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The Sumudu transform, whose fundamental properties are presented in this paper, is

little known and not widely used. However, being the theoretical dual to the Laplace

transform, the Sumudu transform rivals it in problem solving. Having scale and unit-

preserving properties, the Sumudu transform may be used to solve problems without

resorting to a new frequency domain. Here, we use it to solve an integral production-

depreciation problem.

1. Introduction

In [6], a new integral transform, called the Sumudu transform defined for functions of

exponential order, is proclaimed. We consider functions in the set A, defined by

A=
{

f (t) | ∃M,τ1, and/or τ2 > 0,

such that
∣

∣ f (t)
∣

∣ <Me|t|/τ j , if t ∈ (−1) j × [0,∞)
}

.
(1.1)

For a given function in the set A, the constant M must be finite, while τ1 and τ2 need

not simultaneously exist, and each may be infinite. Instead of being used as a power to

the exponential as in the case of the Laplace transform, the variable u in the Sumudu

transform is used to factor the variable t in the argument of the function f . Specifically,

for f (t) in A, the Sumudu transform is defined by

G(u)= S
[

f (t)
]

=



















∫∞

0
f (ut)e−tdt, 0≤ u < τ2,

∫∞

0
f (ut)e−tdt, −τ1 < u≤ 0.

(1.2)

Albeit similar in expression, the two parts in the previous definition arise because in

the domain of f , the variable t may not change sign. For instance, if a function is defined

for nonnegative t, then G(u) is solely defined for nonnegative u, as exemplified in the

prototypical case of the function f (t) = √t. Here, τ1 is simply not needed, M can be
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104 The Sumudu transform

taken equal to 1, while τ2 is infinite. Entry 5 in Table A.1 shows that this function maps to

a multiple constant of itself by the Sumudu transform. Alternatively, see (1.12). On the

other hand, for u∈ (−∞,1/a), the Sumudu transform of eat is

G(u)= 1

1− au
. (1.3)

While we are in agreement with most of the claims expounded by Watugala [6], we

think that this transform is not so new as proclaimed. The Sumudu transform is con-

nected to the s-multiplied Laplace transform (see [5]). This however in no way diminishes

its importance or usefulness. In fact, we show that the Sumudu transform has deeper con-

nections with the Laplace transform than previously established. We also present many of

the new transform properties that make it uniquely qualified to address and solve some

applied problems, especially ones in which the units of the problem must be preserved.

The discrete analog of the Sumudu integral transform (1.2) is defined for power series

functions f (t)=∑∞
k=0 akt

k, having an interval of convergence containing t = 0, as follows:

G(u)=
∞
∑

k=0

k!aku
k for u∈

(

− τ1,τ2

)

. (1.4)

So, the linear function f (t)= a0 + a1t transforms to itself, G(u)= a0 + a1u= f (u). How-

ever, the power series

f (t)=
∞
∑

k=0

(−1)k
(at)k

k!
= e−at (1.5)

transforms to the geometric series

G(u)=
∞
∑

k=0

(−1)k(au)k = 1

1 + au
, (1.6)

with u in (−1/a,1/a).

Equations (1.4), (1.5), and (1.6) reveal that the Sumudu transform amplifies the coeffi-

cients of the power series according to their order, without changing the initial units of the

series. Therefore, a signal with increasingly decaying higher-order coefficients an trans-

forms to another with much more prominent tail end. So, the power series of et which

converges throughout R transforms to the geometric series of 1/(1− t) which converges

only in the interval (−1,1). Moreover, the discrete version of the Sumudu transform gives

us the insight of how to obtain f (t) from G(u). We simply divide the coefficients of the

power series for G(u) by the respective n! value to obtain the power series for f (t).

While it is harder to compute at times, the integral transform in (1.2) is clearly much

more general than its discrete counterpart defined in (1.4). May they be of differential, in-

tegral, or engineering control nature, the Sumudu transform can certainly treat all prob-

lems that are usually treated by the well-known and extensively used Laplace transform
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defined forℜ(s) > 0 by

F(s)= £
(

f (t)
)

=
∫∞

0
e−st f (t)dt. (1.7)

Indeed, as the next theorem shows, the Sumudu transform is closely connected with the

Laplace transform.

