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Analytical level set fabrication 
constraints for inverse design
Dries Vercruysse1,2, Neil V. Sapra1, Logan Su1, Rahul Trivedi1 & Jelena Vučković1

Inverse design methods produce nanophotonic devices with arbitrary geometries that show high 
efficiencies as well as novel functionalities. Ensuring fabricability during optimization of these 
unrestricted device geometries is a major challenge for these design methods. In this work, we 
construct a fabrication constraint penalty function for level set geometry representations of these 
devices. This analytical penalty function limits both the gap size and boundary curvature of a device. 
We incorporate this penalty in a fully automated optical design flow using a quasi-Newton optimization 
method. The performance of our design method is evaluated by designing a series of waveguide 
demultiplexers (WDM) and mode converters with various footprints and minimum feature sizes. Finally, 
we design and experimentally characterize three WDMs with a 80 nm, 120 nm and 160 nm feature size.

Photonic design is becoming more complex and demanding as a growing number of applications are relying on 
nanophotonic devices. To meet this challenge, designers increasingly rely on advanced optimization techniques 
rather than classical photonic design approaches1–4. Instead of tuning relatively simple known geometries with a 
limited set of parameters, as is traditionally done, these new methods explore devices with completely arbitrary 
geometries. Capitalizing on the increased degrees of freedom, devices have been designed with extremely small 
footprints, high efficiencies, and novel functionalities that can not be achieved with classical methods5–14.

A robust design method not only needs to maximize performance, but also needs to ensure that the final 
device is fabricable. Various fabrication processing limits, e.g., lithography resolution or etch aspect ratio, restrict 
the minimum feature size that can be achieved practically. Effectively enforcing a minimum feature size on an 
arbitrary design geometry is challenging yet essential to produce a fully automated design algorithm. Often, 
optimization problems maintain fabricability by parametrizing simple geometric shapes that cannot violate the 
minimum feature size, such as hole arrays or pixelated structures15,16. This, however, restricts the geometry and 
thus limits the design space. For a fully arbitrary structure, feature size can be controlled by systematically project-
ing intermediate results on to the space of fabricable designs3,17,18. Such projection steps impede the use of higher 
order optimization methods, which decrease the optimization time and computational requirements. Another 
approach is to evaluate a dilated and eroded version of the device during the optimization process. Extensions of 
this method can allow for fabrication robustness9,19,20, or a length scale constraint21,22.

In this work, we introduce an analytical fabrication constraint for arbitrary geometries defined by level set 
functions. This constraint has the advantage that it can be added to the objective as a penalty term, allowing for 
simultaneous optimization of performance and fabricability with quasi-Newton methods. This is in contrast to 
previous work where fabrication constraints were enforced through systematic corrections to the device geome-
try18. Expanding on the design methodology established in our group2,6,11,18, we present a completely automated 
optimization process which implements fabricabilty through this penalty term. The performance of this optimiza-
tion process is evaluated for wavelength demultiplexers (WDMs) and mode converters with varied footprints and 
minimum feature sizes. Finally, we employ our method to design three WDMs with different minimum feature 
sizes, which are fabricated and experimentally characterized.

Level Set Fabrication Constraint
To facilitate optimization, a device geometry is often represented by binary pixels on a grid that matches the 
simulation mesh or the minimum fabricable feature size7,16,23. This Manhattan representation, however, limits the 
design space. Preferably, the design border should be able to move continuously. This can be achieved by directly 
parameterizing the device boundary as a polygon24, or indirectly by using a level set function, as is done in this 
work. A level set function is a continuous function that defines material where the function is positive, and etch 
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where the function is negative, thereby setting the boundary to be the zero-crossing25. An example of a 2D level 
set function can be seen in Fig. 1(c).

For the device to be considered fabricable, the geometry needs to adhere to a target minimum feature size, d, 
which the fabrication process can resolve. This requires, firstly, that there are no gaps smaller than the minimum 
feature size, and secondly, that the radius of curvature is larger than half the minimum feature size (Fig. 1(b)). 
Without enforcing these constraints during the optimization, the final designs typically have small features that 
can be difficult to fabricate, e.g., features smaller than 80nm (Suppl. Information). To ensure fabrication require-
ments, we introduce two level set specific constraints to the optimization problem: a minimal gap and radius of 
curvature constraint.

