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TECHNICAL PAPER

ANALYTICAL INVESTIGATION OF SOLID ROCKET NOZZLE FAILURE

INTRODUCTION

System Description

The Inertial Upper Stage (IUS) is a three-axis-stabilized spacecraft which can carry payloads of
about 5000 Ib from the low Earth orbit of the Space Transportation System (STS) to geosynchronous
orbit. The IUS, shown in Figure 1, uses two solid propellant rocket motors: the SRM-1 first stage and
the SRM-2 second stage. Both motors are built by United Technologies Chemical Systems Division (CSD).
The SRM-1 provides the energy required to transfer to geosynchronous orbit. The SRM-2 provides the
energy to circularize the orbit, resulting in geostationary capability.

The SRM-2 motor, shown in Figure 2, has an moniaxial vector requirement of 7 deg which is
provided by a low-torque fluid bearing called the techroll joint (TRJ). This bearing connects the fixed
and movable portions of the nozzle (Rig. 3) and allows for gimballing of the movable portion. The heart
of the TRJ is a Kevlar fabric-reinforced rubber bladder, called the techroll seal (TRS).

The TRS and its titanium housing (Fig. 4) are protected from hot combustion gases by surround-
ing insulators. The forward face of the housing is protected by the carbon/phenolic nose cap and its
silica/phenolic insulator. An overlapping of the nose cap with the fixed insulator, augmented by the
Viton rubber thermal boot, provides protection to the housing outer surface while allowing gimialling
motion. The 3-D carbon/carbon integral throat and entrance (ITE) is backed by carbon/phenolic and
silica/phenolic insulators. The 2-D carbon/carbon exit cone threads into the ITE and has both carbon/
phenolic and silica/phenolic insulators at its forward end to protect the adjacent portion of the titanium
housing and the atnached gib ring. A rrafoil seal between the exit cone and ITE insulator is intended to
prevent gas flow through that joint.

Anomaly and Failure Investigation

On April 5, 1983, during an attempt to insert the Tracking Data Relay Satellite-A (TDRS-A)
into geosynchronous orbit using the IUS, a loss of control was experienced at about 85 sec into the
planned 105 sec burmn of the SRM-2 motor. The anomaly was studied extensively by several review teams
and it was concluded that the most probable cause was failure of the nozzle Thermal Protection System
(TPS), resulting in thermal rupture of the TRS. Failure scenarios that would allow the hot combustion
gases to overheat the titanium TRS housing were generated and investigated. Based upon these investiga-
tions, supporting thermal analyses, and the results of heavily instrumented motor static firings, two areas
were found in the nozzle TPS design where overheating could occur (Fig. 4)° (1) the nose cap
carbon/phenolic-to-silica/phenolic bond surface where temperatures could exceed the bond adhesive limit,
and (2) the grafoil seal/exit cone joint area where leakage of the grafoil seal would allow hot combustion
gases diffused through the ITE to impinge on the titanium housing. This paper deals with the second
area, describing work done at MSFC to characterize the thermal environment and reaction in the vicinity
of the grafoil seal.
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FAILURE EFFECTS ANALYSIS

Gas Flow Estimate

Inspection of the detailed nozzle design (Fig. 4) shows that the hot combustion gases come in
direct contact only with the carbon phenolic nose cap and the carbon/carbon integral throat entrance.
Although the carbon phenolic is impervious to gas flow, the ITE carbon/carbon is porous but the hot
combustion gases are prevented from reaching the titanium TRS seal by the grafoil seal. However, if the
grafoil seal should leak or crack, the hot combustion gases would impinge directly on the shear lip of the
titanium TRS housing and vent in the area between the housing and silica/phenolic liner. After the base-
line (BL-1) motor firing, inspection of the grafoil seal area revealed erosion and a hole through the seal
forming a hot gas leakage path. The location and approximate dimensions of this crack are shown in
Figure 5. Two questions then arise: how much gas would flow through such a crack, and how much
heating would this produce on the titanium TRS housing?