Theorem 1.1. Let f (t)∈A with Laplace transform F(s). Then the Sumudu transform G of

f (t) is given by

G(u)= F(1/u)

u
. (1.8)

Proof. Let f (t)∈A, then for −τ1 < u < τ2,

G(u)=
∫∞

0
e−t f (ut)dt. (1.9)

If we set w = ut (t =w/u), then the right-hand side can be written as

G(u)=
∫∞

0
e−w/u f (w)

dw

u
= 1

u

∫∞

0
e−w/u f (w)dw. (1.10)

The integral on the right-hand side is clearly F(1/u), thus yielding (1.8). �

We observe that G(1) = F(1) so that both the Sumudu and Laplace transforms must

coincide at u= s= 1. Furthermore, since for x > 0, the Gamma function

Γ(x)=
∫∞

0
tx−1e−tdt (1.11)

is the Laplace transform of tx−1(£(tx−1)) when s= 1, then Γ(x) must also be the Sumudu

transform (S(tx−1)) when u= 1. Indeed, multiplying the integral in (1.11) by ux−1 yields

the following result.

Corollary 1.2. For x > 0, the Sumudu transform of tx−1 is

G(u)= S
(

tx−1
)

= Γ(x)ux−1. (1.12)

In fact, the connection of the Sumudu transform with the Laplace transform goes

much deeper. Therefore, the roles of F and G in (1.8) can be interchanged.

Corollary 1.3. Let f (t)∈A, having F and G for Laplace and Sumudu transforms, respec-

tively. Then

F(s)= G(1/s)

s
. (1.13)

Proof. Equation (1.13) can be obtained from (1.8) by taking u= 1/s. �
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The pair of equations (1.8) and (1.13) forms the duality relation governing these two

transforms and may serve as a means to get one from the other when needed. Following

the style of Kreyszig [4], Table A.1 shows both Laplace and Sumudu transforms of some

elementary and special functions. Table A.2 summarizes the properties of the Sumudu

transform as expanded upon below.

2. Sumudu transforms of derivatives and integrals

Let f (t)∈ A and let F(s)= £( f (t)), the Laplace transform of f (t) with respect to s, and

let G(u)= S( f (t)); then

G(u)= F(1/u)

u
. (2.1)

Being a restatement of the duality relation (1.8), (2.1) will serve as our working definition

throughout the paper. Since the Laplace transform of sin t is 1/(1 + s2), then in view of

(2.1), its Sumudu transform is

S[sin t]= u

1 +u2
, (2.2)

which is the Laplace transform of cos t (with u= s). This exemplifies the duality between

these two transforms, and hence emphasizes the importance of the Sumudu transform.

Obviously, the Sumudu transform is linear since the Laplace transform is. The next few

theorems are designed to illustrate how the Sumudu transform behaves with derivatives

and antiderivatives.

Theorem 2.1. Let F1(u) and G1(u) be the Laplace and the Sumudu transforms of the de-

rivative of f (t) (∈A). Then

G1(u)= G(u)− f (0)

u
. (2.3)

Proof. Since the Laplace transform of the derivative of f (t) is

F1(s)= sF(s)− f (0), (2.4)

then

G1(u)= F1(1/u)

u
= F(1/u)/u− f (0)

u
(2.5)

or

G1(u)= G(u)− f (0)

u
. (2.6)

Clearly, from (2.2), being the derivative of sin t, relation (2.3) prescribes the expected

Sumudu transform for cos t:

S[cos t]= 1

1 +u2
. (2.7)

�
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Theorem 2.2. Let n≥ 1, and let Gn(u) and Fn(u) be the Sumudu and Laplace transforms

of the nth derivative f (n)(t), of the function f (t), respectively. Then

Gn(u)= G(u)

un
−

n−1
∑

k=0

f (k)(0)

un−k
. (2.8)

Proof. By definition, the Laplace transform for f (n)(t) is given by

Fn(s)= snF(u)−
n−1
∑

k=0

sn−(k+1) f (k)(0). (2.9)

Therefore,

Fn

(

1

u

)

= F(1/u)

un
−

n−1
∑

k=0

f (k)(0)

un−(k+1)
. (2.10)

Now, since Gk(u)= Fk(1/u)/u, for 0≤ k ≤m, we have

Gn(u)= G(u)

un
−

n−1
∑

k=0

f (k)(0)

un−k
= 1

un

[

G(u)−
n−1
∑

k=0

uk f (k)(0)

]

. (2.11)

�

In particular, this means that the Sumudu transform of the second derivative of the

function f is given by

G2(u)= S
(

f ′′(t)
)

= G(u)

u2
− f (0)

u2
− f ′(0)

u
. (2.12)

For instance, applying (2.12) to the function sin t leads us to the equation

−G(u)= G(u)

u2
− 1

u
(2.13)

whose solution is obviously the Sumudu transform of sin t, given by (2.2).

