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Analytical Method for Blind Binary Signal Separation

Alle-Jan van der Veen

Abstract—The blind separ ation of multiple co-channel binary digital sig-
nals using an antenna array involves finding a factorization of a data ma-
trix X into X = AS where all entriesof Sare+1 or —1. It isshown that this
problem can be solved exactly and non-iter atively, via a certain generalized
eigenvalue decomposition. Asindicated by simulations, thealgorithm isro-
bust in the presence of noise. An interesting implication isthat certain clus-
ter segmentation problems can be solved using eigenvalue techniques.

I. INTRODUCTION

A coreproblemintheareaof blind signal separation/egualization
is the following. Consider d independent sources, transmitting
binary symbols {+1,-1} at equal rates in a wireless scenario.
Thesignalsarereceived by acentral antennaarray, consisting of
M antennas. Assuming synchronized sources, equal transmis-
sion delays, negligibledelay spread, and sampling at the bit rate,
each antenna receives a linear combination of the transmitted
symbol sequences § = [s(T),s(2T),---,s(NT)] (i=1,---,d),
leading to the well-known data model

X=AS=aisi+ -tags, Sj0{+1-1}. (1
Here, X = [x] with xx = x(KT) (i=1,---,M; k=1,---)N) is
acomplex matrix containing the received data during N symbol
periods. A 0CM9 is the array response matrix, SO {+1} N
contains the transmitted bits. In the blind signal separation sce-
nario, both A and Sare unknown, and the objectiveis, given X,
to find the factorization X = ASsuch that Shelongsto the binary
alphabet. Alternatively, wetry to find aweight matrix W of full
row rank d such that S=W"X. Uniqueness of this factorization
isimportant, and was established in [1]: if Aisfull rank and the
columns of Sexhaust all 2971 distinct (up to asign) possibilities,
then thisis sufficient for the factorization to be unique up to triv-
ial permutationsand scalingsby 1 of therowsof Sand columns
of A. Hence, once any such factorization of X isfound, S con-
tains the binary signals that were originally transmitted, or their
negative, but not some ghost signal.

Thisscenario by itself isperhaps naive, but it isthe core prob-
lem in more readlistic blind (FIR-MIMO) scenarios [2], where
long delay multipath is allowed, and sources are not synchro-
nized and are modulated by arbitrary pulse shapefunctions. This
problem is separable into a blind multi-user equalization stage
and aseparation problemwhichisprecisely of theform (1). Sev-
eral other binary modulation schemes such as MSK or biphase
(Manchester) codes are easily converted to fit the model as well
[3].

One of the first papers to consider this problem appeared in
full as[1]. Inthat paper, arbitrary finite al phabets are considered
although only BPSK was tested extensively. The problem was
cast into an optimization problem, min || X — AS||r, subject to
S O{+£1}. Two fixed-point iteration algorithmswere proposed,
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Fig. 1. A maps a source constellation onto a transformed constellation.

one called ILSE which is based on clever enumeration of candi-
date matrices S, and a second called ILSP which uses alternat-
ing projections. The main concern with these algorithmsis their
initialization and lack of global convergence. Depending on the
initialization, the algorithms can converge to a local minimum,
and restarts are needed if not all independent signals are found.
If successful, ILSE isaconditional maximum likelihood estima-
tor. ILSPissuboptimal but much cheaper to compute, and can be
used to initialize ILSE. Later, an unconditional maximum like-
lihood technique for the estimation of A was derived [4], here
called the UML. The algorithm consists of a fixed-point itera-
tion as well, and also requires an accurate initialization. Its per-
formanceissimilar to ILSE.

Several people noted that the problem (1) isessentially aclus-
tering problem, as illustrated in figure 1 for the case of d = 2,
M = 2. In the absence of noise, X can contain only 2¢ distinct
vectors. To estimate A, it sufficesto determine a suitable assign-
ment of these vectors (or cluster centers) to constellation vectors,
i.e., the columns of S taking symmetry into account. A non-
iterative combinatorial algorithm based on suchideas, called SD,
was presentedin [5]. With noise, however, the segmentation and
hence the estimation of the cluster centersis difficult and limits
the performance of the algorithm.

