obtained.

Num =
+∞∫

−∞
t2 |A (t, z)|2 dt = a2

0e
−αz

+∞∫
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t2
[
e
− t2
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4
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e
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√
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√
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T (z)
T0

=




1 +
1

9
√

3
φ2
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1 +
1

3
√

3
φ2

max




1
2

(18)

where φmax
∆= γP0Leff .

C- Linear and nonlinear case simultaneously
In this case linear and nonlinear effects simultaneously are

considered. The following electric field is used according to analytical
solution of the NLS equation.

A(ω, z) = A0e
−α

2
z


e−(1−jσ2

0B)
2σ2

0

ω2

+
jγA2

0

2π
f(z)e

−(11−jσ2
0B)

2σ2
0

ω2


 , (19)

where f(z) =
z∫
0

e−αζ

z∫
0

β2(ζ)dζ

dζ.

Using inverse Fourier transform the time dependent electric field
is obtained.

A(t, z) = a0 e
−α

2
z


e−

σ2
0

2(1−jσ2
0

B)
t2

+ jγa2
0T

2
0 f(z)e

− σ2
0

2(11−jσ2
0

B)
t2




Also, the variance and consequently the pulse broadening factor using
some simplification assumption are given. It has been assumed that

σ2
0B � 1
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and
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(21)
To obtain simpler relation, one may accept T−2

0 B � 1, then the
following pulse broadening factor is obtained.
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= T−2
0 B




1 +
γ2a4

0T
4
0 f

2(z)
11

√
11

+ 4γa2
0T

2
0 f(z)
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2
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1
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The derived analytical relations in this section are useful for study of
the pulse propagation in high power or multi-channel communication
cases such as wavelength division multiplexing systems and networks.
In the next section simulated results are presented and discussed.

3. SIMULATION RESULTS

In this section based on derived relations in previous section, we
present some simulations about the pulse broadening factor for light
propagation through nonlinear traditional fiber optic, partially and
optimum dispersion compensated as well.

Based on the Volterra series analytical solution of the NLS
equation for light propagating through optical fiber for same output
pulse as input one the following group velocity dispersion is required.
On the other hand the following curve is optimum GVD for pulse
propagation without any perturbation in shape. The following curve
is non-periodic solution of the NLS equation for optimum operation
(output pulse is exactly the input one).
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2
(z

)
β

Figure 1. Optimum dispersion profile of optical fiber vs. distance.

For this case the following curve is illustrated to demonstrate the
pulse propagation through optimum dispersion compensated media
(optimum GVD). It is shown that the input pulse without any
perturbation is transmitted through the fiber. The obtained dispersion
profile can be realized in practice using selective type and density of
doping. As it is shown the output pulse is exactly same as input one.
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Figure 2. Gaussian pulse propagation through fiber with optimum
dispersion of Fig. 1. n2 = 6 × 10−13, α = 0.2 dB

km , P0 = 4 mW, t0 =
50 Psec.

Also, in previous section our proposed relations show this fact.
In the following figure (Fig. 3) pulse propagation through

dispersion compensated by rectangular GVD profile optical fiber is
illustrated. It is observed that the propagated pulse is broadened
through propagation. On the other hand other profiles for dispersion
compensation can’t produce output pulse exactly same as input. In
the following it is shown.

The evolution of a Gaussian pulse in a dispersion compensated
fiber with rectangular GVD profile (not optimum GVD) while
nonlinear effect is ignored is demonstrated in Fig. 3. It is shown that
the propagating pulse is broadened and the result exactly same as
calculated result by derived formula in previous section.

In the following figure (Fig. 4) pulse broadening factor for different
values of GVD parameter is illustrated. It is observed that with
increasing of the GVD parameter the output pulse width is increased.
For description of these results the introduced relations in previous
section can be used. The illustrated figure considered only dispersion
effect and nonlinear properties are ignored.

Effects of linear and nonlinear phenomena on the pulse broadening
factor are considered. It is shown that for given GVD, initial
pulse width and light power in the case of linear effects the pulse
width is broadened fast compared nonlinear case. This is related to
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Figure 3. Gaussian pulse propagation through dispersion
compensated optical fiber with rectangular GVD profile. n2 = 6 ×
10−13, α = 0.2 dB

Km , P0 = 4 mW, t0 = 50 Psec, β2 = 25 P sec2 /Km ·nm.
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Figure 4. Pulse broadening factor Vs distance for different GVD
parameter. α = 0.2 dB

Km , P0 = 1 mW, t0 = 1 nsec, β2 = 20 P sec2/Km ·
nm.
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pulse compression properties of nonlinear effects such as self phase
modulation (SPM).

0 5 10 15 20 25 30 35 40
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Absolutly Linear Effect

Both Linear and Nonlinear Effect
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β

γ

Figure 5. Pulse broadening factor Vs distance for linear and nonlinear
effects. n2 = 6 × 10−12, α = 0.2 dB

Km , P0 = 1 mW, t0 = 1 Psec, β2 =
100 P sec2/Km · nm.

In the following simulated curve the pulse broadening due to
nonlinear effects only is illustrated. In this curve different parameter
is considered. It is observed that with increasing the input power the
pulse width is decreased and saturated in small distances. In this case
we concentrated on nonlinear behavior of the fiber.

Effect of the input power on the pulse broadening in nonlinear
regime is investigated and result illustrated in Fig. 7. It is observed
that with increasing the input power the pulse width is broadened
faster and in small distance the saturation case occurs.

Effect of chirp on pulse broadening in linear regime is illustrated
in Fig. 8. In the case of negative chirp, the pulse broadening is negative
first and then going to increase.

Finally, the pulse shape after 100 km propagation through optical
fiber of Gaussian input pulse for optimum and rectangular dispersion
compensation is illustrated in Fig. 9. It is shown that in the case of
optimum dispersion compensation output pulse is exactly the same as
input pulse.

In this section some of obtained results in previous section were
illustrated graphically. It is shown that in optimum dispersion
compensated fibers (Fig. 1), pulse propagates without distortion.
Analytical relations for pulse width broadening in general case estimate
the nature of pulse propagation in nonlinear optical fibers.
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Figure 6. Pulse broadening factor Vs distance (effect of nonlinear
behavior). n2 = 6 × 10−12, α = 0.2 dB
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4. CONCLUSION

In this paper we have obtained analytical relation for pulse broadening
factor base on the Volterra series. The proposed relations, for the
first time from our point of view, analytically predict the pulse
propagation through optical fiber incorporating linear and nonlinear
effects. Some simulation results were presented to illustrate ability of
derived relations.
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