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Analytical Method for Blind Binary Signal Separation

Alle-Jan van der Veen

Abstract—The blind separation of multiple co-channel binary digital sig-
nals using an antenna array involves finding a factorization of a data ma-
trix X into X � AS, where all entries of S are

�
1 or −1. It is shown that this

problem can be solved exactly and non-iteratively, via a certain generalized
eigenvalue decomposition. As indicated by simulations, the algorithm is ro-
bust in the presence of noise. An interesting implication is that certain clus-
ter segmentation problems can be solved using eigenvalue techniques.

I. INTRODUCTION

A core problem in the area of blind signal separation/equalization
is the following. Consider d independent sources, transmitting
binary symbols { � 1 � −1} at equal rates in a wireless scenario.
The signals are received by a central antenna array, consisting of
M antennas. Assuming synchronized sources, equal transmis-
sion delays, negligible delay spread, and sampling at the bit rate,
each antenna receives a linear combination of the transmitted
symbol sequences si � �

si � T ��� si � 2T ��� · · · � si � NT �
	 (i � 1 � · · · � d),
leading to the well-known data model

X � AS � a1s1 � · · · � adsd � Si j ∈ { � 1 � −1} � (1)

Here, X � �
xik 	 with xik � xi � kT � (i � 1 � · · · � M; k � 1 � · · · � N) is

a complex matrix containing the received data during N symbol
periods. A ∈ |C M×d is the array response matrix, S ∈ {±1}d×N

contains the transmitted bits. In the blind signal separation sce-
nario, both A and S are unknown, and the objective is, given X,
to find the factorization X � AS such that S belongs to the binary
alphabet. Alternatively, we try to find a weight matrix W of full
row rank d such that S � W∗X. Uniqueness of this factorization
is important, and was established in [1]: if A is full rank and the
columns of S exhaust all 2d−1 distinct (up to a sign) possibilities,
then this is sufficient for the factorization to be unique up to triv-
ial permutations and scalings by ±1 of the rows of S and columns
of A. Hence, once any such factorization of X is found, S con-
tains the binary signals that were originally transmitted, or their
negative, but not some ghost signal.

This scenario by itself is perhaps naive, but it is the core prob-
lem in more realistic blind (FIR-MIMO) scenarios [2], where
long delay multipath is allowed, and sources are not synchro-
nized and are modulated by arbitrary pulse shape functions. This
problem is separable into a blind multi-user equalization stage
and a separation problem which is precisely of the form (1). Sev-
eral other binary modulation schemes such as MSK or biphase
(Manchester) codes are easily converted to fit the model as well
[3].

One of the first papers to consider this problem appeared in
full as [1]. In that paper, arbitrary finite alphabets are considered
although only BPSK was tested extensively. The problem was
cast into an optimization problem, min � X − AS � F, subject to
Si j ∈ {±1}. Two fixed-point iteration algorithms were proposed,
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Fig. 1. A maps a source constellation onto a transformed constellation.

one called ILSE which is based on clever enumeration of candi-
date matrices S, and a second called ILSP which uses alternat-
ing projections. The main concern with these algorithms is their
initialization and lack of global convergence. Depending on the
initialization, the algorithms can converge to a local minimum,
and restarts are needed if not all independent signals are found.
If successful, ILSE is a conditional maximum likelihood estima-
tor. ILSP is suboptimal but much cheaper to compute, and can be
used to initialize ILSE. Later, an unconditional maximum like-
lihood technique for the estimation of A was derived [4], here
called the UML. The algorithm consists of a fixed-point itera-
tion as well, and also requires an accurate initialization. Its per-
formance is similar to ILSE.

