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Abstract: In this paper, we used the natural decomposition approach with non-singular kernel
derivatives to find the solution to nonlinear fractional Gardner and Cahn–Hilliard equations arising
in fluid flow. The fractional derivative is considered an Atangana–Baleanu derivative in Caputo
manner (ABC) and Caputo–Fabrizio (CF) throughout this paper. We implement natural transform
with the aid of the suggested derivatives to obtain the solution of nonlinear fractional Gardner and
Cahn–Hilliard equations followed by inverse natural transform. To show the accuracy and validity
of the proposed methods, we focused on two nonlinear problems and compared it with the exact and
other method results. Additionally, the behavior of the results is demonstrated through tables and
figures that are in strong agreement with the exact solutions.
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MSC: 26A33; 60H15; 35R11; 34A25

1. Introduction

Fractional calculus (FC) is a subject that dates back to over 324 years, but it has
recently attracted the interest of many scientists and engineers working in a variety of
fields. Fractional calculus (FC) is the generic generalisation of integer-order calculus to
arbitrary-order integration and differentiation with non-integer order. Signal processing,
electronics, viscoelasticity, finance, chemistry, biology and dynamical systems are all ex-
amples of physical phenomena that can be modelled. Several researchers are working to
significantly progress and contribute to fractional calculus [1–5]. There are different kinds
of fractional derivatives such as Riemann–Liouville derivatives [6], Caputo derivatives [7],
Kolwankar–Gangal (K-G) derivatives [8], Cressons derivatives [9], Jumaries modified
Riemann–Liouville derivatives [10] and Chens fractal derivatives [11]. However, due to
the uniqueness of kernels, the above concept has a significant flaw. A change in the kernel
in the work of Atangana and Baleanu [12] appears to have addressed this issue. It is
claimed that some physics problems involving initial values provide better results and
have significant advantages over other fractional operators. One of the most essential
features of the new definition is that it uses a non-singular and non-local kernel in its
derivation [12]. Fractional differential equations have attracted special interest during the
past two decades owing to their ability to model many phenomena in different research
areas and engineering applications. Many physical applications in science and engineering
can be represented using fractional differential equation models, which are extremely useful
for a wide range of physical problems. Fractional linear and nonlinear PDEs are used to
represent these equations, and solving fractional differential equations is essential [13–21].
Nonlinear equations are used to describe the world’s most important processes. Finding
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the exact solution to nonlinear partial differential equations is still a major problem in
physics and applied mathematics, necessitating the use of various techniques to obtain at
innovative approximate or exact solutions. Many approximation and numerical techniques
have been used to solve fractional differential equations. Lately, many new approaches
to fractional differential equations have been proposed; a few of these methods are as
follows: the differential transform method (FDTM) [22], the iterative Laplace transform
method (ILTM) [23], the fractional Adomian decomposition method (FADM) [24], the
Elzaki transform decomposition method (ETDM) [25], the fractional variational iteration
method (FVIM) [26], the fractional homotopy perturbation method (FHPM) [27] and the
fractional natural decomposition method (FNDM) [28]. The main theme of the present
article is to solve nonlinear fractional Gardner and Cahn–Hilliard equations with the help
of one of the most effective approaches, named the natural decomposition method. Natural
decomposition methods avoid round off errors by not requiring prescriptive assumptions,
linearisation, discretisation, or perturbation.

The Gardner equation [29] was developed from a combination of KdV and modified
KdV equations and is used to describe internal solitary waves in shallow water. Gardner’s
equation is widely applied in physics, including plasma physics, fluid physics and quantum
field theory [30,31]. In plasma and solid state [32], it also describes a diversity of wave
phenomena. The fractional Gardner (FG) equation has the following form:

Dβ
℘ξ(ψ,℘) + 6(ξ − Υ2ξ2)

∂ξ

∂ψ
+

∂ξ3

∂ψ3 = 0, 0 < β ≤ 1, (1)

where Υ is a real constant. The wave function ξ(ψ,℘) has the scaling variables space

(ψ) and time (℘), the terms ξ ∂ξ
∂ψ and ξ2 ∂ξ

∂ψ represent nonlinear wave steepening, and ∂ξ3

∂ψ3

represents dispersive wave effects.
Cahn and Hilliard [33] introduced the Cahn–Hilliard equation in 1958 to describe the

process of phase separation of a binary alloy under the critical temperature. This equation
is important in a variety of remarkable scientific processes, including phase separation,
phase-ordering dynamics and spinodal decomposition [34,35]. We consider the fractional
Cahn–Hilliard (FCH) equation in this framework:

Dβ
℘ξ(ψ,℘)− ∂ξ

∂ψ
− 6ξ

∂ξ2

∂ψ
− (3ξ2 − 1)

∂2ξ

∂ψ2 +
∂4ξ

∂ψ4 = 0, 0 < β ≤ 1, (2)

Different methodologies have been used to investigate the Gardner and Cahn–Hilliard
equations, such as (ADM) [36], the modified Kudryashov technique [37], the reduced dif-
ferential transform method [38], the residual power series method (RPSM) [39], (HPM) [40]
and many others. In this article, we implement the natural decomposition method to find
the solution of both equations.

The rest of the paper is organised as follows: some basic definitions of fractional
derivatives have been given in Section 2. The idea of using NTDM to solve partial differ-
ential equations with fractional order and non-singular definitions is given in Section 3.
In Section 4, we discuss the uniqueness and convergence of the results. In Section 5, a few
new exact solutions for the nonlinear fractional Gardner and Cahn–Hilliard equations are
extracted via NTDM to validate the approaches. Finally, a brief conclusion is provided in
the last section.

2. Basic Preliminaries

Fractional integrals and derivatives have a variety of definitions and properties. In this
section, we propose modifications to several basic fractional calculus definitions and
preliminaries that are used in this research.
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Definition 1. A real function j(x), x > 0, is said to be in the space Cµ, µ ∈ R, if there exists a real
number q > µ such that j(x) = xqg(x), where g ∈ C[0, ∞), and it is said to be in the space Cm

µ if
j(m) ∈ Cµ, m ∈ N.

