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Abstract of Dissertation

Analytical Methods and Perturbation Theory
for the Elliptic Restricted Three-Body Problem of Astrodynamics

The distinguishing characteristic of the elliptic restricted three-body problem is a

pulsating potential field resulting in non-autonomous and non-integrable spacecraft

dynamics, which are difficult to model using classical methods of analysis. The pur-

pose of this study is to harness modern methods of analytical perturbation theory to

normalize the system dynamics about the circular restricted three-body problem and

about one of the triangular Lagrange points. The normalization is achieved through a

canonical transformation of the system Hamiltonian function based on the Lie trans-

form method introduced by Hori and Deprit in the 1960s. The classic method derives

a near-identity transformation of a Hamiltonian function expanded about a single pa-

rameter such that the transformed system possesses ideal properties of integrability.

One of the major contributions of this study is to extend the normalization method

to two-parameter expansions and to non-autonomous Hamiltonian systems. The two-

parameter extension is used to normalize the system dynamics of the elliptic restricted

three-body problem such that the stability of the triangular Lagrange points may be

determined using the Kolmogorov-Arnold-Moser theorem. Further dynamical analy-

sis is performed in the transformed phase space in terms of local integrals of motion
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akin to Jacobi’s integral of the circular restricted three-body problem. The local

phase space around the Lagrange point is foliated by invariant tori that effectively

separate the planar dynamics into qualitative regions of motion. Additional analysis

is presented for the incorporation of control into the normalization routine with the

goal of eliminating the non-circular secular perturbations. The control method is

validated on a test case and applied to the elliptic restricted three-body problem for

the purposes of stabilizing the motion around the triangular Lagrange points.
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Chapter I

Introduction

The problem of three bodies moving under their mutual gravitational attraction

has interested mathematicians since Sir Isaac Newton first postulated the system as

three bodies whose forces decrease in a duplicate ratio of the distances,

attract each other mutually; and the accelerative attractions of any two

towards the third be between themselves reciprocally as the squares of the

distances.1

The ease of posing the problem belies the complexity of its solution. In fact, Henri

Poincaré proved that no analytic integrals of motion exist for the general three-body

problem other than the energy and angular momentum. This then implies that the

problem may not be solved in terms of algebraic functions and integrals, but only

through numerical integration or infinite series representation. However, the lack of a

closed-form solution does not preclude analytical methods of study. Poincaré himself

devised the method of phase space surfaces of section, which in place of describing

the trajectories themselves, instead describes the qualitative regions of motion.2 In

doing so, one does not dictate the state of the bodies at any given instant in time,

but rather a domain of possible states for all time. However, even this approach has

its limitations due in part to nonlinear effects and the onset of chaos.
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If the mass of one of the three bodies is negligible as compared to the masses of

the other two bodies, than it imposes no gravitational influence over the motion of

the other two. This then introduces a special form of the three-body problem referred

to as the restricted three-body problem (RTBP). The larger bodies are referred to as

the primaries and the third body as the spacecraft. The goal is to describe the motion

of the spacecraft within the gravitational field generated by the two primaries.

Since the primaries represent a conservative two-body system, their trajectories

are dictated by Kepler’s laws in which the orbits assume the form of a conic section.3;4

For orbital mechanics applications, the orbit of the primaries is assumed closed such

that it is either circular or elliptical referred to as the circular restricted three-body

problem (CRTBP) and the elliptic restricted three-body problem (ERTBP) respec-

tively. Distinguishing between these two cases represents a pivotal bifurcation in the

behavior of the system and in the history of its study within the astrodynamics com-

munity. As discussed in the next section, the vast majority of previous research has

focused on the circular case with comparatively little attention paid to the elliptic

case. This is due in part to the convenient conservative properties of the CRTBP, its

utility as a starting point for more accurate models and the fact that most two-body

systems in our solar system are very nearly circular. Nonetheless, for the interest of

greater generality and higher accuracy, the non-circular effects encompassed in the

ERTBP serve as the major focus of this study.