The minimal gap size is enforced by the constraint:
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where p is a vector describing the parametrization; φ x y p( , ; ) is the level set function; φ x y p( , ; )v  and x y p( , ; )vvφ  
are the first and second derivatives, respectively, in the gradient direction26; and β > 0 is a constant. This con-
straint can be understood intuitively when ignoring the second term. Since the second derivative indicates how 
quickly the level set function bends back towards the zero-plane, the feature size is controlled by limiting the 
second derivative based on the value of the function at that point. For a 1D level set function, this constraint is 
tight for a sinusoidal function with a periodicity 2d, which corresponds to a grating with feature size d. The addi-
tional term, β φ⋅ x y p( , ; )v , is added to relax the constraint near the zero-plane, so that the second derivative 
would not have to be exactly zero (for numerical reasons). β is typically set to 1

3
. An example of where this con-

straint is violated can be seen in Fig. 2(a).
The minimum radius of curvature, r, is enforced by the constraint:

Figure 1. Level set representation: (a) example of a discrete device structure, (b) illustration of feature sizes 
in the green region in panel (a). The curvature is indicated in red, and the gap is shown in green, (c) level set 
parametrization of the example structure in panel (a) with level set thresholding depicted.

Figure 2. Fabrication constraints: violations of a 1 µm gap constraint (a) and curvature constraint (b) are 
indicated for a randomly generated level set function. The black line indicates the zero-contour of the level set 
function.
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Although the curvature is only relevant at the device boundary (φ = 0), the constraint is evaluated over the 
entire design region. The constraint is formulated this way because only penalizing curvature at grid points near 
the boundary results in a highly non-differentiable penalty function, which hinders the optimization process. At 
points where φ =x y p( , ; ) 0, the arctan-term in Equation (2) will be π

2
, in which case the constraint becomes 
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. At the extrema, where φ =x y p( , ; ) 0v  and the radius of curvature is 0, the arctan-term will be 

0 effectively removing the constraint. As such Equation (2) constrains the radius of curvature to d
2

 at the device 

border (i.e., at the level set zero-plane) and relaxes it away from the device boundary. Figure 2(b) shows where this 
constraint is violated in an example structure.

Both constraints can be combined in a penalty function:
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where R is the ramp function, =R x max x( ) ( , 0). The penalty weight, ζ , sets the relative importance between the 
gap and curvature penalty terms, which was set to two in the present implementation. If both constraints 1 and 2 
are met, the penalty function will be zero. We observe that optimized devices that meet the constraints do not 
meet the target minimum feature size, d, set in these equations, but tend to be consistently smaller. Therefore, 
during optimization, we set d to be 15% higher than the target feature size.

Inverse Design
An optical design problem with the fabrication penalty in Equation (3) can be formulated as:
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where fEM is a figure of merit for the optical performance as a function of the fields Ei and the parametrization 
vector, p. This optimization problem is subject to Maxwell equations, where ωi and Ji are the angular frequency 
and current sources of mode i, respectively, and p( )ε  is permittivity as a function of the parametrization.

Our inverse design method optimizes the optical problem in Equation (4) in three stages: a continuous opti-
mization stage, where the permittivity of the design region can take any value in between the waveguide and the 
cladding; a discretization stage, where the continuous result is discretized; and a discrete optimization stage, 
where the level set representation of the device is optimized with fabrication constraints (Fig. 3a–d)2,6,11.

In the first stage (continuous) the parametrization is not a level set function, and as such we omit the penalty 
term from Equation (4). Yet, the feature size in this stage still needs to be controlled, since small features at the end 
of the continuous optimization will result in a poor starting condition for the discrete stage. We, therefore, use 
a coarser grid for the parameterization and interpolate onto the finer simulation grid using cubic interpolation 
(Suppl. Information). This coarse grid has a pitch of 1.75 times the required minimum feature size. In addition, 
we apply a sigmoid function over the interpolated result, in order to make the continuous structure more discrete 
(Suppl. Information). An example of the permittivity distribution for a WDM at the end of a continuous stage 
can be seen in Fig. 3(b).