Several people noted that the problem (1) is essentially a clus-
tering problem, as illustrated in figure 1 for the case of d � 2,
M � 2. In the absence of noise, X can contain only 2d distinct
vectors. To estimate A, it suffices to determine a suitable assign-
ment of these vectors (or cluster centers) to constellation vectors,
i.e., the columns of S, taking symmetry into account. A non-
iterative combinatorial algorithm based on such ideas, called SD,
was presented in [5]. With noise, however, the segmentation and
hence the estimation of the cluster centers is difficult and limits
the performance of the algorithm.

The main point of the present paper is the observation that
there exists a non-iterative algorithm that finds the factorization
(1) exactly and algebraically, by reducing it to a joint diagonal-
ization problem, which is a (generalized) eigenvalue problem.
The algorithm is robust in the presence of noise, as demonstrated
by simulations. Apart from certain details, it is in fact an almost
trivial specialization of a recently developed “analytical constant
modulus algorithm” (ACMA) [6], which solves the factorization
X � AS � |Si j| � 1 for complex matrices A and S, as it is straight-
forward to restrict S to be real as well. Nonetheless, the prob-
lem is sufficiently important to warrant a separate mentioning,
especially since it implies the interesting observation that some
clustering problems can be solved by eigenvalue techniques.

It should be noted that the blind binary source separation prob-
lem fits into the more general class of source separation based
on observed linear instantaneous mixtures. Of particular inter-
est here are algorithms that use the statistical independence of the
souces, which has led to “independent component analysis” and
related high-order statistics techniques, viz. among others [7–9].
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Rather intriguingly, these methods are also based on joint diag-
onalizations, in this case of cumulant matrices.

II. REAL ACMA

The blind binary souce separation problem is to find a factor-
ization X � AS where Si j ∈ {±1}. Since S is real-valued, it is
advantageous to write

X � AS ⇔



real � X �
imag � X ��� � 


real � A �
imag � A ��� S

⇔ XR � ARS �
with obvious definitions of XR ∈ ||R 2M×N and AR ∈ ||R 2M×d . This
forces S to be real, and at the same time, AR is usually much bet-
ter conditioned than A. Equivalently, the problem is to find all
independent vectors wR ∈ ||R 2M such that wT

RXR � s has entries� s � k ∈ {±1}.
Without noise, XR is rank-deficient, which leads to ambigui-

ties in wR. To avoid this, the first step in the algorithm is to re-
duce the dimension of wR from 2M to d. Thus let XR � ÛΣ̂V̂ be
an “economy-size” SVD for XR, where Û : 2M×d has orthogonal
columns, Σ̂ : d × d is a diagonal matrix containing the non-zero
singular values of XR, and V̂ : d × N has orthogonal rows, which
form a basis for the row span of XR. Thus, the problem is equiv-
alent to finding all independent vectors w ∈ ||R d such that

wTV̂ � s � � s � k ∈ {±1} � (2)

The alphabet condition is written as

s ∈ {±1} ⇔ � s − 1 � � s � 1 � � 0 ⇔ s2 � 1 (3)

(with possible extensions to other constellations). Denoting the
k-th column of V̂ by vk, substitution of (2) into (3) leads to

wT vkvT
k w � 1 � k � 1 � · · · � N � (4)

Similar equations arose in the solution of the constant modulus
problem [6], where we had |s|2 � 1 rather than s2 � 1. As in [6],
the conditions can be rewritten in a linear form by using Kro-
necker products:

�
vk ⊗ vk 	 T �

w ⊗ w 	 � 1 � but in the present case
the Kronecker product vectors have duplicate entries which can
(and have to) be removed. Thus define, for a d × d real symmet-
ric matrix Y � �

yi j 	 , a scaled stacking of the lower triangular part
of the columns:

rvec � Y � : � �
y11

y21�
2

· · · yd1�
2

y22
y32�

2
· · ·

· · ·
yd � d−1�

2
ydd 	 T ∈ ||R d � d � 1 ��� 2 �

This allows to write (4) as�
rvec � vkvT

k ��	 T rvec � wwT � � 1 � k � 1 � · · · � N � (5)

After collecting all rows rvec � vkvT
k � T into a matrix P, the prob-

lem reduces to finding all independent vectors y satisfying

Py � 1 � y � rvec � wwT ���
where 1 � �

1· · ·1 	 T . Hence, we have replaced the quadratic
equations (4) by a linear system Py � 1, subject to a quadratic
constraint which imposes a certain structure on y.