To calculate the flow of gas through the ITE carbon/carbon, the complex ITE geometry was
approximated by a simple one-dimensional geometry with a gas diffusion path length of 3 in. with an

effective area of 10.6 in.2 (Fig. 6). By neglecting the dynamic term, the gas diffusion equation can be
integrated to give

2 2
PP-B e
2RTL B

where
R = gas constant
T = gas temperature
L = path length
M = viscosity
p = density
P = pressure
u = velocity

B, = Darcy coefficient (2.6 x 10 cm2)

Using 94 percent of the chamber pressure as the driving force for hot gas diffusion, the maximum
flow curve of Figure 7 was calculated. A more exact analysis (1], done later by CSD, confirmed that the
mass flow curve from the above analysis was conservative.

R T WP e A oma e .
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MSFC Test Program

To determine the heating e.fect from hot gas impingement on the TRS housing, a thin plate
calorimeter experiment was set up in the Test Laboratory at MSFC,

The thin plate calorimater, a 0.030 in., type 304SS plate, with 52 thermocouples attached to the
backface was formed into a shape to simulate the path of the gas flow past the TRS housing (Figs. 8
and 9). Heated GN, was introduced into th: plenum where the gas impinged on the thin plate calorime-

ter through slots of various widths and lengths, typical of the type of cracks in the grafoil seal. The
various widths and lengths of cracks simulated along with their respective flow rates are shown in Table 1.
The thermocouples were placed on the thin plate as shown in Figure 10.

A heat transfer coefficient was calculated for each thermocouple location from the recorded time
and temperature data. Figure 11 shows the spatial variation of the heat transfer coefficients for the 10 x
30 mil slot test. The variation of stagnation heat transfer with slot width is shown in Figure 12. Note the
peak values at a slot width of approximately 250 mils.

TRS HOUSING THERMAL MODEL ANALYSIS

Thermal Math Model

The thermal model of the titanium TRS housing was coded in SINDA format for solution on
the MSFC UNIVAC 1100/82 computer. The model consists of nine “wedges” with conduction between
the “wedges” (Fig. 13). The width of the “wedges” could be varied to obtain the desired angular cover-
age. Each “wedge” is broken down (Fig. 14) into 20 nodes in the titanium, four in each layer of neo-
prene, and four in the silicon oil. In the titanium there are three nodes radially and six longitudinally,
plus two in the shear lip. Heating, from ITE gas (Fig. 15), is considered on the top and side of the
shear lip as well as on the first nodes down the housing,

Baseline (BL-1) Test Data Correlation

To correlate the data from the BL-1 firing, 7.5 deg wedges were used. Table 2 gives the stagna-
tion H values at the measured flow rates and the H ratios used in the model at each plane and angular
position. To account for the differences between combustion gases and the nitrogen gas used in the
coefficient tests, a factor of 2.5 was applied to the measured coefficients. The actual stagnation H used
was obtained by interpolating the time dependent flow rate shown previously in Figure 7. With these
input data, the model gave the correlations shown in Figures 16, 17, and 18 at the 0.3 in., and 1.5 in.
depths.

Correlation of FQ-1 Test Data

The IUS motor was fired in a subsequent test, designated FQ-1, with the same TRS housing
design. Initial correlations using the same heating data as the BL-1 correlations resulted in predictions
much too low at the 0.3 in. depth and much too high at the 1.0 in, and 1.5 in, depths in the TRS
housing. The heating rates were then adjusted unti]l a reasonable correlation was obtained. As indicated
in Figures 19, 20, and 21, the heat flux was removed completely from the shear lip and only 12 percent
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of stagnation heat flux was applied to the housing aft of the shear lip. Subsequent inspection of the
grafoil seal-shear lip area showed no signs of any hot gas flow in this area. However, inspection did reveal
niwmnerous cracks in the silica phenolic-graphite epoxy overwrap, which indicated pyrolysis gas was imping-
ing on the barrel of the TRS housing. These observations are confirmed by the heat flux pattemns
indicated by the thermal model correlations.