The non-fabricable structure is subsequently discretized as illustrated in Fig. 3(b,c) to form the initial guess for 
the second optimization stage (discrete). Here, the device is strictly composed of regions with the waveguide 
permittivity and regions with the cladding permittivity, i.e., etched regions. To discretize, we fit a level set para-
metrization to the continuous optimization result, taking ffab(p) into account to assure fabricability. The fitted 
result is subsequently used as a starting condition for the discrete optimization stage. In the final discrete stage, we 
solve the optimization problem shown in Equation (4) (Fig. 3(c,d)). The weight factor τ  is increased ten times 
over the optimization process, and each sub-optimization is solved using the quasi-Newton method L-BFGS-B in 
order to yield fast convergence.

The penalty term in Equation (4) introduces a challenge to solve the problem directly on a fine simulation 
grid. Rather than directly parameterizing on the simulation grid, we again use a coarse grid and interpolate on 
the finer simulation grid to smoothen the optimization landscape (Suppl. Information).

Results and Discussion
WDM with fabrication constraints. The optimization results for a 1300 nm/1550 nm WDM is shown in 
Fig. 3(e–i). The device was optimized in 2D with a 2.5 µm × 2.5 µm design area, the refractive index of the wave-
guide and surrounding cladding is 3.48 and 1.44, respectively, and the target minimum feature size, d, was set 
to 120 nm. Figure 3(e) shows the electromagnetic (EM) objective and penalty function during the optimization 
process. The continuous optimization stage takes 48 iterations, during which the sigmoid function slope, k, is 

https://doi.org/10.1038/s41598-019-45026-0


4SCIENTIFIC REPORTS |          (2019) 9:8999  | https://doi.org/10.1038/s41598-019-45026-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

changed twice. This change results in a large increase in the EM-objective at the 16th iteration and a small increase 
at the 32nd iteration. After the continuous stage, the structures is discretized, which again causes a performance 
decrease. At this point, the optimization relies on a level set parametrization and the problem in Equation (4) is 
solved. The penalty function for the gap and the curvature in Equation (3) is shown in Fig. 3(a) by the orange 
curve. Over the discrete optimization stage from iteration 49 to 153, the EM-objective is reduced to 1.5 × 10−3, 
and the fabrication penalty function reaches 0. The final structure (Fig. 3(i)) has an efficiency of 93% and 92% for 
1300 nm and 1550 nm, respectively (Fig. 3(f)). The field profiles for both wavelengths can be seen in Fig. 3(g,h). 
With the penalty function reaching 0, both fabrication constraints are completely met. The device has a minimum 
gap size of 121.2 nm and a minimum radius of curvature of 63.1 nm.

Minimum feature size vs device footprint. The inverse design method was evaluated by optimizing a 
series of optical devices with different device parameters. WDMs for 1300 nm/1550 nm were optimized for foot-
prints ranging from 1.5 µm × 1.5 µm to 3 µm × 3 µm and target minimum feature sizes of 80 nm, 120 nm and 
160 nm. For each device configuration, we optimized 50 devices starting with different random initial conditions. 
Of the two optimized wavelengths, the lowest efficiency value is given as the device efficiency in Fig. 4(a–d). The 
x-axis of these figures shows the minimum feature size of the optimized device, i.e., the minimum of the gap sizes 
and curvature diameters found in the device geometry (Suppl. Information). In all four figures, the device mini-
mum feature size lies around the target minimum feature size. A small number of the designs still violate the 
requirement, yet this could be improved by setting the constraint slightly higher, or by increasing the pitch of the 
coarse grid. Alternatively, when increasing the penalty factor, τ, one could also perform an optimization on the 
penalty term only to obtain a fabricable structure as a starting condition. Several trends regarding the minimum 
feature size and the device footprint are visible. For each footprint, the maximum efficiency decreases as the min-
imum feature size increases. For example, 1.5 µm × 1.5 µm WDMs with an 80 nm feature size can reach efficien-
cies of 96.6%, but the highest efficiency for the 160 nm feature size is 77.1%. In addition, the spread on the 
efficiency also becomes larger as the target feature size increases. While all 1.5 µm × 1.5 µm WDMs with a mini-
mum feature size of 80 nm reaches an efficiency between 91.8% and 96.6%, the efficiencies of devices with a 
160 nm feature size spans from 11.2% to 77.1%. These trends appear consistently over all the device footprints. 
Between different device footprints, maximum efficiency increases as the footprint increases. For the 160 nm 
feature size, the maximum efficiency for a 1.5 µm × 1.5 µm device is 77.1%, while a 3 µm × 3 µm WDM can reach 
almost 96.7%. Additional optimization metrics, such as average iteration counts and computation time, can be 
found in the Supplementary Information.