Theorem 2.3. Let G1(u) and F1(s) denote the Sumudu and the Laplace transforms of the

definite integral of f , W(t)=
∫ t

0 f (τ)dτ, respectively. Then

G1(u)= S
(

W(t)
)

= uG(u). (2.14)

Proof. By definition, the Laplace transform of W(t)=
∫ t

0 f (τ)dτ is given by

F1(s)= £
(

W(t)
)

= F(s)

s
. (2.15)

Hence,

G1(u)= F1(1/u)

u
= uF(1/u)

u
= F

(

1

u

)

= uG(u). (2.16)

�
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Now, recall that the antiderivative of the Dirac delta function, δ(t− a) (see, e.g., [4]),

is the Heaviside function H(t− a) defined by

H(t− a)=






0, if t < a,

1, if t > a.
(2.17)

Knowing that the Sumudu transform of δ(t − a) is e−a/u/u (see entries 34 and 35 in

Table A.1), using (2.14), yields the transform of H(t− a):

S
[

H(t− a)
]

= e−a/u. (2.18)

Another facet of the duality relation between this transform and the Laplace transform is

revealed through the interchange of the images of H(t) and δ(t).

Note that the Sumudu transforms of H(t) and δ(t) are 1 and 1/u, respectively. This is

consistent with the units and the buildup of these functions (see, e.g., [4, Section 6.4]).

Now, the Dirac δ(t) is really a generalized function. Thus, recalling (2.14), we may be able

to make sense, in a generalized fashion, of the notion of a derivative for δ(t). Indeed, if a

generalized function g(t) were to exist such that

S

(
∫ t

0
g(τ)dτ

)

= 1

u
, (2.19)

then, we must have

∫ t

0
g(τ)dτ = δ(t). (2.20)

This result will be useful in Section 4. Next we establish the scale-preserving property of

this transform.

Theorem 2.4. Let f (t) ∈ A with Laplace and Sumudu transforms F(s) and G(u), respec-

tively. Then

S
(

f (at)
)

=G(au). (2.21)

Proof. The Sumudu transform of f (at) may be obtained directly from the definition

(1.2):

S
(

f (at)
)

=
∫∞

0
f (aut)e−tdt =G(au) (2.22)

or via the working defining equation (2.1). Indeed, since (see, e.g., [4])

£
(

f (at)
)

= 1

a
F

(

s

a

)

, (2.23)

then

S
(

f (at)
)

= (1/a)F(1/au)

u
= F(1/au)

au
=G(au). (2.24)

�
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Theorem 2.5. Let f ∈A with Sumudu transform G(u). Then,

S

(

t
df (t)

dt

)

= u
dG(u)

du
. (2.25)

Proof. From the defining equation (1.1),

dG(u)

du
= d

du

∫∞

0
f (ut)e−tdt =

∫∞

0

d

du
f (ut)e−tdt =

∫∞

0
te−t

df (ut)

dt
dt. (2.26)

Hence

dG(u)

du
= 1

u

∫∞

0
(ut) f ′(ut)e−tdt = 1

u
S

(

t
df (t)

dt

)

. (2.27)

Multiplying both sides by u, we get the desired result in (2.25). �

We observe that with the Sumudu transform, differentiation and integration in the

t-domain are akin to division and multiplication in the u-domain, respectively. Further-

more, many of the scaling properties of f (t) are carried over to its Sumudu transform

G(u). Hence both f (t) and G(u) keep the same units, and u and G(u) can be treated as

replicas of t and f (t), respectively. This is a major advantage in transform theory, espe-

cially when dealing with applications, where being aware of the units of the quantities

described as well as the dimensionless factor groups may be extremely relevant in prob-

lem solving.