The remaining steps are identical to the procedure in [6], and
only summarized here. First transform the linear system to an
equivalent system P̂y � 0. Let Q be an orthogonal (Householder)
transformation such that Q1 � � �

N 0N−1 	 T , and let P̂ be the last
N − 1 rows of QP (i.e., the first row is removed), then, up to a
scaling, solving Py � 1 is equivalent to solving

P̂y � 0 � y �� 0 � (6)

The general solution of (6) has the form

y � α1y1 � · · · � αδyδ � � αi ∈ ||R � ∑ |αi| �� 0 ���
where {yi} is a basis of the null space of P̂, and δ is defined to
be the dimension of this space. In the presence of noise, both the
basis and its dimension are estimated by an SVD of P̂. Since we
know that there are d linearly independent solutions w, and since
linearly independent vectors w lead to linearly independent vec-
tors y � rvec � wwT � , there are at least d independent solutions to
(6): δ ≥ d. On the other hand, if sufficient conditions are imposed
by P̂, then the dimension of the null space of P̂ will not be larger
than d. In particular, if N � 2d−1 then we expect δ � d with high
probability, as is argued later in this section. For this property to
hold, it is essential to have used rvec in (5), or else P̂ has dupli-
cate columns and the dimension of the kernel will be too large.
(This is precisely the reason why BPSK and MSK signals were
noted exceptions in the ACMA algorithm [6].)

At this point, we have obtained a basis of solutions {yi}, but
since the basis is arbitrary, each yi is probably not of the form
rvec � wwT � . To force the structural property y � rvec � wwT � ,
write Yi � rvec−1 � yi � , which gives

wwT � α1Y1 � · · · � αδYδ � (7)

We have to find all d parameter vectors
�
α1 · · ·αδ 	 such that the

resulting linear combination of the matrices {Yi} is of rank 1 and
symmetric, in which case it can be factored as wwT . As dis-
cussed in [6], this is essentially a generalized eigenvalue prob-
lem. For d � 2, it is a 2×2 matrix pencil problem with a closed-
form solution, for d � 2 and with noise, there is in general no
exact such decomposition, but we can try to make the linear com-
bination as close to rank 1 as possible. The symmetry property is
automatic because for real-valued α-vectors, Y1 � · · · � Yδ are sym-
metric by construction.

A technique for computing all α-vectors is detailed in [6], for
the general complex case, but a specialization to the present real
case is immediate. For each α-vector, the corresponding w fol-
lows from (7).

Since d is typically small, the computational effort required by
the diagonalization step is negligible in comparison with com-
puting the SVD of P̂. This brings the overall computational com-
plexity of the algorithm to around � � � M2 � d4 � N � . There are
interesting possibilities for updating the null space estimate of P̂
using subspace trackers.

Rank of P

From the above, it is clear that the dimension δ of the null
space of P̂ plays an important role. Using similar arguments
as in [6], one can show that this dimension is independent of A
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as long as A has full rank. Furthermore, δ � d iff P̂ has rank
1
2 d � d � 1 � − d � 1

2 d � d − 1 � , i.e., iff P has rank 1
2 d � d − 1 �!� 1.

For this, it is sufficient that S contains all 2d−1 essentially dis-
tinct constellation vectors (“essentially” meaning beyond a fac-
tor ±1). A conjecture that any subset of 1

2 d � d − 1 �"� 1 constel-
lation vectors out of these 2d−1 would already be sufficient turns
out not to be true because of linear dependencies. E.g., for d � 5
it was found that some subsets of 11 constellation vectors only
give rank � P � � 10 rather than 11, and that at least 13 constella-
tion vectors are needed to guarantee rank � P � � 11. An exper-
iment for d � 10 shows that 380 vectors out of 512 is still not
sufficient in all cases.