A similar parameter sweep was done for a TE0-to-TE1 mode converter. The mode conversion efficiencies for 
50 optimizations with different footprints and minimum feature sizes are shown in Fig. 4(e–h). The same trends 
as for the WDM can be observed. The effect of the device footprint on the efficiency spread is nevertheless more 
pronounced. For example, the 160 nm minimum feature size has an efficiency range from 33.6–89.3% for the 
1 µm × 1 µm device, yet for the 3 µm × 3 µm device range is already reduced to 88.4–97.8%. The optimization 

Figure 3. Inverse design method (a–d): (a) random initial condition for a waveguide demultiplexer, (b) 
structure after optimization in continuous stage, (c) structure after discretization step, (d) structure after 
optimization with a level set parametrization and fabrication constraints. WDM optimization with fabrication 
constraints (e–i): (e) EM-objective (fEM) and fabrication penalty (ffab) at every iteration, (f) coupling efficiency 
at every iteration. The dotted vertical line in a and b indicates a change in the sigmoid function slope (Suppl. 
Information). The full vertical line indicates the continuous-to-discretization step. (g,h) Electric field intensity 
of the final structure at 1300 nm and 1550 nm wavelength, respectively, and (i) final structure. The scale bar in 
(g–i) is 0.5 µm.
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landscape of the mode converter presumably has higher performing local minima to which the device can con-
verge, making it more likely to find high-efficiency devices as compared to the WDM problem.

3D WDM designs. Three-dimensional WDM’s with a footprint of 3 µm × 3 µm were developed in 220 nm 
thick SOI with top oxide cladding for 1300 nm/1550 nm wavelengths (Fig. 5). We fabricated a set of devices 
whose minimum feature size, d, was set to 80nm, 120nm and 160nm. Table 1 summarizes the efficiencies and the 
fabrication feature sizes of all three devices. These devices adhere to both fabrication constraints, and as expected, 
devices with a smaller minimum feature size have a higher efficiency (Full spectra can be found in the Suppl. 
Information). The experimental measurement follows the trend seen in simulations, yet show an overall lower 
efficiency which can be attributed to fabrication imperfections.

Conclusion
We have developed analytical constraints that limit the gap size and curvature of a structure defined by a level 
set function. These constraints were incorporated in a fully automated inverse design method in the form of a 
penalty function. Using this new penalty function, we optimized a series of 2D WDMs and mode converters 
with varied footprints and minimum feature sizes. Analysis of the feature size of a series of devices that are 

Figure 4. Parameter sweep: (a–d) efficiency of WDMs and (e–h) efficiency of TE0-to-TE1 mode converters 
with different footprints and different minimum feature size. Every sweep uses 50 random starting conditions.

Figure 5. 3D designs and SEM micrographs of WDMs with a 80 nm(a,d), 120 nm(b,e) and 160 nm(c,f) 
minimum feature size. The scale bar in both the design and SEM images are 1 µm.
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optimized with certain target feature size, shows a distribution with a lower bound around this target. In addition, 
the optimization series demonstrate that the spread in the final efficiency of optimized devices increases as the 
fabrication constraint increases. To improve optimization with large minimum feature sizes, future work might 
focus on improving initial conditions and on early termination to reduce the computational load of sweeping 
initial conditions. The validity of this method was demonstrated through simulation in both 2D and 3D, as well as 
experimental confirmation of device performance. The robustness and flexibility afforded by the presented design 
approach illustrates the maturity of arbitrary geometry nanophotonic design for widespread use in the integrated 
photonics community.
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Feature 
size (d)

1300 nm efficiency 
FDFD/experiment*

1550 nm efficiency 
FDFD/experiment*

Curvature 
diameter Gap size

80 nm 95.0%/79.0% 94.1%/59.0% 82.0 nm 81.7 nm

120 nm 71.9%/48.6% 72.4%/39.7% 124.2 nm 121.8 nm

160 nm 52.7%/27.4% 60.0%/39.8% 163.8 nm 161.1 nm

Table 1. 3D WDM results for different minimum feature sizes. *Experimental results take a blue shift into 
account (Suppl. Information).