In view of these advantages and the duality relation between the Sumudu and Laplace

transforms, there may be applied situations where using the Sumudu transform may be

favored over using the Laplace transform. This will be illustrated at length in an upcoming

paper dealing with Brownian motion and weighted convection diffusion equations (see

[1, 2]). In the meantime, we take advantage of the duality to investigate more properties

of the Sumudu transform.

3. More properties of the Sumudu transform

The next few theorems establish some translation, shift, and limit properties of the

Sumudu transform.

Theorem 3.1. Let f (t)∈A with Sumudu transform G(u). Then,

S
(

eat f (t)
)

= 1

1− au
G

(

u

1− au

)

. (3.1)

Proof. From (1.2), we see that

S
(

eat f (t)
)

=
∫∞

0
f (ut)e−(1−au)tdt. (3.2)



110 The Sumudu transform

Therefore, by a change of variable (w = (1− au)t), we get that

S
(

eat f (t)
)

= 1

1− au

∫∞

0
f

(

uw

1− au

)

e−wdw = 1

1− au
G

(

u

1− au

)

. (3.3)

�

Theorem 3.2. Let f (t) ∈ A with Laplace and Sumudu transforms F(s) and G(u), respec-

tively. Then the function

h(t)=






f (t− a), if t > a,

0, if t < a,
(3.4)

has a Sumudu transform given by

S
(

h(t)
)

= e−a/uG(u). (3.5)

Proof. Note that from (2.17), h(t) =H(t− a) f (t− a), and hence the Laplace transform

of h(t) is given by

£
(

h(t)
)

= e−asF(s). (3.6)

Therefore, by duality, the Sumudu transform of h(t) is given by

S
(

h(t)
)

= e−a/u
F(1/u)

u
= e−a/uG(u). (3.7)

�

The next theorem shows that the average of f over [0, t] transforms to the average of

G over [0,u].

Theorem 3.3. Let f (t)∈A with Sumudu transform G(u). Then,

S

(

1

t

∫ t

0
f (τ)dτ

)

= 1

u

∫ u

0
G(v)dv. (3.8)

Proof. From definition (1.1), we have

1

u

∫ u

0
G(v)dv = 1

u

∫ u

0

∫∞

0
f (vt)e−tdtdv = 1

u

∫∞

0
e−t
∫∞

0
f (vt)dvdt

=
∫∞

0

e−t

u

∫ u

0
f (w)

dw

t
dt =

∫∞

0

1

ut
e−t
∫ ut

0
f (w)dwdt

=
∫∞

0

1

ut

[∫

f (w)dw

]ut

0
e−tdt = S

(

1

t

∫ t

0
f (τ)dτ

)

.

(3.9)

�

Theorem 3.4. Let f (t)∈A and suppose that either limt→0 f (t) or limt→∞ f (t) exists. Then

lim
u→0

G(u)= lim
t→0

f (t), (3.10)

lim
u→∞

G(u)= lim
t→∞

f (t). (3.11)
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Proof. The first limit is obtained as follows:

lim
u→0

G(u)= lim
u→0

∫∞

0
f (ut)e−tdt =

∫∞

0

[

lim
u→0

f (ut)

]

e−tdt

=
∫∞

0

[

lim
w→0

f (w)

]

e−tdt = lim
w→0

f (w)

∫∞

0
e−tdt = lim

w→0
f (w).

(3.12)

In the same manner,

lim
u→∞

G(u)=
∫∞

0

[

lim
u→∞

f (ut)

]

e−tdt

=
∫∞

0

[

lim
w→∞

f (w)

]

e−tdt = lim
w→∞

f (w).

(3.13)

A similar argument yields the negative counterpart to (3.11):

lim
u→−∞

G(u)= lim
t→−∞

f (t), (3.14)

when the right-hand side of (3.14) exists. �

The results indicated in (3.10) and (3.11) are known to be the initial and final value

theorems, respectively. The reader can observe that most of the previous proofs may also

be obtained by the duality relation (2.1). For instance, (3.10) and (3.11) can alternatively

be gotten as follows:

lim
u→0

G(u)= lim
u→0

F(1/u)

u
= lim

s→∞
sF(s)= lim

t→0
f (t). (3.15)

Similarly,

lim
u→∞

G(u)= lim
s→0

sF(s)= lim
t→∞

f (t). (3.16)

We conclude this section by establishing a formulation for the Sumudu transform of

periodic functions.