The main point of the present paper is the observation that
there exists a non-iterative algorithm that finds the factorization
(1) exactly and algebraically, by reducing it to ajoint diagonal-
ization problem, which is a (generalized) eigenvalue problem.
Theagorithmisrobust in the presence of noise, asdemonstrated
by smulations. Apart from certain details, it isin fact an almost
trivial specialization of arecently devel oped “ analytical constant
modulusalgorithm” (ACMA) [6], which solvesthe factorization
X =AS|Sj| =1 for complex matrices A and S, asit is straight-
forward to restrict Sto be real as well. Nonetheless, the prob-
lem is sufficiently important to warrant a separate mentioning,
especialy since it implies the interesting observation that some
clustering problems can be solved by eigenvalue techniques.

It should be noted that the blind binary source separation prob-
lem fits into the more general class of source separation based
on observed linear instantaneous mixtures. Of particular inter-
est herearea gorithmsthat usethe statistical independence of the
souces, which has led to “independent component analysis’ and
related high-order statistics techniques, viz. among others[7-9].



Rather intriguingly, these methods are also based on joint diag-
onalizations, in this case of cumulant matrices.

[I. REAL ACMA

The blind binary souce separation problemisto find a factor-
ization X = ASwhere §j O {+1}. Since Sis real-valued, it is
advantageous to write

X=AS - [imma)]:[
And XR = ARS;

with obvious definitions of Xg 0 R 2N and Ag 00 R 2M*d_ This
forces Sto bereal, and at the sametime, A is usually much bet-
ter conditioned than A. Equivalently, the problem is to find all
independent vectors wg [0 R 2™ such that wkXg = s has entries
() O{£1}.

Without noise, Xg is rank-deficient, which leads to ambigui-
tiesin wg. To avoid this, the first step in the algorithm isto re-
duce the dimension of wg from 2M to d. Thuslet Xg = U5V be
an“economy-size” SVD for Xg, whereU : 2M xd hasorthogonal
columns, > : dxdisa diagonal matrix containing the non-zero
singular values of Xg, andV : d x N has orthogonal rows, which
form abasisfor the row span of Xgr. Thus, the problem isequiv-
dent to finding all independent vectorsw [0 R 9 such that

real (X) real(A) ] S

imag(A)

w'V=s,  (9O{1}. )

The alphabet condition is written as

sO{#1} - (s-1)(s+1)=0 - =1 (3
(with possible extensionsto other constellations). Denoting the
k-th column of V by vy, substitution of (2) into (3) leadsto

wiviviw=1,  k=1,---,N. (4)
Similar equations arose in the solution of the constant modulus
problem [6], where we had |s? = 1 rather than s*> = 1. Asin[6],
the conditions can be rewritten in a linear form by using Kro-
necker products: [vi 0 vi]T[wOw] = 1, but in the present case
the Kronecker product vectors have duplicate entries which can
(and have to) be removed. Thus define, for ad xd real symmet-
ricmatrix Y = [y;j], ascaled stacking of thelower triangular part
of the columns;

vee(Y) = [yn M oyn L2
Vd-,\/dé-l yaa]" O R 4@+D/2,

Thisallowsto write (4) as
[rvec(vivi)]Trvecww™) =1,  k=1,---,N. (5

After collecting all rows rvec(vgv])T into a matrix P, the prob-
lem reduces to finding all independent vectorsy satisfying

Py=1,

where 1 = [1---1]T. Hence, we have replaced the quadratic
equations (4) by alinear system Py = 1, subject to a quadratic
constraint which imposes a certain structure on y.

y = rvec(ww'),
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The remaining steps are identical to the procedurein [6], and
only summarized here. First transform the linear system to an
equivalent system Py = 0. Let Q bean orthogonal (Househol der)
transformation such that Q1 = [v/N On-1], and let P bethelast
N -1 rows of QP (i.e, the first row is removed), then, up to a
scaling, solving Py = 1 isequivalent to solving