For N � 2d−1 and assuming equal probabilities on the occur-
rence of any constellation vector, a lower bound on the proba-
bility p that S contains all 2d−1 constellation vectors is given in
[1, §A.2] as p ≥ 1 − 2d−1 � 1 − 2− � d−1 � � N . This also gives a lower
bound on the probability that δ � d, be it rather pessimistic be-
cause there are many subsets that are sufficient as well.

III. SIMULATIONS

To test the algorithm, the following scenario is considered.
We have d � 4 equipowered sources, with directions-of-arrival
−3 #$� 0 #%� 4 #&� 8 # with respect to the array broadside. The sen-
sor array is a uniform linear array consisting of M � 6 omni-
directional antennas spaced at λ ' 2. An arbitrary initial phase
of each signal is incorporated in A. The condition number of
the complex-valued A is about 300, so that the problem looks
quite ill-conditioned. However, since we try to recover real
signals, the true conditioning of the problem is determined by
AR � �

real � A � T imag � A � T 	 T . Unlike the complex case, the con-
ditioning of AR is very much dependent on the initial (random)
phases of the signals: it can be as low as 3, or as high as 200. The
median of the distribution was found to be 9.5, with a standard
deviation of 8.4, so that the problem is medium-conditioned in
the majority of cases.

The signal-to-noise ratio (SNR) is defined with respect to sig-
nal 1. We took N � 100 snapshots and a total of 2000–8000
Monte Carlo runs. The bit-error rate (BER) is the total BER over
all d signals. The percentage of cases where not all d signals
are recovered is defined as the recovery failure rate (RFR) and
is listed separately. These cases are omitted from the BER sta-
tistics.

RACMA is compared to ILSP [1], ILSE [1], UML [4] and SD
[5]. Of the latter algorithms, only SD does not require an explicit
initial guess for A. ILSP is initialized with A0 � IM×d . ILSE and
UML require a more accurate initialization, and we use the re-
sult of the ILSP algorithm for that. It is also possible to use the
result of RACMA to initialize ILSP, ILSE and UML, which can
improve results because RACMA is not statistically optimal (in
fact it is biased). UML requires an estimate of the noise power.

We first test the case where the random initial signal phase
is selected once and held fixed during the simulation. Figure
2 � a � shows the resulting bit error rates as a function of SNR;
figure 2 � d � shows the corresponding recovery failure rates. In
this simulation, cond � AR � � 5 � 3. In accordance to theory [1], it
is seen that the performance of ILSP is limited in comparison
to ILSE. For high SNRs, the initialization by A0 � I is not ef-
fective to recover all signals, and very often, the algorithm gets
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Fig. 3. Example of cluster segmentation using RACMA.
(
a ) , ( b ) low noise,(

c ) , ( d ) high noise.

stuck in a local minimum. The ILSE algorithm, when initialized
by ILSP (“ILSP+E”), improves on ILSP, but is not able to re-
cover from the local minima at high SNRs either. For reference,
the figure also lists the performance of ILSP and ILSE when ini-
tialized with the true A (“ILSP(A)” and “ILSE(A)”). Note that
ILSE(A) is expected to converge almost surely to the optimal
(conditional) ML estimator. It is seen that RACMA has a per-
formance close to ILSP(A). If the estimate of A produced by
RACMA is used for initialization of ILSE (“RACMA+ILSE”),
we come close to ILSE(A), except for very low SNR. It is nat-
ural that the performance of RACMA is limited at low SNR be-
cause of the inherent squaring of the data in the construction of
P, which increases the effective noise power.