Theorem 3.5. Let f (t)∈A be T-periodic. Then the Sumudu transform of f (t) is given by

S
(

f (t)
)

=
∫ T/u

0 e−t f (ut)dt

1− e−T/u
. (3.17)

Proof. The Laplace transform of the periodic function f (t) is given by

£
(

f (t)
)

=
∫ T

0 e−st f (t)dt

1− e−sT
. (3.18)

Note that

∫ T

0
e−st f (t)dt = u

∫ T/u

0
e−t f (ut)dt (3.19)
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and that, in particular,

1− e−T/u =
∫ T/u

0
e−tdt. (3.20)

Therefore, by definition (2.1), we have

G(u)= 1

u

[

£
(

f (t)
)]

s=1/u =
∫ T

0 e−t/u f (t)dt

u
[

1− e−T/u
] =

∫ T/u
0 e−t f (ut)dt

1− e−T/u
. (3.21)

�

4. Applications to an integral production problem

In this section, we use the Sumudu transform to treat a production-depreciation prob-

lem, first considered by Kalla et al. [3]. This problem examines the manner the production

of an item varies in time, when for known losses due to depreciation, the total amount of

the product is to remain constant. The following model can easily be adopted to weighted

population-growth models (see [1]), birth-death processes, and hormonal and drug re-

lease control problems.

If at t = 0, the unused amount of a product is M, despite the exposure of the amount

M of the product to a depreciation function f (t), for t ≥ 0, we like the production of this

item g(t) to counterbalance the depreciation so as to keep the amount M at all times.

Note that there is no loss of generality in assuming that the depreciation function over

time satisfies the condition

∫∞

0
f (t)dt = 1. (4.1)

Hence, the amount lost due depreciation in the absence of production (g(t)= 0, t > 0) is

given by

∫∞

0
M f (t)dt =M. (4.2)

The amount of the item produced in the absence of depreciation ( f (t)≡ 0) in an interval

of time [x,x+∆x] is given by g(x)∆x. When depreciation takes place, the amount of the

item lost at a later time t is given by g(x) f (t− x)∆x, and the total loss due to depreciation

from the start until time t is given by the convolution integral

( f ∗ g)(t)=
∫ t

0
g(x) f (t− x)dx. (4.3)

Therefore, if both production and depreciation are simultaneously in effect by the time

t, the net difference of production and loss must equal M f (t). That is,

∫ t

0
g(x)dx−

∫ t

0
f (t− x)g(x)dx =M f (t). (4.4)
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Kalla et al. [3] solved (4.4) for the depreciation function

f (t)= (a)k

Γ(k)
tk−1e−at , (4.5)

with constants a and k (see entry 10 in Table A.1), and obtained the production function

g(t)=M
∞
∑

n=1

n!ank

Γ(nk)
tnk−n−1e−atLnk−n−1

n (−at), (4.6)

where L
p
n(x) are the generalized Laguerre polynomials.

To solve the integral equation (4.4) our way, we first introduce the Sumudu transform

convolution theorem.

Theorem 4.1. Let f (t) and g(t) be in A, having Laplace transforms F(s) and G(s), respec-

tively, and Sumudu transforms M(u) and N(u), respectively. Then the Sumudu transform

of the convolution of f and g,

( f ∗ g)(t)=
∫∞

0
f (t)g(t− τ)dτ, (4.7)

is given by

S
(

( f ∗ g)(t)
)

= uM(u)N(u). (4.8)

Proof. First, recall that the Laplace transform of ( f ∗ g) is given by

£
(

( f ∗ g)t
)

= F(s)G(s). (4.9)

Now, since, by the duality relation,

S
(

( f ∗ g)(t)
)

= 1

u
£
(

( f ∗ g)(t)
)

(4.10)

and since

M(u)= F(1/u)

u
, N(u)= G(1/u)

u
, (4.11)

the Sumudu transform of ( f ∗ g) is obtained as follows:

S
(

( f ∗ g)(t)
)

= F(1/u)×G(1/u)

u

= u
F(1/u)

u

G(1/u)

u

= uM(u)N(u).