Py=0, y#0. (6)
The general solution of (6) has the form
y=0o1y1+--+0gys, (@ OR, |ail #0),

where {y;} isabasis of the null space of P, and 3 is defined to
be the dimension of this space. In the presence of noise, both the
basis and its dimension are estimated by an SVD of P. Sincewe
know that thereare d linearly independent solutionsw, and since
linearly independent vectorsw lead to linearly independent vec-
torsy = rvec(ww' ), there are at least d independent sol utionsto
(6): =d. Ontheother hand, if sufficient conditionsareimposed
by P, then the dimension of the null space of P will not be larger
thand. In particular, if N 3> 2971 then we expect & = d with high
probability, asisargued later in this section. For this property to
hold, it is essential to have used rvec in (5), or else P has dupli-
cate columns and the dimension of the kernel will be too large.
(Thisis precisely the reason why BPSK and MSK signals were
noted exceptionsin the ACMA algorithm [6].)

At this point, we have obtained a basis of solutions{y;}, but
since the basis is arbitrary, each y; is probably not of the form
rvec(ww'). To force the structural property y = rvec(ww'),
writeY; = rvec™(y;), which gives

ww! = 0qY + -+ 0. 7)

We have to find all d parameter vectors [ ---0] such that the
resulting linear combination of the matrices{Y;} isof rank 1 and
symmetric, in which case it can be factored as ww'. As dis-
cussed in [6], thisis essentially a generalized eigenvalue prob-
lem. Ford = 2, itisa2x2 matrix pencil problem with a closed-
form solution, for d > 2 and with noise, there is in general no
exact such decomposition, but we cantry to makethelinear com-
bination as closetorank 1 aspossible. Thesymmetry property is
automatic because for real-valued a-vectors, Yy, - - -, Y5 are sym-
metric by construction.

A technique for computing all a-vectorsisdetailed in [6], for
the general complex case, but a specialization to the present real
case isimmediate. For each a-vector, the corresponding w fol-
lows from (7).

Sinced istypically small, the computational effort required by
the diagonalization step is negligible in comparison with com-
puting the SVD of P. Thisbringstheoverall computational com-
plexity of the algorithm to around O((M? 4+ d*)N). There are
interesting possibilities for updating the null space estimate of P
using subspace trackers.

Rank of P

From the above, it is clear that the dimension 6 of the null
space of P plays an important role. Using similar arguments
asin [6], one can show that this dimension is independent of A
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as long as A has full rank. Furthermore, & = d iff P has rank
id(d+1)-d = 3d(d-1), i.e, iff P hasrank 1d(d-1) + 1.
For this, it is sufficient that S contains all 291 essentialy dis-
tinct constellation vectors (“essentially” meaning beyond a fac-
tor +1). A conjecture that any subset of 3d(d-1) + 1 constel-
lation vectors out of these 291 would already be sufficient turns
out not to be true because of linear dependencies. E.g.,ford =5
it was found that some subsets of 11 constellation vectors only
give rank(P) = 10 rather than 11, and that at least 13 constella-
tion vectors are needed to guarantee rank(P) = 11. An exper-
iment for d = 10 shows that 380 vectors out of 512 is still not
sufficient in all cases.

For N > 2971 and assuming equal probabilities on the occur-
rence of any constellation vector, a lower bound on the proba-
bility p that Scontains all 2971 constellation vectorsis given in
[1, 8A.2] as p= 1-29"1(1-27(d-1)N This also gives a lower
bound on the probability that & = d, be it rather pessimistic be-
cause there are many subsets that are sufficient as well.

1. SIMULATIONS

To test the algorithm, the following scenario is considered.
We have d = 4 equipowered sources, with directions-of-arrival
-3°,0°,4°,8° with respect to the array broadside. The sen-
sor array is a uniform linear array consisting of M = 6 omni-
directional antennas spaced at A/2. An arbitrary initial phase
of each signal is incorporated in A. The condition number of
the complex-valued A is about 300, so that the problem looks
quite ill-conditioned. However, since we try to recover real
signals, the true conditioning of the problem is determined by
Ag = [real(A)T imag(A)T]T. Unlike the complex case, the con-
ditioning of Ar is very much dependent on the initial (random)
phasesof thesignals: it can beaslow as 3, or ashigh as200. The
median of the distribution was found to be 9.5, with a standard
deviation of 8.4, so that the problem is medium-conditioned in
the majority of cases.