https://doi.org/10.1038/s41598-019-45026-0
http://arxiv.org/abs/1801.06715
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1364/OE.21.013351
https://doi.org/10.1002/lpor.201000014
https://doi.org/10.1002/lpor.201000014
https://www.osapublishing.org/abstract.cfm?URI=oe-22-22-27175
https://doi.org/10.1364/OE.22.027175
https://doi.org/10.1364/OE.22.027175
https://doi.org/10.1038/nphoton.2015.69
https://doi.org/10.1038/nphoton.2015.80
https://doi.org/10.1364/OPTICA.3.000233
https://doi.org/10.1021/acs.nanolett.7b01082
https://www.osapublishing.org/abstract.cfm?URI=prj-5-6-B15
https://doi.org/10.1364/PRJ.5.000B15
https://doi.org/10.1021/acsphotonics.7b00987
http://arxiv.org/abs/1808.04215
https://www.osapublishing.org/abstract.cfm?URI=oe-26-3-3236
https://doi.org/10.1364/OE.26.003236
https://doi.org/10.1109/JPHOT.2018.2863122
https://www.osapublishing.org/abstract.cfm?URI=oe-25-17-19721
https://doi.org/10.1364/OE.25.019721
https://doi.org/10.1364/OE.25.019721
https://www.osapublishing.org/abstract.cfm?URI=ol-32-1-77
https://doi.org/10.1364/OL.32.000077
https://doi.org/10.1038/s41598-017-01939-2
https://doi.org/10.1007/s10409-009-0240-z
https://doi.org/10.1007/s10409-009-0240-z
https://doi.org/10.1364/JOSAB.28.000387
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1007/s00158-018-2162-5
http://www.nature.com/articles/s41377-018-0106-x
https://doi.org/10.1038/s41377-018-0106-x
http://arxiv.org/abs/1705.07188
https://doi.org/10.1364/OE.26.031717
https://doi.org/10.1016/S0040-4020(01)92489-5
https://doi.org/10.1023/A:1008097225773


7SCIENTIFIC REPORTS |          (2019) 9:8999  | https://doi.org/10.1038/s41598-019-45026-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
D.V. acknowledges funding from FWO and European Union’s Horizon 2020 research and innovation program 
under the Marie Sklodowska-Curie grant agreement No. 665501. N.V.S. and J.V. acknowledge funding from the 
Gordon and Betty Moore Foundation (GBMF4744/GBMF4743). L.S. and J.V. acknowledge funding from Google. 
R.T. acknowledges funding from Kailath Graduate Fellowship. We also thank Google for providing computational 
resources on the Google Cloud Platform. All devices were fabricated at the Stanford Nanofabrication Facility 
(SNF) and Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award 
ECCS-1542152.

Author Contributions
D.V. developed the constraints, performed the design sweeps,as well as designed and measured the WDMs. N.V.S. 
fabricated the WDMs. D.V., L.S., N.V.S. and R.T. developed the design software. J.V. supervised the project. All 
members contributed to the discussion and analysis of the results.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-45026-0.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-45026-0
https://doi.org/10.1038/s41598-019-45026-0
http://creativecommons.org/licenses/by/4.0/

	Analytical level set fabrication constraints for inverse design
	Level Set Fabrication Constraint
	Inverse Design
	Results and Discussion
	WDM with fabrication constraints. 
	Minimum feature size vs device footprint. 
	3D WDM designs. 

	Conclusion
	Acknowledgements
	Figure 1 Level set representation: (a) example of a discrete device structure, (b) illustration of feature sizes in the green region in panel (a).
	Figure 2 Fabrication constraints: violations of a 1 μm gap constraint (a) and curvature constraint (b) are indicated for a randomly generated level set function.
	Figure 3 Inverse design method (a–d): (a) random initial condition for a waveguide demultiplexer, (b) structure after optimization in continuous stage, (c) structure after discretization step, (d) structure after optimization with a level set parametriza
	Figure 4 Parameter sweep: (a–d) efficiency of WDMs and (e–h) efficiency of TE0-to-TE1 mode converters with different footprints and different minimum feature size.
	Figure 5 3D designs and SEM micrographs of WDMs with a 80 nm(a,d), 120 nm(b,e) and 160 nm(c,f) minimum feature size.
	Table 1 3D WDM results for different minimum feature sizes.