The following section presents first a historical context for the study of the ERTBP

while highlighting major sources of references for the theoretical background and

known results. Upon reviewing the historical background, the motivation and con-

tributions of the current study are described for comparisons sake. The final section

provides a chapter by chapter description of the document.
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1.1 Historical Background

As mentioned previously, the study of the three-body problem started with Sir

Isaac Newton in his Philosophiae Naturalis Principia Mathematica first published

in 1697. Since then, it has been the study of many great scientists whose work

spawned many other fields of mathematical analysis. Other notable mathematicians

of the 18th and 19th centuries who studied the three-body problem include Euler,

Lagrange, Laplace, Poisson, Jacobi, Poincaré and many many others. The CRTBP

received its first formal introduction in the memoirs of Leonhard Euler in 1760 and

is often named in his honor. Euler and Lagrange are further credited with formally

defining the system equilibrium points, which are usually referred to as the Lagrange

points. Meanwhile, Jacobi is credited for discovering the energy-type integral of mo-

tion from which Hill further introduced the notion of curves of zero velocity, which

qualitatively describe the motion of the system based on its energy content. The

lectures of Jacobi and the subsequent work of Poincaré, Von Zeipel and Hill are all of

particular relevance to this study as they introduce and develop the influential field of

canonical perturbation theory. Building on the pioneering work of Lagrange, Hamil-

ton and Liouville, Jacobi described the general notion of a perturbed system that

is normalized through a canonical transformation. His successors, Poincaré and Von

Zeipel developed the theory leading to the widely applied method of transformation

called Von Zeipel’s method.1;2;5;6;7;8;9;10

Of the many modern published works regarding the CRTBP, none is as compre-

hensive or oft-cited as Szebehely’s Theory of Orbits. Besides describing the general

methods of formulation and transformation of the RTBP, Szebehely also discusses at

length the stability of the system and the qualitative behavior as described in terms of

Jacobi’s integral and Hill’s curves of zero velocity. He also provides a brief but concise

introduction to the ERTBP including a derivation of the Nechvile transformation.11

There have been far too many other studies regarding the CRTBP to attempt any
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sort of comprehensive list here. However, those particularly relevant to this study

include the early papers of Breakwell and Pringle who derive a useful transformation

of the linearized CRTBP and Deprit and Deprit-Bartholomé who treat the nonlinear

stability of the circular triangular Lagrange points.12;13 Of the more recent studies of

the CRTBP, those that incorporate elements of perturbation theory include the works

of Meyer et al., particularly in the comprehensive book Introduction to Hamiltonian

Dynamical Systems and the N-Body Problem, the books by Boccaletti et al., and the

series of numerical and semi-analytical studies conducted by the Barcelona group of

Gómez et al.14;15;16;17;18

While the dynamics of the ERTBP has received far less study than the CRTBP,

there are still quite a few sources of reference dating back to the 1960s including

the general dynamical treatments of Szebehely, Kopal and Lyttleton, Broucke, Con-

topoulos and the stability analyses conducted by Danby, Alfriend and Rand, Deprit

and Rom, and Nayfeh et al. In the first group, the studies discuss the basic dynam-

ics of the system, the transformation to a pulsating, rotating reference frame, and

the implications of losing Jacobi’s integral.11;19;20;21;22;23;24 The latter group analyzes

the linear stability of the elliptic triangular Lagrange points starting with a numer-

ical treatment by Danby and its subsequent verification by the others.25;26;27;28;29;30

Since then, a few studies have been conducted including those by Cheng and Schmidt

and a series of recent works by Astakhov and Farrelly, Lhotka et al., and Erdi et

al. that apply modern dynamical systems theory to the RTBP including the non-

circular case.31;32;33;34;35 While there are a few other references available regarding the

ERTBP, the cited works roughly represent the extent of study conducted thus far.

Much of the content included in the present study builds off these previous works,

but to the author’s knowledge, the theorems and analyses presented herein represent

a novel and original treatment of the full nonlinear ERTBP.