Definition 2. For a function j ∈ Cµ, µ ≥ −1, the Riemann–Liouville integral for fractional-order
is defined as [41]

Iβ j(ϑ) =
1

Γ(β)

∫ ϑ

0
(ϑ− µ)β−1 j(µ)dµ, β > 0, ϑ > 0.

and I0 j(ϑ) =j(ϑ).
(3)

Definition 3. The fractional-order derivative for j(ϑ) in Caputo sense is defined as [41]

Dβ
ϑ j(ϑ) = Im−βDm j(ϑ) =

1
m− β

∫ ϑ

0
(ϑ− µ)m−β−1 j(m)(µ)dµ, (4)

for m− 1 < β ≤ m, m ∈ N, ϑ > 0, j ∈ Cm
µ , µ ≥ −1.

Definition 4. The fractional-order derivative for j(ϑ) in Caputo–Fabrizio manner is defined as [41]

Dβ
ϑ j(ϑ) =

F(β)

1− β

∫ ϑ

0
exp

(
−β(ϑ− µ)

1− β

)
D(j(µ))dµ, (5)

where 0 < β < 1 and F(β) is a normalisation function with F(0) = F(1) = 1.

Definition 5. The fractional-order derivative for j(ϑ) in term of Atangana–Baleanu Caputo is
given as [41]

Dβ
ϑ j(ϑ) =

B(β)

1− β

∫ ϑ

0
Eβ

(
−β(ϑ− µ)

1− β

)
D(j(µ))dµ, (6)

where 0 < β < 1, where B(β) is a normalisation function and Eβ(z) = ∑∞
m=0

zm

Γ(mβ+1) is the
Mittag–Leffler function.

Definition 6. The natural transform of the function ξ(℘) is defined by

N (ξ(℘)) = U (ω, υ) =
∫ ∞

−∞
e−ω℘ξ(υ℘)d℘, ω, υ ∈ (−∞, ∞). (7)

The natural transformation of ξ(℘) for ℘ ∈ (0, ∞) is defined as

N (ξ(℘)H(℘)) = N+ = U+(ω, υ) =
∫ ∞

0
e−ω℘ξ(υ℘)d℘, ω, υ ∈ (0, ∞). (8)

where H(℘) is the Heaviside function.

Definition 7. The inverse natural transformation of the function ξ(ω, υ) can be written as

N−1[U (ω, υ)] = ξ(℘), ∀℘ ≥ 0 (9)

Lemma 1. If U1(ω, υ) and U2(ω, υ) are the natural transformation of ξ1(℘) and ξ2(℘), respec-
tively, then

N [c1ξ1(℘) + c2ξ2(℘)] = c1N [ξ1(℘)] + c2N [ξ2(℘)] = c1U1(ω, υ) + c2U2(ω, υ), (10)

where c1 and c2 are constants.
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Lemma 2. If the natural inverse transformation of ξ1(ω, υ) and ξ2(ω, υ) are ξ1(℘) and ξ2(℘),
respectively, then

{N−1[c1U1(ω, υ) + c2U2(ω, υ)] = c1N−1[U1(ω, υ)] + c2N−1[U2(ω, υ)] = c1ξ1(℘) + c2ξ2(℘), (11)

where c1 and c2 are constants.

Definition 8. The natural transformation of Dβ
℘ξ(℘) in Caputo manner is given as [41]

N [Dβ
℘ξ(℘)] =

(ω

υ

)β
(
N [ξ(℘)]−

(
1
ω

)
ξ(0)

)
(12)

Definition 9. The natural transformation of Dβ
℘ξ(℘) in Caputo–Fabrizio manner is given as [41]

N [Dβ
℘ξ(℘)] =

1
1− β + β( υ

ω )

(
N [ξ(℘)]−

(
1
ω

)
ξ(0)

)
(13)

Definition 10. The natural transformation of Dβ
℘ξ(℘) in Atangana–Baleanu Caputo manner is

given as [41]

N [Dβ
℘ξ(℘)] =

M[β]

1− β + β( υ
ω )β

(
N [ξ(℘)]−

(
1
ω

)
ξ(0)

)
(14)

Here, M[β] is a normalisation function.

3. Methodology

In this section, we presented the general methodology of natural transformation for
solving the equation given below [42,43]

Dβ
℘ξ(ψ,℘) = L(ξ(ψ,℘)) + N(ξ(ψ,℘)) + h(ψ,℘) = M(ψ,℘), (15)

having initial condition

ξ(ψ, 0) = φ(ψ), (16)

with linear term L, nonlinear term N and the source term h(ψ,℘).

3.1. Case I (NTDMCF) :

With the help of natural transform and Caputo–Fabrizio fractional derivative,
Equation (15) can be written as

1
p(β, υ, ω)

(
N [ξ(ψ,℘)]− φ(ψ)

ω

)
= N [M(ψ,℘)], (17)

with

p(β, υ, ω) = 1− β + β(
υ

ω
). (18)

By taking the inverse natural transformation, Equation (17) can be written as

ξ(ψ,℘) = N−1
(

φ(ψ)

ω
+ p(β, υ, ω)N [M(ψ,℘)]

)
. (19)
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Applying the Adomain decomposition, we have the solution in the infinite series form
for ξ(ψ,℘) given as

ξ(ψ,℘) =
∞

∑
i=0

ξi(ψ,℘), (20)

and N(ξ(ψ,℘)) can be decomposed into

N(ξ(ψ,℘)) =
∞

∑
i=0

Ai(ξ0, . . . , ξi), (21)

where Ai are called the Adomian polynomials. They can be computed according to a
simple rule:

An =
1
n!

dn

dεn N(t, Σn
k=0εkξk)|ε=0

Substituting Equations (20) and (21) into (19), we have

∞

∑
i=0

ξi(ψ,℘) =N−1
(

φ(ψ)

ω
+ p(β, υ, ω)N [h(ψ,℘)]

)

+N−1

(
p(β, υ, ω)N

[
∞

∑
i=0
L(ξi(ψ,℘)) + A℘

]) (22)

From (22), we have,

ξCF
0 (ψ,℘) =N−1

(
φ(ψ)

ω
+ p(β, υ, ω)N [h(ψ,℘)]

)
,

ξCF
1 (ψ,℘) =N−1(p(β, υ, ω)N [L(ξ0(ψ,℘)) + A0]),

...

ξCF
l+1(ψ,℘) =N−1(p(β, υ, ω)N [L(ξl(ψ,℘)) + Al ]), l = 1, 2, 3, · · ·

(23)

Finally, using NTDMCF, we obtain the solution of (15) by substituting (23) into (20).