(4.12)

�
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Now, to solve our production problem, letting G(u) and F(u) be Sumudu transforms

of the sought production function g(t) and of the depreciation function f (t), respec-

tively, (4.4) becomes

uG(u)−uG(u)F(u)=MF(u). (4.13)

Therefore, we have

G(u)= MF(u)

u
[

1−F(u)
] . (4.14)

Let f (t)= e−t, then

F(u)= 1

1 +u
, (4.15)

G(u)= M
(

1/(1 +u)
)

u
[

1− 1/(1 +u)
] = M

u2
. (4.16)

Consequently, from (4.16),

M

u
= uG(u)= S

(∫ t

0
g(τ)dτ

)

. (4.17)

Therefore, by linearity of the Sumudu transform (2.19) and (2.20), we deduce that

∫ t

0
g(τ)dτ =Mδ(t). (4.18)

Now, in light of (4.5) and (4.6), our depreciation function coincides with that of Kalla

et al. [3], when a = k = 1. Hence, our solution g(t) must agree with theirs for the same

values. For f (t)= e−t, we take the production function

g(t)= e−t

t

∞
∑

n=1

nL−1
n (−t), (4.19)

where L−1
n are the Laguerre generalized polynomials. On the other hand, g(t) is to satisfy

(4.18). Therefore, we must have

δ(t)=
∞
∑

n=1

n

∫ t

0

e−τ

τ
L−1
n (−τ)dτ. (4.20)

Whence, if there is a notion of a generalized derivative for δ(t), then g(t), as defined in

(4.19), is a most likely suspect.



Fethi Bin Muhammed Belgacem et al. 115

Appendix

Table A.1. Laplace and Sumudu transforms of some functions.

f (t) F(s)= £
{

f (t)
}

G(u)= S
(

f (t)
)

1 1
1

s
1

2 t
1

s2
u

3
tn−1

(n− 1)!
, n= 1,2, . . .

1

sn
un−1

4
1√
πt

1√
s

1√
u

5 2

√

t

π

1

s3/2

√
u

6
ta−1

Γ(a)
, a > 0

1

sa
ua−1

7 eat
1

s− a

1

1− au

8 teat
1

(s− a)2

u

(1− au)2

9
1

(n− 1)!
tn−1eat , n= 1,2, . . .

1

(s− a)n
un−1

(1− au)n

10
1

Γ(k)
tk−1eat , k > 0

1

(s− a)k
uk−1

(1− au)k

11
1

(a− b)

(

eat − ebt
)

, a �= b
1

(s− a)(s− b)

u

(1− au)(1− bu)

12
1

(a− b)

(

aeat − bebt
)

, a �= b
s

(s− a)(s− b)

1

(1− au)(1− bu)

13
1

ω
sinωt

1

s2 +ω2

u

1 +ω2u2

14 cosωt
s

s2 +ω2

1

1 +ω2u2

15
1

a
sinhat

1

s2− a2

u

1− a2u2

16 coshat
s

s2− a2

1

1− a2u2

17
1

ω
eat sinωt

1

(s− a)2 +ω2

u

(1− au)2 +ω2u2

18 eat cosωt
s− a

(s− a)2 +ω2

1− au

(1− au)2 +ω2u2

19
1

ω2
(1− cosωt)

1

s
(

s2 +ω2
)

u2

1 +ω2u2

20
1

ω3
(ωt− sinωt)

1

s2
(

s2 +ω2
)

u3

1 +ω2u2

21
1

2ω3
(sinωt−ωt cosωt)

1
(

s2 +ω2
)2

u3

(

1 +ω2u2
)2

22
t

2ω
sinωt

s
(

s2 +ω2
)2

u2

(

1 +ω2u2
)2



116 The Sumudu transform

Table A.1. Continued.

f (t) F(s)= £
{

f (t)
}

G(u)= S
(

f (t)
)

23
1

2ω
(sinωt+ωt cosωt)

s2

(

s2 +ω2
)2

u
(

1 +ω2u2
)2

24
1

b2− a2
(cosat− cosbt),

(

a2 �= b2
) s

(

s2 + a2
)(

s2 + b2
)

u2

(

1 + a2u2
)(

1 + b2u2
)