With regard to the method of canonical transformation of an expanded Hamilto-
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nian function, the Lie transform method was introduced at roughly the same time

by Hori and Deprit. While the presentations from both authors are certainly unique,

the general methodology is the same. The comprehensive treatment conducted in

Deprit’s work serves as the primary reference used in this study due to its discussion

regarding Hamiltonian systems and the derivation of the non-autonomous remainder

function. Nonetheless, the classic method is referred to as the Deprit-Hori Lie trans-

form method or simply the DH method.36;37 The methodology presented in these two

ground-breaking studies has since been developed further in subsequent papers by

Hori and Cary and extended to systems expanded about two, three, or the general

case of N parameters by Varadi, Ahmed, and Andrade respectively.38;39;40;41;42 It has

also been applied for certain simplified forms of the ERTBP in the aforementioned

papers by Deprit, Meyer, and Schmidt.15;16;28;32 One of the major contributions of the

present study is to extend the work included in these previous studies, first to a gen-

eral non-autonomous Hamiltonian function expanded about two parameters and then

specifically as applied to the ERTBP. In addition, a novel control scheme is introduced

through the incorporation of input terms in the DH transformation. To the author’s

knowledge, the extension of the DH method to non-autonomous two-parameter sys-

tems and the incorporation of control terms represent novel developments to the

Deprit-Hori Lie transform normalization theory.

Finally, topics from general dynamical systems theory and celestial mechanics is

referenced from the books by Wintner, Arnold, Tabor, Battin, Goldstein et al., Danby,

Kappeler and Pöschel, and Kibble and Berkshire as well as the aforementioned works

of Boccaletti and Meyer.3;4;16;18;43;44;45;46;47;48 The so-called KAM theory was first de-

veloped by Kolomogorov, Moser, and Arnold in the 1960s.49;50;51 It has since been

celebrated and discussed in countless works including many of the general dynamics

texts cited previously.
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1.2 Motivation

The original motivation for studying the three-body problem was to predict the

motion of the Moon under the gravitational influence of both Earth and the Sun.

Other applications include the evolution of the solar system, the dynamics of star

systems, and trajectory design for interplanetary spacecraft. Most systems of inter-

est exhibit low eccentricities such that the CRTBP is often applied as a sufficient

approximation. However, for the purposes of generality and higher accuracy, this

study incorporates the non-circular effects in terms of the ERTBP. The motivation is

then to characterize the non-circular effects by studying the dynamics of the ERTBP

and in particular, treating the ERTBP as a perturbed system about the CRTBP.

The stability of motion about the elliptic Lagrange points has been studied pre-

viously for the linearized system and the nonlinear circular system.11;13;15;16 Of the

five points, three are unstable in the sense of Lyapunov as easily demonstrated using

Lyapunov’s indirect method.46;48 The remaining two Lagrange points are stable in

the linearized CRTBP, but in a non-hyperbolic sense such that the nonlinear stabil-

ity may not be inferred from the corresponding linearized system. Instead one may

treat the nonlinear and non-circular terms as perturbations to the linearized CRTBP

with the aim of extending its stability properties to the nonlinear ERTBP. This then

motivates the need to apply canonical perturbation theory and KAM theory.

The DH method of perturbation theory provides a methodical means of generating

canonical transformations of a Hamiltonian system as represented in expanded form

about a single system parameter. For the purposes of analyzing motion about the

elliptic Lagrange points, the methodology must be extended to expansions about two

system parameters (that is about the circular case and linearized case). A few previous

studies have considered the extension of the DH method to two or more parameters,

but do so only for autonomous systems.40;41;42 Thus, in order to apply these methods,

one would need to first expand the phase space to account for the non-conservation
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of the Hamiltonian function. While in principle these methods could be used to treat

motion about the nonlinear elliptic Lagrange points, one of the goals of this study

is to derive a novel formulation of the two-parameter DH method that treats the

non-autonomous system directly in terms of the classical remainder function.43 The

motivation is primarily academic in nature: to determine whether there is a better

approach to applying the two-parameter DH method and in a more intuitive manner.

However, it is also of use to derive the method in terms of the remainder function in

order to isolate the non-autonomous effects within the transformation.

Further contributions regard the incorporation of control within the DH method

to derive a novel feedback control law that acts directly on the secular behavior of

the Hamiltonian system. The motivation is again primarily academic: to explore the

formulation of the method and its application for feedback stabilization of motion

about the elliptic Lagrange points. No assertion is made regarding the optimality or

general performance of the control method as compared to other control strategies

such as linear quadratic regulators, Lyapunov control or controlled Lagrangians and

Hamiltonians.52;53 However, the groundwork is laid for future trade studies between

the various control formulations.