The signal-to-noiseratio (SNR) is defined with respect to sig-
nal 1. We took N = 100 snapshots and a total of 2000-8000
Monte Carlo runs. Thebit-error rate (BER) isthetotal BER over
al d signals. The percentage of cases where not all d signals
are recovered is defined as the recovery failure rate (RFR) and
is listed separately. These cases are omitted from the BER sta
tistics.

RACMA iscomparedto ILSP[1], ILSE[1], UML [4] and SD
[5]. Of thelatter algorithms, only SD doesnot require an explicit
initial guessfor A. ILSPisinitialized with Ag = lyxg. ILSE and
UML require a more accurate initialization, and we use the re-
sult of the ILSP algorithm for that. It is aso possible to use the
result of RACMA toinitialize ILSP, ILSE and UML, which can
improve results because RACMA is not statistically optimal (in
fact it isbiased). UML requires an estimate of the noise power.

We first test the case where the random initial signal phase
is selected once and held fixed during the simulation. Figure
2(a) shows the resulting bit error rates as a function of SNR;
figure 2(d) shows the corresponding recovery failure rates. In
this simulation, cond(Agr) = 5.3. In accordance to theory [1], it
is seen that the performance of ILSP is limited in comparison
to ILSE. For high SNRs, the initialization by Ag = | is not ef-
fective to recover al signals, and very often, the algorithm gets
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Fig. 3. Example of cluster segmentation using RACMA. (a),(b) low noise,
(c),(d) high noise.

stuck in alocal minimum. The ILSE algorithm, when initialized
by ILSP (“ILSP+E”"), improves on ILSP, but is not able to re-
cover from the local minimaat high SNRs either. For reference,
thefigurealso liststhe performance of ILSP and IL SE when ini-
tialized with the true A (“ILSP(A)” and “ILSE(A)”). Note that
ILSE(A) is expected to converge amost surely to the optimal
(conditional) ML estimator. It is seen that RACMA has a per-
formance close to ILSP(A). If the estimate of A produced by
RACMA is used for initialization of ILSE (“RACMA+ILSE"),
we come close to ILSE(A), except for very low SNR. It is nat-
ura that the performance of RACMA islimited at low SNR be-
cause of the inherent squaring of the data in the construction of
P, which increases the effective noise power.

Figure 2(b),(c) shows the performance for the case where
the initial phases of the signals are selected randomly for every
Monte-Carlo run. Figure 2(e),(f) shows the corresponding
RFR. It is seen that SD is effective at high SNRs, but as a non-
iterative combinatorial method, it iseasily confused at low SNRs
where it fails to recover all sourcesin a mgjority of cases. The
performance of UML is virtually the same as that of ILSE, ex-
cept that its capture performance is slightly better at low SNRs.
RACMA has a BER performance similar to ILSP(A), athough
for low SNR it isless successful in recovering al d signals. By
itself, it is suboptimal, but providesagood initial point for ILSE
or UML. It doesnot reach the performanceof ILSE(A) any more,
becausethelow-SNR discrepancy observedinfigure2(a) isnow
spread out over all SNRsas A assumesarange of condition num-
bers.

Finally, 2(c) also shows the effect of overestimating d in
RACMA: “RACMA(6)" lists the case whered = 6 is used in
the SVD of X and the construction of P. The BER performance
isalmost the sameasRACMA, but it becomes 3 dB lesseffective
in capturing all signals.