ξCF(ψ,℘) = ξCF
0 (ψ,℘) + ξCF

1 (ψ,℘) + ξCF
2 (ψ,℘) + · · · . (24)

3.2. Case II (NTDMABC) :

With the help of natural transform and the Atangana–Baleanu fractional derivative,
Equation (15) can be written as

1
q(β, υ, ω)

(
N [ξ(ψ,℘)]− φ(ψ)

ω

)
= N [M(ψ,℘)], (25)

with

q(β, υ, ω) =
1− β + β( υ

ω )β

B(β)
. (26)

Using the inverse natural transformation, Equation (25) can be written as

ξ(ψ,℘) = N−1
(

φ(ψ)

ω
+ q(β, υ, ω)N [M(ψ,℘)]

)
. (27)
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Adopting the Adomain decomposition as in the last case, we have

∞

∑
i=0

ξi(ψ,℘) =N−1
(

φ(ψ)

ω
+ q(β, υ, ω)N [h(ψ,℘)]

)

+N−1

(
q(β, υ, ω)N

[
∞

∑
i=0
L(ξi(ψ,℘)) + A℘

]) (28)

From (22), we have

ξABC
0 (ψ,℘) =N−1

(
φ(ψ)

ω
+ q(β, υ, ω)N [h(ψ,℘)]

)
,

ξABC
1 (ψ,℘) =N−1(q(β, υ, ω)N [L(ξ0(ψ,℘)) + A0]),

...

ξABC
l+1 (ψ,℘) =N−1(q(β, υ, ω)N [L(ξl(ψ,℘)) + Al ]), l = 1, 2, 3, · · · .

(29)

Finally, using NTDMABC, we obtain the solution of (15) as in the last case,

ξABC(ψ,℘) = ξABC
0 (ψ,℘) + ξABC

1 (ψ,℘) + ξABC
2 (ψ,℘) + · · · . (30)

4. Convergence Analysis

Here, we discuss the uniqueness and convergence of NTDMCF and NTDMABC.

Theorem 1. Suppose that |L(ξ) − L(ξ∗)| < γ1|ξ − ξ∗| and |N(ξ) − N(ξ∗)| < γ2|ξ −
ξ∗|, where ξ := ξ(µ,℘) and ξ∗ := ξ∗(µ,℘) are two different function values and γ1,γ2 are
Lipschitz constants.

L and N are the operators defined in (15). Then, the problem (15) has a unique solution for
NTDMCF when 0 < (γ1 + γ2)(1− β + β℘) < 1 for all ℘.

Proof. Let H = (C[J], ||.||) with the norm ||φ(℘)|| = max℘∈J |φ(℘)| be the Banach space of
continuous function on the interval J = [0, T]. Let I : H → H be a nonlinear mapping, where

ξC
l+1 = ξC

0 +N−1[p(β, υ, ω)N [L(ξl(µ,℘)) + N(ξl(µ,℘))]], l ≥ 0.

||I(ξ)− I(ξ∗)|| ≤ max℘∈J |N−1
[

p(β, υ, ω)N [L(ξ)−L(ξ∗)]

+ p(β, υ, ω)N [N(ξ)− N(ξ∗)]|
]

≤ max℘∈J

[
γ1N−1[p(β, υ, ω)N [|ξ − ξ∗|]]

+ γ2N−1[p(β, υ, ω)N [|ξ − ξ∗|]]
]

≤ max℘∈J(γ1 + γ2)
[
N−1[p(β, υ, ω)N |ξ − ξ∗|]

]
≤ (γ1 + γ2)

[
N−1[p(β, υ, ω)N ||ξ − ξ∗||]

]
= (γ1 + γ2)(1− β + β℘)||ξ − ξ∗||.

(31)

Therefore, I is a contraction as 0 < (γ1 + γ2)(1− β + β℘) < 1. From the Banach fixed
point theorem, the result of (15) is unique.

Theorem 2. Under the same hypothesis as in the last theorem, the problem in (15) has a unique
solution for NTDMABC when 0 < (γ1 + γ2)(1− β + β ℘β

Γ(β+1) ) < 1 for all ℘.
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Proof. As in the last theorem, let H = (C[J], ||.||) be the Banach space of a continuous
function on the interval J. Let I : H → H be a nonlinear mapping, where

ξC
l+1 = ξC

0 +N−1[p(β, υ, ω)N [L(ξl(µ,℘)) + N(ξl(µ,℘))]], l ≥ 0.

||I(ξ)− I(ξ∗)|| ≤ max℘∈J |N−1
[
q(β, υ, ω)N [L(ξ)−L(ξ∗)]

+ q(β, υ, ω)N [N(ξ)− N(ξ∗)]|
]

≤ max℘∈J

[
γ1N−1[q(β, υ, ω)N [|ξ − ξ∗|]]

+ γ2N−1[q(β, υ, ω)N [|ξ − ξ∗|]]
]

≤ max℘∈J(γ1 + γ2)
[
N−1[q(β, υ, ω)N |ξ − ξ∗|]

]
≤ (γ1 + γ2)

[
N−1[q(β, υ, ω)N ||ξ − ξ∗||]

]
= (γ1 + γ2)(1− β + β

℘β

Γ(β + 1)
)||ξ − ξ∗||.

(32)

Therefore, I is a contraction as 0 < (γ1 + γ2)(1− β + β ℘β

Γ(β+1) ) < 1. From the Banach
fixed point theorem, the result of (15) is unique.

Theorem 3. Suppose that L and N are Lipschitz functions as in the last theorems; then, the
NTDMCF result of (15) is convergent.