Figure 2 � b � , � c � shows the performance for the case where
the initial phases of the signals are selected randomly for every
Monte-Carlo run. Figure 2 � e � , � f � shows the corresponding
RFR. It is seen that SD is effective at high SNRs, but as a non-
iterative combinatorial method, it is easily confused at low SNRs
where it fails to recover all sources in a majority of cases. The
performance of UML is virtually the same as that of ILSE, ex-
cept that its capture performance is slightly better at low SNRs.
RACMA has a BER performance similar to ILSP(A), although
for low SNR it is less successful in recovering all d signals. By
itself, it is suboptimal, but provides a good initial point for ILSE
or UML. It does not reach the performance of ILSE(A) any more,
because the low-SNR discrepancy observed in figure 2 � a � is now
spread out over all SNRs as A assumes a range of condition num-
bers.

Finally, 2 � c � also shows the effect of overestimating d in
RACMA: “RACMA(6)” lists the case where d � 6 is used in
the SVD of X and the construction of P. The BER performance
is almost the same as RACMA, but it becomes 3 dB less effective
in capturing all signals.

IV. APPLICATION TO CLUSTERING

As remarked in the introduction, for discrete signals the X �
AS factorization problem is essentially a cluster segmentation
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a ) BER performance for fixed A;
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b ) , ( c ) BER performance for A with random signal phase;
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d ) – ( f ) corresponding failure rate (cases where not all signals

are recovered).

problem. This implies that certain cluster segmentation prob-
lems can be solved using eigenvalue techniques, which might
provide an interesting alternative to the usual iterative algo-
rithms. Although the present algorithm expects the cluster cen-
ters to lie on the vertices of a parallelepiped, some generaliza-
tions to other configurations are possible.

To illustrate this, consider figure 3, which shows two clusters
arbitrarily located in a two-dimensional space. This is a special
case of our data model: we have M � 2 real-valued sensors, and
the received data can be written as

X � �
a1 a2 	 


1 1 · · ·
±1 ±1 · · · � � E (8)

where E signifies the additive noise. Hence we can set d � 2
“sources”, although the first source is in fact constant ( � 1).
Since we receive 2d−1 essentially different constellation vectors,
this is sufficient for the factorization to be unique. Figure 3 � b �
shows the singular values of P̂, which is an N − 1 by 3 matrix.
Clearly, there are δ � 2 small singular values (they would be
zero in the noise-free case). With more noise, the small singular

values of P̂ are increased (figure 3 � d � ), and it becomes hard to
detect from the singular values that there are really two clusters
rather than one. Nonetheless, if it is decided that δ � 2, then the
resulting cluster centers are still close to the true centers (indi-
cated by a ‘×’). The singular values could be used for a hypoth-
esis test to distinguish between the presence of one versus two
clusters.

A similar example is a case were we have two clusters but only
one sensor (M � 1), e.g., if we receive a single binary source, dis-
torted by an arbitrary offset c, scaling k, and additive zero mean
white noise:

xi � k · si � c � ei � i � 1 � · · · � N �
To fit this to an X � AS model where M ≥ d, we can consider an
augmented data matrix,

Xe � 

1 1 · · · 1
x1 x2 · · · xN �� 

1 0
c k � 


1 1 · · · 1
s1 s2 · · · sN � � 


0 0 · · · 0
e1 e2 · · · eN � �
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It is instructive to partially work out the expressions for the esti-
mation of w (and hence of k and c, since w � �

−ck−1 k−1 	 T ).
In the model Py � 1, we here define for convenience y ��
w2

1 w1w2 w2
2 	 T and the rows of P by

�
1 2xk x2

k 	 . The transfor-
mation by Q maps the condition Py � 1 to + 1T Py � n � P̂y � 0 , .
Using the simple structure of Q, we then find

R : � P̂T P̂ � PT � I − 1
N 1 · 1T � P

∼ -. 0 0 0
0 4 � Σ2 − 1

N Σ2
1 � 2 � Σ3 − 1

N Σ1Σ2 �
0 2 � Σ3 − 1

N Σ1Σ2 � Σ4 − 1
N Σ2

2

/0 �
�1-. 0 0 0

0 4E2
4
N Σ1E2

0 4
N Σ1E2 E4 − 5

N E2
2 � 4

N Σ2E2

/0
where Σn : � ∑N

1 xn
i , En : � ∑N

1 en
i , and ‘∼’ denotes equality in

mean. In the absence of noise, R has two zero eigenvalues,
with eigenvectors y1 � �

1 0 0 	 T and y2 � �
0 a b 	 T , say.