1.3 Document Organization

The document is organized into five chapters as follows. Theoretical background

material is provided in Chapter II beginning with a dynamical formulation of the

ERTBP in a rotating reference frame and using canonical units. The energy of the

spacecraft relative to the primaries is defined in terms of spherical coordinates and

used to formulate the dynamical equations of motion based on Lagrangian and Hamil-

tonian mechanics. From the system Hamiltonian formulation, a series of canonical

transformations are applied that normalize the dynamics into a pulsating reference

frame with the true anomaly of the primaries serving as the independent variable.
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Chapter II also presents relevant theory regarding the CRTBP including the classic

Lagrange points and the Jacobi integral. Finally, the chapter concludes with a basic

introduction to canonical perturbation theory and the theory of Kolmogorov, Arnold

and Moser (KAM) and its implications for analyzing the stability of nearly integrable

Hamiltonian systems in Birkhoff normal form.

Chapter III builds on the fundamental topics of perturbation theory introduced in

Chapter II. After describing its predecessor, the Von Zeipel method, the Deprit-Hori

Lie transform method (DH method) is introduced for the classic case of a Hamiltonian

system expanded about a single parameter. Upon introducing the basic principles of

the single parameter DH method, an extension to the method is provided for the case

of a non-autonomous Hamiltonian function expanded about two parameters. The

extension to the classic methodology is presented in the form of an original theorem

for the transformation of the Hamiltonian function and a corollary for the derivation

of the explicit state transformation equations. Proofs of the theorem and associated

corollary are provided in the spirit of Deprit’s original proof from 1969.37 In addition,

a preliminary investigation is conducted regarding the implementation of feedback

control within the DH method transformation space. A simple means of deriving

a control law is introduced that can be implemented after the uncontrolled system

has already been normalized through the DH method. Chapter III concludes with

a demonstration of the two-parameter DH method and feedback control scheme as

applied to a single degree-of-freedom damped oscillator system. The uncontrolled

system is normalized through the DH method into Birkhoff normal form after which

feedback control is introduced with the goal of eliminating the higher-order secular

perturbations.

In Chapter IV the theory introduced in Chapters II and III are applied to the

ERTBP. The unperturbed system is the linearized CRTBP whose behavior is in the

form of harmonic oscillation. The ERTBP is expanded about the unperturbed case
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and a linear transformation is applied such that the system is expressed as a per-

turbation to an integrable system of oscillators represented using action-angle type

variables. The two-parameter DH method then provides the basis for normalizing the

perturbed system, the ERTBP, about the unperturbed system, the linearized CRTBP.

Convergence is demonstrated by comparing the system response in the transformed

phase space to a numerically generated truth solution. Upon transforming the ERTBP

a series of dynamical analyses are conducted being with a study of the linear and non-

linear stability of motion about the planar elliptic triangular Lagrange points. The

motion is shown to be nonlinearly stable for a region of the system parameter space

excepting locations of resonance. Further analysis of the local phase space around

the triangular Lagrange points is provided in terms of local integrals of motion gen-

erated in the DH method. The phase portrait is described in terms of a family of

level sets of the integrals of motion that foliate the local phase space and effectively

define regions of stability around the Lagrange point. Chapter IV concludes with a

preliminary design of a stabilizing feedback control law that eliminates non-circular

perturbation terms in order to stabilize the system about the circular case.

Chapter V concludes the document with a thorough review of all the relevant

results from the study and draws conclusions regarding the methodology in general

and its application to the ERTBP. Unresolved problems of interest are discussed

for the purpose of laying the foundation for the continued study of the three-body

problem using analytical methods and perturbation theory.
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Chapter II

Theoretical Background

In this chapter, the necessary theoretical background is established to treat the

dynamics of the elliptic restricted three-body problem (ERTBP). Topics include the

Hamiltonian formulation and canonical transformation of the ERTBP, the dynamics

of the circular restricted three-body problem (CRTBP) including the stability of the

equilibrium points and Jacobi’s integral, and the fundamentals of perturbation and

Kolmogorov-Arnold-Moser (KAM) theory.