DESIGN ENHANCEMENTS

The most significant design changes to the TPS included (Fig. 22): (1) higher density grafoil
seal, (2) extended silica phenolic to cover shear lip, and (3) silica phenolic insulator aft of shear lip.
Thus, it was necessary to develop a new thermal model, the nodal layout of which is shown in Figure
23. To test the effectiveness of the design enhancements, this model was run with the “worst case”
coefficients determined from the MSFC slot impingemeiii tests. The gas temperature was defined by the
ITE/grafoil interface temperature (Fig. 15). Figure 24 shows the average predicted techroll seal tempera-
ture along with the allowable TRS temperature.

The allowable TRS temperature predicted is based on experimental pressure versus burst tem-
perature data, obtained during component tests using the predicted pressure versus time trace for the

SRM-2 motor. Note that the predicted average TRS temperature is well below the allowable until just
before the end of bum when it comes within 74°F of the allowable average temperature.

CONCLUSIONS

Through this program at MSFC, the following have been achieved:

1) Measured the heat transfer coefficients for hot gas flow past the TRS housing.
2) Verified the measured coefficients by correlation of the test firing data.

3) Determined the worst case coefficients for use in the design.

4) Shown the new design to have a positive margin of safety.

REFERENCE

1. “Analysis of Gas Diffusion Through the ITE.” Unpublished Working Report of Chemical Systems
Division, March 1984,
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Figure 5. Bascline test grafoil seal crack.
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Figure 9. Test model (side view),
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Figure 13. Angular node layout.
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'“ : TABLE 1. HEAT TRANSFER COEFFICIENT TESTS SLOW DIMENSIONS
:
SLOT SI3E | riow mate | Dt PRzssume Tnangggi gg:;rxgrzur
IRST NO. 1 (mils) lba/sec (psig) 10 -
1529 10 x 250 0.0069 108 262
1530 10 x 100 0.0023 107 3%
1531 10 X 100 0.0044 207 402
1536 10 x 250 0.0078 11s 1129
1537 10 x 250 0.0137 218 1012
1538 10 X 30 0.0010 120 265
1539 10 x 30 0.0019 220 38s
1540 10 X 500 0.0145 120 809
1541 10 X 500 0.0251 220 an
1542 10 X 1000 0.0270 120 673
1544 10 X 1000 0.0469 220 684
1545 20 x 100 0.0041 207 Yy
1546 20 X 100 0.0073 205 582
1547 20 X 250 0.0117 118 652
H ' 1548 20 x 250 0.0205 212 864
1 1549 20 X 30 0.0017 112 143
: 1550 20 X 30 0.0038 220 205
T 1552 20 X 1000 0.0462 130 966
1554 10 X 378 0.0112 120 384
1855 10 X 378 0.0107 118 2024
1556 10 X 378 0.0196 210 956
1557 15 X 590 0.0229 117 1677
1558 15 X 590 0.0417 220 1323
1559 20 x 375 0.0187 115 964
1561 20 X 375 0.0320 210 913

18




TABLE 2. H/Hgyag TABLE FOR BL-1 CORRELATION.

« .0663 Btu/fti-sec-F ¢ .0010 1b/sec

Hgrac
Hgpag = -0963 Btu/fel-sec-F ¢ .0019 1b/sec
____ANGULAR POSITION PLANE 1 PLANE 2 PLANE 3

-30.0 .021 .029 .01
-22.5 .07 .07 .014
-15.0 .145 <125 .017
-7.5 .42 24 .024
0 1.0 .43 .03
7.5 .42 .24 .024
15.0 145 .128 .017
22.5 .07 .07 .014
30.0 .021 .029 .01
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