The joint diagonalization step collapses: it directly follows that
w � α

�
a b 	 T , for some scaling α which can be estimated from

the condition 1T Py � n. This example shows that the algorithm
is in fact a square-root method based on 4-th order moments of
the data.

With noise, it is clear that the nonzero block R of R is biased,
an effect which so far has not been taken into account. A correc-
tion is possible if the moments of the noise are known. E.g., for
Gaussian noise with variance σ2, we have E2 ∼ Nσ2, E4 ∼ 3Nσ4,
so that the the bias term is asymptotically given by

RE � σ2



4N 4Σ1

4Σ1 4Σ2 − 2Nσ2 �
If we neglect the term −2Nσ4, then the noise variance can be

readily estimated as the (smallest) eigenvalue of the pencil � R � RE � ,
since this is the value that will make R − λRE singular again.

Some simulation results are given in figure 4. In this simu-
lation, k � 0 � 3, c � 1 � 2, N � 15, and the results are averaged
over 5000 Monte-Carlo runs. It is observed that the bias correc-
tion has little influence on the variance of the estimates, which
quickly converge to 1

N σ2: the variance of the ML estimators of k
and c for known s and sufficiently small ∑N

1 si. The ‘simple esti-
mator’ is ĉ � 1

N ∑N
1 xi, k̂ � 1

N ∑|xi − ĉ|, which assumes that there is
an equal number of � 1 and −1 in the data batch. For small N or
otherwise asymmetric sources, this estimator is not very good.

REFERENCES

[1] S. Talwar, M. Viberg, and A. Paulraj, “Blind estimation of synchronous co-
channel digital signals using an antenna array. Part I: Algorithms,” IEEE Tr.
Signal Proc., vol. 44, pp. 1184–1197, May 1996.

[2] A.J. van der Veen, S. Talwar, and A. Paulraj, “Blind estimation of multiple
digital signals transmitted over FIR channels,” IEEE Signal Processing Let-
ters, vol. 2, pp. 99–102, May 1995.

[3] A.J. van der Veen and A. Paulraj, “Singular value analysis of space-time
equalization in the GSM mobile system,” in Proc. IEEE ICASSP, pp. 1073–
1076, May 1996.

[4] B. Halder, B.C. Ng, A. Paulraj, and T. Kailath, “Unconditional maximum
likelihood approach for blind estimation of digital signals,” in Proc. IEEE
ICASSP, vol. 2, pp. 1081–1084, May 1996.

[5] K. Anand, G. Mathew, and V.U. Reddy, “Blind separation of multiple co-
channel BPSK signals arriving at an antenna array,” IEEE Signal Proc. Let-
ters, vol. 2, pp. 176–178, Sept. 1995.

[6] A.J. van der Veen and A. Paulraj, “An analytical constant modulus algo-
rithm,” IEEE Tr. Signal Proc., vol. 44, pp. 1136–1155, May 1996.

[7] L. Tong, Y. Inouye, and R.-W. Liu, “Waveform-preserving blind estimation
of multiple independent sources,” IEEE Tr. Signal Proc., vol. 41, pp. 2461–
2470, July 1993.

[8] J.F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian sig-
nals,” IEE Proceedings F (Radar and Signal Processing), vol. 140, pp. 362–
370, Dec. 1993.

[9] P. Comon, “Independent component analysis, a new concept?,” Signal
Processing, vol. 36, pp. 287–314, Apr. 1994.