Proof. Let H be the Banach space defined before, and let ξm = ∑m
r=0 ξr(µ,℘). To show that

ξm is a Cauchy sequence in H. Let

||ξm − ξn|| = max℘∈J |
m

∑
r=n+1

ξr|, n = 1, 2, 3, · · ·

≤ max℘∈J

∣∣∣∣∣N−1

[
p(β, υ, ω)N

[
m

∑
r=n+1

(L(ξr−1) + N(ξr−1))

]]∣∣∣∣∣
= max℘∈J

∣∣∣∣∣N−1

[
p(β, υ, ω)N

[
m−1

∑
r=n+1

(L(ξr) + N(ξr))

]]∣∣∣∣∣
≤ max℘∈J |N−1[p(β, υ, ω)N [(L(ξm−1)−L(ξn−1) + N(ξm−1)− N(ξn−1))]]|
≤ γ1max℘∈J |N−1[p(β, υ, ω)N [(L(ξm−1)−L(ξn−1))]]|
+ γ2max℘∈J |N−1[p(β, υ, ω)N [(N(ξm−1)− N(ξn−1))]]|
= (γ1 + γ2)(1− β + β℘)||ξm−1 − ξn−1||

(33)

Let m = n + 1, then

||ξn+1 − ξn|| ≤ γ||ξn − ξn−1|| ≤ γ2||ξn−1ξn−2|| ≤ · · · ≤ γn||ξ1 − ξ0||, (34)

where γ = (γ1 + γ2)(1− β + β℘). Similarly, we have

||ξm − ξn|| ≤ ||ξn+1 − ξn||+ ||ξn+2ξn+1||+ · · ·+ ||ξm − ξm−1||,
(γn + γn+1 + · · ·+ γm−1)||ξ1 − ξ0||

≤ γn
(

1− γm−n

1− γ

)
||ξ1||,

(35)
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As 0 < γ < 1, we have 1− γm−n < 1. Therefore,

||ξm − ξn|| ≤
γn

1− γ
max℘∈J ||ξ1||. (36)

Since ||ξ1|| < ∞, ||ξm − ξn|| → 0 when n→ ∞. As a result, ξm is a Cauchy sequence
in H, implying that the series ξm is convergent.

Theorem 4. Suppose that L and N are Lipschitz functions as in the last theorems; then, the
NTDMABC result of (15) is convergent.

Proof. Let ξm = ∑m
r=0 ξr(µ,℘). To show that ξm is a Cauchy sequence in H. Let

||ξm − ξn|| = max℘∈J |
m

∑
r=n+1

ξr|, n = 1, 2, 3, · · ·

≤ max℘∈J

∣∣∣∣∣N−1

[
q(β, υ, ω)N

[
m

∑
r=n+1

(L(ξr−1) + N(ξr−1))

]]∣∣∣∣∣
= max℘∈J

∣∣∣∣∣N−1

[
q(β, υ, ω)N

[
m−1

∑
r=n+1

(L(ξr) + N(ur))

]]∣∣∣∣∣
≤ max℘∈J |N−1[q(β, υ, ω)N [(L(ξm−1)−L(ξn−1) + N(ξm−1)− N(ξn−1))]]|
≤ γ1max℘∈J |N−1[q(β, υ, ω)N [(L(ξm−1)−L(ξn−1))]]|
+ γ2max℘∈J |N−1[p(β, υ, ω)N [(N(ξm−1)− N(ξn−1))]]|

= (γ1 + γ2)(1− β + β
℘β

Γ(β + 1)
)||ξm−1 − ξn−1||

(37)

Let m = n + 1; then,

||ξn+1 − ξn|| ≤ γ||ξn − ξn−1|| ≤ γ2||ξn−1 − ξn−2|| ≤ · · · ≤ γn||ξ1 − ξ0||, (38)

where γ = (γ1 + γ2)(1− β + β ℘β

Γ(β+1) ). Similarly, we have

||ξm − ξn|| ≤ ||ξn+1 − ξn||+ ||ξn+2 − ξn+1||+ · · ·+ ||ξm − ξm−1||,
≤ (γn + γn+1 + · · ·+ γm−1)||ξ1 − ξ0||

≤ γn
(

1− γm−n

1− γ

)
||ξ1||,

(39)

As 0 < γ < 1, we have 1− γm−n < 1. Therefore,

||ξm − ξn|| ≤
γn

1− γ
max℘∈J ||ξ1||. (40)

Since ||ξ1|| < ∞, ||ξm − ξn|| → 0 when n→ ∞. As a result, ξm is a Cauchy sequence
in H, implying that the series ξm is convergent.

5. Numerical Examples

In this section, we investigate the analytical solution of nonlinear fractional-order
Gardner and Cahn–Hilliard equations.

Example 1. Consider the FG equation

Dβ
℘ξ(ψ,℘) + 6(ξ − Υ2ξ2)

∂ξ

∂ψ
+

∂ξ3

∂ψ3 = 0 0 < β ≤ 1, (41)
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with the initial source
ξ(ψ, 0) =

1
2
+

1
2

tanh
(ψ

2

)
, (42)

With the help of natural transform, Equation (41) can be written as

N [Dβ
℘ξ(ψ,℘)] = −N

{
6
(

ξ
∂ξ

∂ψ
− Υ2ξ2 ∂ξ

∂ψ

)}
−N

{
∂ξ3

∂ψ3

}
, (43)

Define the nonlinear operator as

1
ωβ
N [ξ(ψ,℘)]−ω2−βξ(ψ, 0) = N

[
− 6
(

ξ
∂ξ

∂ψ
− Υ2ξ2 ∂ξ

∂ψ

)
− ∂ξ3

∂ψ3

]
, (44)

Upon simplifying, we have

N [ξ(ψ,℘)] = ω2

[
1
2
+

1
2

tanh
(ψ

2

)]
+

β(ω− β(ω− β))

ω2 N
[
− 6
(

ξ
∂ξ

∂ψ
− Υ2ξ2 ∂ξ

∂ψ

)
− ∂ξ3

∂ψ3

]
, (45)

By the inverse NT, Equation (45) can be written as

ξ(ψ,℘) =

[
1
2
+

1
2

tanh
(ψ

2

)]

+N−1

[
β(ω− β(ω− β))

ω2 N
{
− 6
(

ξ
∂ξ

∂ψ
− Υ2ξ2 ∂ξ

∂ψ

)
− ∂ξ3

∂ψ3

}]
,

(46)

Now, we implement NDMCF
The series form solution for the unknown function ξ(ψ,℘) is written as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘). (47)

The nonlinear terms with the help of Adomian polynomials are represented by ξξψ = ∑∞
l=0Al

and ξ2ξψ = ∑∞
l=0 Bl ; thus, with the help of these terms, Equation (46) can be rewritten as

∞

∑
l=0

ξl+1(ψ,℘) =
1
2
+

1
2

tanh
(ψ

2

)
+N−1

[
β(ω− β(ω− β))

ω2 N
{
− 6

∞

∑
l=0
Al + 6Υ2

∞

∑
l=0
Bl −

∞

∑
l=0

ξlψψψ

}]
.