IV. APPLICATION TO CLUSTERING

Asremarked in the introduction, for discrete signalsthe X =
AS factorization problem is essentially a cluster segmentation
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A RANDOM PHASE
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Fig. 2. (a) BER performancefor fixed A; (b),(c) BER performance for A with random signal phase; (d)—(f) corresponding failure rate (cases where not al signals

are recovered).

problem. This implies that certain cluster segmentation prob-
lems can be solved using eigenvalue techniques, which might
provide an interesting alternative to the usual iterative algo-
rithms. Although the present algorithm expects the cluster cen-
ters to lie on the vertices of a parallelepiped, some generaliza-
tionsto other configurations are possible.

To illustrate this, consider figure 3, which showstwo clusters
arbitrarily located in atwo-dimensional space. Thisisa special
case of our datamodel: we have M = 2 real-valued sensors, and
the received data can be written as

X = [a1 az][ ! "']+E ®

+1 +1 ...

where E signifies the additive noise. Hencewe cansetd = 2
“sources’, athough the first source is in fact constant (41).
Sincewe receive 2971 essentially different constellation vectors,
thisis sufficient for the factorization to be unique. Figure 3(b)
shows the singular values of P, which is an N -1 by 3 matrix.
Clearly, there are 6 = 2 small singular values (they would be
zero in the noise-free case). With more noise, the small singular

values of P are increased (figure 3(d)), and it becomes hard to
detect from the singular values that there are really two clusters
rather than one. Nonetheless, if it is decided that 6 = 2, then the
resulting cluster centers are still close to the true centers (indi-
cated by a“x’). The singular values could be used for a hypoth-
esis test to distinguish between the presence of one versus two
clusters.

A similar exampleisacasewerewe havetwo clustersbut only
onesensor (M =1), e.qg., if wereceiveasinglebinary source, dis-
torted by an arbitrary offset c, scaling k, and additive zero mean
white noise:

xi=k-s+c+e, i=1--,N.
Tofit thisto an X = ASmodel where M = d, we can consider an
augmented data matrix,

X1 X2 o XN

e k]ls sialtla anal)

Xe
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Fig. 4. Parameter estimation of amodel x; = ks +c+§.

Itisinstructiveto partially work out the expressions for the esti-
mation of w (and hence of k and ¢, sincew = [-ck't k™]T).
In the model Py = 1, we here define for convenience y =
W2 wiw, wa]T and the rows of P by [1 2%, XZ]. The transfor-
mation by Q mapsthe condition Py = 1to (1TPy =n, Py = 0).
Using the simple structure of Q, we then find

11 1P

23— 12122) S4-553
0

3516,

SE3+ A6,

PTh=

0 0

0 Zz—lzz) 2(33-§51%) |+
0

_|_

o 4E2
0 A%iE, Es-
where 3, == VX", E, := 3\ e, and ‘0 denotes equality in
mean. In the absence of noise, R has two zero eigenvalues,
with eigenvectorsy; = [1 0 0T andy, = [0 a b]", say
Thejoint diagonalization step collapses: it directly follows that
w = afa b]T, for some scaling a which can be estimated from
the condition 1T Py = n. This example shows that the algorithm
isin fact a square-root method based on 4-th order moments of
the data

With noisg, it is clear that the nonzero block R of Ris biased,
an effect which so far has not been taken into account. A correc-
tionis possibleif the moments of the noise are known. E.g., for
Gaussian noise with variance a2, we have E, [INa?, E; 13Ng?,
so that the the bias term is asymptotically given by

4N 4%,

_ 2
Re=0"1 45, 45,-2No?

If we neglect the term —2Na*, then the noise variance can be

readily estimated asthe (smallest) eigenvalue of thepencil (R, Rg).,
sincethisisthe value that will make R—ARg singular again.
Some simulation results are given in figure 4. In this simu-
lation, k = 0.3, c = 1.2, N = 15, and the results are averaged
over 5000 Monte-Carlo runs. It is observed that the bias correc-
tion has little influence on the variance of the estimates, which
quickly convergeto &o0?2: thevariance of the ML estimatorsof k

and cfor known sand suff|C|entIy small Z1 §. The'simple esti-
mator’ is¢= & S ', k=2 S z|x| €|, which assumesthet thereis
an equal number of +1 and —1 in the data batch. For small N or
otherwise asymmetric sources, this estimator is not very good.
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