Before presenting the specific theory used in this study, a few key definitions

and notations are presented for clarity. A dynamical system is defined as a set of

differential equations and initial conditions that together define the evolution of a

system in the form

dx

dt
= f(x(t), t) (2.1)

x(t0) = x0 (2.2)

where t is the independent variable of integration (usually time) and x is the N -

dimensional state vector encompassing all the necessary variables to describe the

instantaneous state of the system (usually the position and velocity components). The

solution to Eqs. 2.1 and 2.2 is represented by a time-dependent function x(t) called

the trajectory emanating from the initial condition x0 at time t = t0. If the function
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f in Eq. 2.1 is not explicitly dependent on the independent variable, then the system

is called autonomous. Otherwise, it is called non-autonomous. The implications of

non-autonomous dynamics are far-reaching and represent a major factor driving the

derivations used in this study.

For the dynamical system defined in Eq. 2.1, the collection of all possible values of

x is called the phase space or state space. The equilibrium points of the system xe are

the locations in the phase space at which the dynamics identically go to zero, that is,

f(xe, t) = 0 for all time. The close neighborhood around an equilibrium point is called

the local phase space. The equilibrium point is called stable in the sense of Lyapunov

if trajectories starting in the local phase space remain within some bounded region

around the equilibrium point for all time. It is unstable if trajectories diverge away

from the equilibrium point over time. Finally, it is called asymptotically stable if

trajectories approach the equilibrium point as t→∞ and asymptotically unstable if

trajectories approach the equilibrium point in negative time as t→ −∞. In general,

the stability properties of an equilibrium point may be categorized as one of four

non-trivial types: a node, a hyperbolic saddle, a spiral, or a center. The first three

all exhibit symptoms of asymtotic stability or instability while the center represents

the transitional case of neutral stability.46;48

For physical systems, the dynamical equations of motion are often posed in the

form of Newton’s second law where the time-rate of change of the system momentum

is equal to the sum of all externally applied forces as represented by

d

dt
(m~v) = ~F (~r,~v, t) (2.3)

where m is the mass of the moving body, ~r and ~v are the inertial position and velocity

vectors, and ~F encompasses all the externally applied forces acting on the center mass

of the moving body. For constant mass systems, the left-hand side of Newton’s law
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reduces to the mass times the acceleration vector, m
d~v

dt
. For energy-based methods,

Newton’s law is re-formulated in terms of the scalar potential function, which is defined

such that

d~v

dt
=

~F

m
= −∇U(~r, t) (2.4)

where ∇ represents the gradient operator acting on the potential function U . Note

that the scalar potential function depends on the position vector ~r (and possibly t),

but not on the velocity. The scalar potential function is directly related to the system

potential energy. The specific kinetic energy is defined by the square of the magnitude

of the inertial velocity

T =
||~v||2
2

(2.5)

where || · || represents the Euclidean norm. The kinetic energy and potential energy

collectively define the total energy of the system. The system dynamics in Eq. 2.1 can

be completely defined in terms of these energies through the generalized methods of

Lagrangian and Hamiltonian mechanics.46;48 These will be introduced and discussed

in the sequel for the analysis of the ERTBP.

2.1 Elliptic Restricted Three-Body Problem

Before formally defining the ERTBP, first consider it’s precedessor: the problem

of two bodies. Two bodies with constant mass move freely in three-dimensional space

under the sole influence of their mutual gravitation attraction. By defining a frame

of reference with its origin affixed to the center of mass of one of the two bodies,

the motion of the second body is described relative to the first. In the absence any

perturbation, the relative dynamics yield Keplerian motion in which the second body

orbits the first within a conic section: any of a circle, ellipse, parabola or hyperbola

as shown in Fig. 2.1. Thanks to the pioneering work of Kepler and Newton, the
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m2

~Rm1

Figure 2.1: Two Body Keplerian System.

two-body problem has a closed-form solution given by the equation of a conic section

R(ν) =
p

1 + e cos ν
(2.6)

where R, p and e are the instantaneous distance between the two bodies, the orbit

semi-latus rectum, and the orbit eccentricity respectively. The term ν is the classic

true anomaly defined by the angle swept relative to the position of closest approach

(periapsis) as shown in Fig. 2.1. The time rate of change of the true anomaly with

respect to time is

dν

dt
=

√
G(m1 +m2)

p
(1 + e cos ν)2 (2.7)

where G is Newton’s gravitational constant and m1 and m2 are the masses of the

two bodies. For the circular case, e = 0 and the distance between the primaries

and the time rate of change of ν are constant. Otherwise, for non-circular orbits

with e > 0, these values vary periodically with time. Rather than incorporating

Kepler’s transcendental equation, this study will generally apply the true anomaly as

the independent variable of integration.3

Having described the two-body problem and its solution, the restricted three-

body problem is defined formally as the motion of a massless particle within the

13



gravitational potential field generated by two massive bodies (called the primaries)

who move about their mutual center of mass in Keplerian orbits. Further, the orbit

of the primaries is assumed closed such that their trajectories are either circular or

elliptical.