(48)

Thus, upon comparing both sides of Equation (48), we have

ξ0(ψ,℘) =
1
2
+

1
2

tanh
(ψ

2

)
,

ξ1(ψ,℘) =
sech2

(
ψ
2

)
(−1 + (−4 + 3Υ2) cosh(ψ) + 3(−1 + Υ2) sinh(ψ))

8
(β(℘− 1) + 1), (49)

ξ2(ψ,℘) =
− sech7

(
ψ
2

)
64

(
− 24(−1 + Υ2) cosh

(ψ

2

)
− 6(22− 37Υ2 + 15Υ4) cosh

(3ψ

2

)
+ 6(4− 7Υ2 + 3Υ4) cosh

(5ψ

2

)
+ 2(103− 102Υ2) sinh

(ψ

2

)
− 3(43− 74Υ2 + 30Υ4)

sinh
(3ψ

2

)
+ (25− 42Υ2 + 18Υ4) sinh

(5ψ

2

))(
(1− β)2 + 2β(1− β)℘+

β2℘2

2

)
,

(50)
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Continuing the same process, we can easily find the remaining components of ξl for (l ≥ 3).
Subsequently, we define the series form solutions as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘) = ξ0(ψ,℘) + ξ1(ψ,℘) + ξ2(ψ,℘) + · · · ,

ξ(ψ,℘) =
1
2
+

1
2

tanh
(ψ

2

)
+

sech2
(

ψ
2

)
(−1 + (−4 + 3Υ2) cosh(ψ) + 3(−1 + Υ2) sinh(ψ))

8

(β(℘− 1) + 1) +
− sech7

(
ψ
2

)
64

(
− 24(−1 + Υ2) cosh

(ψ

2

)
− 6(22− 37Υ2 + 15Υ4)

cosh
(3ψ

2

)
+ 6(4− 7Υ2 + 3Υ4) cosh

(5ψ

2

)
+ 2(103− 102Υ2) sinh

(ψ

2

)
− 3(43− 74Υ2+

30Υ4) sinh
(3ψ

2

)
+ (25− 42Υ2 + 18Υ4) sinh

(5ψ

2

))(
(1− β)2 + 2β(1− β)℘+

β2℘2

2

)
+ · · · .

(51)

Now, we implement NDMABC
The series form solution for the unknown function ξ(ψ,℘) is written as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘). (52)

The nonlinear terms with the help of Adomian polynomials are represented by ξξψ = ∑∞
l=0Al

and ξ2ξψ = ∑∞
l=0 Bl ; thus, with the help of these terms Equation (46) can be rewritten as

∞

∑
l=0

ξl+1(ψ,℘) =
1
2
+

1
2

tanh

(
ψ

2

)

+N−1

[
υβ(ωβ + β(υβ −ωβ))

ω2β
N
{
− 6

∞

∑
l=0
Al + 6Υ2

∞

∑
l=0
Bl −

∞

∑
l=0

ξlψψψ

}]
.

(53)

Thus, upon comparing both sides of Equation (53), we have

ξ0(ψ,℘) =
1
2
+

1
2

tanh
(ψ

2

)
,

ξ1(ψ,℘) =
sech2

(
ψ
2

)
(−1 + (−4 + 3Υ2) cosh(ψ) + 3(−1 + Υ2) sinh(ψ))

8

(
1− β +

β℘β

Γ(β + 1)

)
, (54)

ξ2(ψ,℘) =
− sech7

(
ψ
2

)
64

(
− 24(−1 + Υ2) cosh

(ψ

2

)
− 6(22− 37Υ2 + 15Υ4) cosh

(3ψ

2

)
+ 6(4− 7Υ2 + 3Υ4) cosh

(5ψ

2

)
+ 2(103− 102Υ2) sinh

(ψ

2

)
− 3(43− 74Υ2 + 30Υ4)

sinh
(3ψ

2

)
+ (25− 42Υ2 + 18Υ4) sinh

(5ψ

2

))[ β2℘2β

Γ(2β + 1)
+ 2β(1− β)

℘β

Γ(β + 1)
+ (1− β)2

]
,

(55)

Continuing the same process, we can easily find the remaining components of ξl for (l ≥ 3).
Subsequently, we define the series form solutions as
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ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘) = ξ0(ψ,℘) + ξ1(ψ,℘) + ξ2(ψ,℘) + · · · ,

ξ(ψ,℘) =
1
2
+

1
2

tanh
(ψ

2

)
+

sech2
(

ψ
2

)
(−1 + (−4 + 3Υ2) cosh(ψ) + 3(−1 + Υ2) sinh(ψ))

8(
1− β +

β℘β

Γ(β + 1)

)
+
− sech7

(
ψ
2

)
64

(
− 24(−1 + Υ2) cosh

(ψ

2

)
− 6(22− 37Υ2 + 15Υ4)

cosh
(3ψ

2

)
+ 6(4− 7Υ2 + 3Υ4) cosh

(5ψ

2

)
+ 2(103− 102Υ2) sinh

(ψ

2

)
− 3(43− 74Υ2+

30Υ4) sinh
(3ψ

2

)
+ (25− 42Υ2 + 18Υ4) sinh

(5ψ

2

))[ β2℘2β

Γ(2β + 1)
+ 2β(1− β)

℘β

Γ(β + 1)
+

(1− β)2

]
+ · · ·

(56)

If we set β = 1, we have the exact solution as

ξ(ψ,℘) =
1
2
+

1
2

tanh
(ψ− ℘

2

)
, (57)

Example 2. Consider the FCH equation

Dβ
℘ξ(ψ,℘)− ∂ξ

∂ψ
− 6ξ

∂ξ2

∂ψ
− (3ξ2 − 1)

∂2ξ

∂ψ2 +
∂4ξ

∂ψ4 = 0, 0 < β ≤ 1, (58)

with initial source

ξ(ψ, 0) = tanh

(
ψ√

2

)
, (59)

With the help of natural transform, Equation (58) can be written as

N [Dβ
℘ξ(ψ,℘)] = N

[
∂ξ

∂ψ

]
+ 6N

[
ξ

∂ξ2

∂ψ

]
+ 3N

[
ξ2 ∂2ξ

∂ψ2

]
− 3N

[
∂2ξ

∂ψ2

]
−N

[
∂4ξ

∂ψ4

]
, (60)