25
1

4k3
(sinkt coshkt− coskt sinhkt)

1

s4 + 4k4

u3

1 + 4k4u4

26
1

2k2
sinkt sinhkt

s

s4 + 4k4

u2

1 + 4k4u4

27
1

2k3
(sinhkt− sinkt)

1

s4− k4

u3

1− k4u4

28
1

2k2
(coshkt− coskt)

s

s4− k4

u2

1− k4u4

29
1

2
√
πt3

(

ebt − eat
) √

s− a−
√
s− b

√
1− au−

√
1− bu

u3/2

30 e−(a+b)t/2I0

(

a− b

2
t

)

1√
s+ a

√
s+ b

1√
1 + au

√
1 + bu

31 J0(at)
1√

s2 + a2

1√
1 + au2

32
1√
πt

eat(1 + 2at)
s

(s− a)3/2

u3

u1/2(1− au)3/2

33

√
π

Γ(k)

(

t

2a

)k−1/2

Ik−1/2(at), (k > 0)
1

(

s2− a2
)k

u2k−1

(

1− a2u2
)k

34 H(t− a)
1

s
e−as e−a/u

35 δ(t− a) e−as
1

u
e−a/u

36 J0

(

2
√
kt
) 1

s
e−k/s e−ku

37
1√
πt

cos2
√
kt

1√
s
e−k/s

1√
u
e−ku

38
1√
πt

sinh2
√
kt

1

s3/2
ek/s

√
ueku

39
k

2
√
πt3

e−k
2/4t , (k > 0) e−k

√
s 1

u
e−k/

√
u

40 ln t+ γ (γ ≃ 0.5772 . . .) −1

s
lns lnu

41
1

t

(

ebt − eat
)

ln
s− a

s− b

1

u
ln

1− au

1− bu

42
2

t
(1− cosωt) ln

s2 +ω2

s2

1

u
ln
(

1 +ω2u2
)

43
2

t
(1− coshat) ln

s2− a2

s2

1

u
ln
(

1− a2u2
)

44
1

t
sinωt arctan

ω

s

1

u
arctanωu

45 Si(t)
1

s
arccots funcarccot

1

u
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Table A.2. The Sumudu transform properties.

Formula Comment

G(u)= S
(

f (t)
)

=
∫∞

0
f (ut)e−tdt, −τ1 < u < τ2

Definition of Sumudu

transform for f ∈ A

G(u)= F(1/u)

u
and F(s)= G(1/s)

s
Duality with Laplace transform

S
[

a f (t) + bg(t)
]

= aS
[

f (t)
]

+ bS
[

g(t)
]

Linearity property

G1(u)= S
[

f ′(t)
]

= G(u)− f (0)

u
= G(u)

u
− f (0)

u

Sumudu transforms of

function derivatives
G2(u)= S

[

f ′′(t)
]

= G(u)

u2
− f (0)

u2
− f ′(0)

u

Gn(u)= S
[

f (n)(t)
]

= G(u)

un
− f (0)

un
−···− f (n−1)(0)

u

S

[
∫ t

0
f (τ)dτ

]

= uG(u)
Sumudu transform of an

integral of a function

S
[

f (at)
]

=G(au) First-scale preserving theorem

S

(

t
df (t)

dt

)

= u
dG(u)

du
Second-scale preserving theorem

S
[

eat f (t)
]

= 1

1− au
G

(

u

1− au

)

First shifting theorem

S
[

f (t− a)H(t− a)
]

= e−a/uG(u) Second shifting theorem

S

[

1

t

∫ t

0
f (τ)dτ

]

= 1

u

∫ t

0
f (v)dv Average preserving theorem

lim
u→0

G(u)= lim
t→0

f (t) Initial value theorem

lim
u→±∞

G(u)= lim
t→±∞

f (t) Final value theorem

S
(

f (t)
)

=
∫ T/u

0 f (ut)e−tdt

1− e−T/u

Sumudu transform of a

T-periodic function

S( f ∗ g)= uS
(

f (t)
)

S
(

g(t)
)

;
Sumudu convolution theorem

( f ∗ g)(t)=
∫ t

0
f (τ)g(t− τ)dτ
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