Define the nonlinear operator as

1
ωβ
N [ξ(ψ,℘)]−ω2−βξ(ψ, 0) = N

[
∂ξ

∂ψ
+ 6ξ

∂ξ2

∂ψ
+ 3ξ2 ∂2ξ

∂ψ2 − 3
∂2ξ

∂ψ2 −
∂4ξ

∂ψ4

]
, (61)

Upon simplifying, we have

N [ξ(ψ,℘)] = ω2

[
tanh

(
ψ√

2

)]
+

β(ω− β(ω− β))

ω2 N
[

∂ξ

∂ψ
+ 6ξ

∂ξ2

∂ψ
+ 3ξ2 ∂2ξ

∂ψ2 − 3
∂2ξ

∂ψ2 −
∂4ξ

∂ψ4

]
, (62)

Taking the inverse NT, Equation (62) can be written as

ξ(ψ,℘) = tanh

(
ψ√

2

)
+N−1

[
β(ω− β(ω− β))

ω2 N
{

∂ξ

∂ψ
+ 6ξ

∂ξ2

∂ψ
+ 3ξ2 ∂2ξ

∂ψ2 − 3
∂2ξ

∂ψ2 −
∂4ξ

∂ψ4

}]
, (63)

Now, we apply NDMCF
The series form solution for the unknown function ξ(ψ,℘) is written as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘). (64)
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The nonlinear terms with the help of Adomian polynomials are represented by ξξ2
ψ = ∑∞

l=0Al ,
ξ2ξψψ = ∑∞

l=0 Bl ; thus, with the help of these terms, Equation (63) can be rewritten as

∞

∑
l=0

ξl(ψ,℘) = tanh

(
ψ√

2

)
+N−1

[
β(ω− β(ω− β))

ω2 N
{

∞

∑
l=0

vlψ + 6
∞

∑
l=0
Al + 3

∞

∑
l=0
Bl − 3

∞

∑
l=0

vlψψ−

∞

∑
l=0

vlψψψψ

}]
.

(65)

Thus, upon comparing both sides of Equation (65), we have

ξ0(ψ,℘) = tanh

(
ψ√

2

)
,

ξ1(ψ,℘) = sech2

(
ψ√

2

)
√

2
(β(℘− 1) + 1)

ξ2(ψ,℘) = − sech2

(
ψ√

2

)
tanh

(
ψ√

2

)(
(1− β)2 + 2β(1− β)℘+

β2℘2

2

)
,

Continuing the same process, we can easily find the remaining components of ξl for (l ≥ 3).
Subsequently, we define the series form solutions as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘) = ξ0(ψ,℘) + ξ1(ψ,℘) + ξ2(ψ,℘) + · · · ,

ξ(ψ,℘) = tanh

(
ψ√

2

)
+ sech2

(
ψ√

2

)
√

2
(β(℘− 1) + 1)− sech2

(
ψ√

2

)
tanh

(
ψ√

2

)(
(1− β)2+

2β(1− β)℘+
β2℘2

2

)
+ · · ·

(66)

Now, we apply NDMABC
The series form solution for the unknown function ξ(ψ,℘) is written as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘). (67)

The nonlinear terms with the help of Adomian polynomials are represented by ξξ2
ψ = ∑∞

l=0Al ,
ξ2ξψψ = ∑∞

l=0 Bl ; thus, with the help of these terms, Equation (63) can be rewritten as

∞

∑
l=0

ξl(ψ,℘) =

[
tanh

(
ψ√

2

)]
+N−1

[
υβ(ωβ + β(υβ −ωβ))

ω2β
N
{

∞

∑
l=0

vlψ + 6
∞

∑
l=0
Al + 3

∞

∑
l=0
Bl−

3
∞

∑
l=0

vlψψ −
∞

∑
l=0

vlψψψψ

}]
.

(68)

Thus, upon comparing both sides of Equation (68), we have
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ξ0(ψ,℘) = tanh

(
ψ√

2

)
,

ξ1(ψ,℘) = sech2

(
ψ√

2

)
√

2

(
1− β +

β℘β

Γ(β + 1)

)
,

ξ2(ψ,℘) = − sech2

(
ψ√

2

)
tanh

(
ψ√

2

)[
β2℘2β

Γ(2β + 1)
+ 2β(1− β)

℘β

Γ(β + 1)
+ (1− β)2

]
Continuing the same process, we can easily find the remaining components of ξl for (l ≥ 3).

Subsequently, we define the series form solutions as

ξ(ψ,℘) =
∞

∑
l=0

ξl(ψ,℘) = ξ0(ψ,℘) + ξ1(ψ,℘) + ξ2(ψ,℘) + · · · ,

ξ(ψ,℘) = tanh

(
ψ√

2

)
+ sech2

(
ψ√

2

)
√

2

(
1− β +

β℘β

Γ(β + 1)

)

− sech2

(
ψ√

2

)
tanh

(
ψ√

2

)[
β2℘2β

Γ(2β + 1)
+ 2β(1− β)

℘β

Γ(β + 1)
+ (1− β)2

]
+ · · ·

(69)

If we set β = 1, we obtain the exact solution:

ξ(ψ,℘) = tanh

(
ψ + ℘√

2

)
. (70)

6. Results and Discussion

In this section, we present the numerical study of nonlinear fractional-order Gard-
ner and Cahn–Hilliard equations by implementing the natural transform decomposition
method. The graphical illustrations of the solutions are given in the figures and tables with
the aid of Maple. In Tables 1 and 2, we present the error analysis of the fractional Gardner
equation obtained with the help of the proposed method at different values of ψ and ℘.
Furthermore, we show a comparative study of the obtained solution for the fractional
Gardner equation with RPS, q− HAM, FNDM, q− HATM, NTDMCF and NTDMABC
in terms of absolute error, which reveals that the suggested schemes are highly accurate
in comparison with these methods. Similarly Table 3 presents the error comparison for
the obtained results with the aid of the proposed methods for the corresponding equation,
while Table 4 shows the error comparison of fractional Cahn–Hilliard equation results
with RPS, q− HAM, FNDM, q− HATM, NTDMCF and NTDMABC. From these tables,
it is clear that the proposed methods are very effective and accurate compared with other
methods. Additionally, it is observed from the fractional-order solution that the solution
better reflects the exact solution as the value of ℘ becomes closer to the integer order.
Figure 1 shows the nature of the exact and analytical solutions of the suggested methods.
The behavior of the proposed method solution at various fractional orders is shown in
Figure 2. The fractional-order 3D and 2D layout of problem 1 is seen in Figure 3, while
the absolute error graphical view the for corresponding equation obtained with the help
of proposed techniques is plotted in Figure 4. Figure 5 shows the behaviour of the exact
and natural decomposition technique results for problem 2, whereas Figure 6 illustrates the
behavior of the analytical solution at various fractional orders of β. Figure 7 shows 3D and
2D solution graph for problem 2 at various fractional orders whereas, Figure 8 shows the
absolute error of problem 2.
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Figure 1. Behavior of the exact and analytical solutions for problem 1 at β = 1.

Figure 2. Behavior of the analytical solution for problem 1 at β = 0.8, 0.6.

Figure 3. Behavior of the analytical solution at different values of β for problem 1.

Figure 4. Behavior of the absolute error of problem 1.
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Figure 5. Behavior of the exact and analytical solutions for problem 2 at β = 1.

Figure 6. Behavior of the analytical solution for problem 2 at β = 0.8, 0.6.

Figure 7. Behavior of the analytical solution at different values of β for problem 2.

Figure 8. Behavior of the absolute error of problem at integer-order problem 2.
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Table 1. Absolute error comparison of problem 1 at various fractional order of β.

℘ ψ β = 0.4 β = 0.6 β = 0.8 β = 1(NTDMCF) β = 1(NTDMABC)

0.2 2.478508 ×10−2 1.238910 ×10−2 2.477395 ×10−3 1.000000 ×10−10 1.000000 ×10−10

0.4 2.405852 ×10−2 1.202592 ×10−2 2.404771 ×10−3 2.000000 ×10−10 2.000000 ×10−10

0.01 0.6 2.290932 ×10−2 1.145148 ×10−2 2.289902 ×10−3 4.000000 ×10−10 4.000000 ×10−10

0.8 2.1419859 ×10−2 1.070696 ×10−2 2.141023 ×10−3 4.000000 ×10−10 4.000000 ×10−10

1 1.9687746 ×10−2 9.841145 ×10−3 1.967890 ×10−3 4.000000 ×10−10 4.000000 ×10−10

0.2 2.481072 ×10−2 1.239979 ×10−2 2.479251 ×10−3 5.000000 ×10−10 5.000000 ×10−10

0.4 2.408340 ×10−2 1.203630 ×10−2 2.406573 ×10−3 1.000000 ×10−9 1.000000 ×10−9

0.02 0.6 2.293301 ×10−2 1.146136 ×10−2 2.291618 ×10−3 1.400000 ×10−9 1.400000 ×10−9

0.8 2.144201 ×10−2 1.071619 ×10−2 2.142627 ×10−3 1.700000 ×10−9 1.700000 ×10−9

1 1.970810 ×10−2 9.849635 ×10−3 1.969363 ×10−3 1.800000 ×10−9 1.800000 ×10−9

0.2 2.483378 ×10−2 1.240957 ×10−2 2.480968 ×10−3 1.100000 ×10−9 1.100000 ×10−9

0.4 2.410579 ×10−2 1.204579 ×10−2 2.408239 ×10−3 2.100000 ×10−9 2.100000 ×10−9

0.03 0.6 2.295433 ×10−2 1.147039 ×10−2 2.293204 ×10−3 2.900000 ×10−9 2.900000 ×10−9

0.8 2.146194 ×10−2 1.072464 ×10−2 2.144109 ×10−3 3.700000 ×10−9 3.700000 ×10−9

1 1.972642 ×10−2 9.857396 ×10−3 1.970725 ×10−3 4.000000 ×10−9 4.000000 ×10−9

0.2 2.485524 ×10−2 1.241876 ×10−2 2.482596 ×10−3 2.000000 ×10−9 2.000000 ×10−9

0.4 2.412662 ×10−2 1.205471 ×10−2 2.409818 ×10−3 3.800000 ×10−9 3.800000 ×10−9

0.04 0.6 2.297416 ×10−2 1.147889 ×10−2 2.294707 ×10−3 5.300000 ×10−9 5.300000 ×10−9

0.8 2.148048 ×10−2 1.073258 ×10−2 2.145513 ×10−3 6.500000 ×10−9 6.500000 ×10−9

1 1.974347 ×10−2 9.864694 ×10−3 1.972016 ×10−3 7.200000 ×10−9 7.200000 ×10−9

0.2 2.487555 ×10−2 1.242752 ×10−2 2.484156 ×10−3 3.100000 ×10−9 3.100000 ×10−9

0.4 2.414633 ×10−2 1.206321 ×10−2 2.411331 ×10−3 5.900000 ×10−9 5.900000 ×10−9

0.05 0.6 2.299293 ×10−2 1.148699 ×10−2 2.296147 ×10−3 8.300000 ×10−9 8.300000 ×10−9

0.8 2.149803 ×10−2 1.074015 ×10−2 2.146859 ×10−3 1.030000 ×10−9 1.030000 ×10−9

1 1.975959 ×10−2 9.871653 ×10−3 1.973252 ×10−3 1.130000 ×10−9 1.130000 ×10−9

Table 2. Error comparison among RPS, q− HAM,FNDM,q− HATM, NDMCF and NDMABC for
problem 1 at β = 1.

ψ RPS |q− H AM| |FNDM| |q− H AT M| |NTDMCF | |NTDMABC |

0.1 1.66002 ×10−4 1.66002 ×10−4 9.95627 ×10−7 9.95627 ×10−7 2.48000 ×10−8 2.48000 ×10−8

0.2 1.62707 ×10−4 1.62707 ×10−4 2.61331 ×10−6 2.61331 ×10−6 4.92000 ×10−8 4.92000 ×10−8

0.3 1.56257 ×10−4 1.56257 ×10−4 4.12217 ×10−6 4.12217 ×10−6 7.26000 ×10−8 7.26000 ×10−8

0.4 1.46917 ×10−4 1.46917 ×10−4 5.46303 ×10−6 5.46303 ×10−6 9.47000 ×10−8 9.47000 ×10−8

0.5 1.35064 ×10−4 1.35064 ×10−4 6.58827 ×10−6 6.58827 ×10−6 1.15000 ×10−7 1.15000 ×10−7

Table 3. Absolute error comparison of problem 2 at various fractional orders of β.

℘ ψ β = 0.4 β = 0.6 β = 0.8 β = 1(NTDMCF) β = 1(NTDMABC)

0.2 6.843036 ×10−2 1.383664 ×10−2 6.927804 ×10−3 2.223097 ×10−10 2.223097 ×10−10

0.4 6.362177 ×10−2 1.300789 ×10−2 6.521729 ×10−3 3.938473 ×10−10 3.938473 ×10−10

0.01 0.6 5.705894 ×10−2 1.178846 ×10−2 5.917824 ×10−3 5.391620 ×10−10 5.391620 ×10−10

0.8 4.954728 ×10−2 1.033387 ×10−2 5.193500 ×10−3 5.664495 ×10−10 5.664495 ×10−10

1 4.183562 ×10−2 8.798218 ×10−3 4.426079 ×10−3 5.873327 ×10−10 5.873327 ×10−10

0.2 6.849818 ×10−2 1.384696 ×10−2 6.932795 ×10−3 7.708391 ×10−10 7.708391 ×10−10

0.4 6.368210 ×10−2 1.301721 ×10−2 6.526244 ×10−3 1.487289 ×10−9 1.487289 ×10−9

0.02 0.6 5.711074 ×10−2 1.179659 ×10−2 5.921768 ×10−3 1.900548 ×10−9 1.900548 ×10−9

0.8 4.959041 ×10−2 1.034074 ×10−2 5.196840 ×10−3 2.161298 ×10−9 2.161298 ×10−9

1 4.187066 ×10−2 8.803879 ×10−3 4.428836 ×10−3 2.265400 ×10−9 2.265400 ×10−9

0.2 6.855899 ×10−2 1.385645 ×10−2 6.937398 ×10−3 1.845587 ×10−9 1.845587 ×10−9

0.4 6.373601 ×10−2 1.302575 ×10−2 6.530395 ×10−3 3.480376 ×10−9 3.480376 ×10−9

0.03 0.6 5.715685 ×10−2 1.180401 ×10−2 5.925381 ×10−3 4.484208 ×10−9 4.484208 ×10−9

0.8 4.962867 ×10−2 1.034700 ×10−2 5.199890 ×10−3 4.984595 ×10−9 4.984595 ×10−9

1 4.190163 ×10−2 8.809018 ×10−3 4.431346 ×10−3 5.034164 ×10−9 5.034164 ×10−9

0.2 6.861545 ×10−2 1.386540 ×10−2 6.941751 ×10−3 3.246556 ×10−9 3.246556 ×10−9

0.4 6.378593 ×10−2 1.303379 ×10−2 6.534311 ×10−3 6.072957 ×10−9 6.072957 ×10−9

0.04 0.6 5.719942 ×10−2 1.181098 ×10−2 5.928781 ×10−3 7.889992 ×10−9 7.889992 ×10−9

0.8 4.966389 ×10−2 1.035285 ×10−2 5.202754 ×10−3 8.836192 ×10−9 8.836192 ×10−9

1 4.193007 ×10−2 8.813821 ×10−3 4.433698 ×10−3 8.993703 ×10−9 8.993703 ×10−9

0.2 6.866877 ×10−2 1.387396 ×10−2 6.945918 ×10−3 5.073744 ×10−9 5.073744 ×10−9

0.4 6.383297 ×10−2 1.304147 ×10−2 6.538053 ×10−3 9.365133 ×10−9 9.365133 ×10−9

0.05 0.6 5.723945 ×10−2 1.181762 ×10−2 5.932024 ×10−3 1.231800 ×10−8 1.231800 ×10−8

0.8 4.969693 ×10−2 1.035842 ×10−2 5.205480 ×10−3 1.381618 ×10−8 1.381618 ×10−8

1 4.195668 ×10−2 8.818376 ×10−3 4.435932 ×10−3 1.404396 ×10−8 1.404396 ×10−8
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Table 4. Error comparison among RPS, q− HAM,FNDM,q− HATM, NDMCF and NDMABC for
problem 2 at β = 1.

ψ RPS |q− H AM| |FNDM| |q− H AT M| |NTDMCF | |NTDMABC |

0.1 2.55541 ×10−5 2.55541 ×10−5 7.55258 ×10−6 7.55258 ×10−6 4.20818 ×10−8 4.20818 ×10−8

0.2 4.15291 ×10−5 4.15291 ×10−5 1.27010 ×10−5 1.27010 ×10−5 8.15279 ×10−8 8.15279 ×10−8

0.3 5.42246 ×10−5 5.42246 ×10−5 1.68403 ×10−5 1.68403 ×10−5 1.17804 ×10−7 1.17804 ×10−7

0.4 6.28898 ×10−5 6.28898 ×10−5 1.97175 ×10−5 1.97175 ×10−5 1.49799 ×10−7 1.49799 ×10−7

0.5 6.72637 ×10−5 6.72637 ×10−5 2.12349 ×10−5 2.12349 ×10−5 1.76464 ×10−7 1.76464 ×10−7

7. Conclusions

In this article, we implemented the natural decomposition method with the aid of two
different fractional derivatives to find the solution of nonlinear fractional Gardner and Cahn–
Hilliard equations. To demonstrate the validity of the suggested technique, we implement
it to solve two nonlinear problems. The implementation of the proposed methods show
that the schemes are extremely efficient in finding smooth solutions to specified equations.
The convergence of the suggested method was shown analytically and graphically when
applied to fractional-order Gardner and Cahn–Hilliard equations, indicating the method’s
stability and effectiveness. By demonstrating specific cases, the physical and geometrical
interpretations have been demonstrated, and their graphs indicate the exact solutions within
certain approximation errors. As the value of the fractional-order derivatives approaches
1, the approximation solution converges to the exact solution, according to the results.
The solution graphs and tables for each problem shown confirmed that the method had
good agreement with the exact result of the problem. The proposed method gives a solution
in the form of a series with high accuracy and minimal calculations. Finally, we conclude
that the suggested methods are very efficient and accurate, which can be utilised to study
any nonlinear problems that arise in complex phenomena.
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