2.1.1 Physical Description

2.1.1.1 Orbit of the Primaries

Since the primaries move within a two-body, Keplerian orbit, their mutual center

of mass will move along a straight line in inertial space and may serve as the origin

of an inertial reference frame. This is referred to as the inertial barycentric reference

frame as shown in Fig. 2.2. The X-axis is defined along the fixed two-body Laplace

ν
X

Y

Figure 2.2: Inertial Barycentric Reference Frame

vector and the Z-axis is defined in the direction of the primaries’ angular velocity

vector, that is, normal to the orbital plane. The Y -axis completes the orthogonal

triad and lies parallel to the semi-minor axis of the orbit ellipse. Within this orbit-

fixed reference frame, the positions of the primaries are defined by the vectors ~R1 and

~R2 or in terms of their planar orbital elements, which include the semi-latus rectum p,

the eccentricity e, and time-varying true anomaly ν. Note that the usual out-of-plane
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orbital elements are all zero by definition. Further, the eccentricity is limited to the

range 0 ≤ e < 1 in order to maintain a closed, periodic orbit for the primaries.

The parameter µ is defined as the ratio of the smaller primary mass m2 to the

sum of both primary masses

µ ,
m2

m1 +m2

=⇒ 1− µ =
m1

m1 +m2

(2.8)

Without loss of generality, m2 is assumed to be the less massive of the two primaries

such that 0 < µ ≤ 0.5. Defining the position of the smaller primary relative to the

larger primary as the vector ~R , ~R2 − ~R1, Newton’s law of gravitation dictates the

classic two-body equation of motion

d2 ~R

dt2
= −G(m1 +m2)

R3
~R (2.9)

where G is Newton’s gravitational constant and R is the magnitude of ~R. The solution

is in the form of a conic section described previously in Eq. 2.6 wherein R(ν) =

p/(1 + e cos ν) varies periodically with ν. Canonical units are applied wherein G and

m1 +m2 have values of unity and the primaries’ orbital period is 2π. The masses of

the primaries are then m1 = 1 − µ and m2 = µ and the distances to the center of

mass are R1 = µR and R2 = (1− µ)R as shown in Fig. 2.3.

r2

r1

ν

r

µR

(1− µ)R

Y
x̂

ŷ

ẑ, Z

X

µ

1− µ

Figure 2.3: Synodic Barycentric Reference Frame
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Define the x̂-axis along the line connecting the two primaries with positive direc-

tion toward the larger primary as shown in Fig. 2.3. This defines a synodic reference

frame in which the position of the primaries are always along the x̂-axis,

~R1 = µR x̂ and ~R2 = − (1− µ)R x̂ (2.10)

but their magnitudes fluctuate over a single orbit, as depicted in Fig. 2.4. As such, the

X

x̂
ŷ

Y

(a) 0 < ν < π/2

X

ŷx̂

Y

(b) π < ν < 3π/2

Figure 2.4: Pulsating Synodic Barycentric Reference Frame

inertial reference frame and synodic reference frame are related by a rotation about

the ẑ = Z axis by the angle ν. The x̂-axis revolves at the rate given in Eq 2.7, which

in canonical units defines an angular velocity and angular acceleration as shown in

Eqs. 2.11 and 2.12

ν̇ =
dν

dt
=

√
p

R2
=

(1 + e cos ν)2

p3/2
(2.11)

ν̈ =
d2ν

dt2
=
−2e sin ν

R3
=

2e sin ν

p3
(1 + e cos ν)3 (2.12)

where the dot superscript represents the derivative with respect to time.
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2.1.1.2 Spacecraft Dynamics

The position of the spacecraft relative to the center of mass of the two primaries

is represented by the vector ~r as shown in Fig. 2.3. In addition, define the position of

the spacecraft relative to the larger primary as ~r1 and relative to the smaller primary

as ~r2 such that the vector ~r satisfies

~r = ~r1 + ~R1 = ~r2 + ~R2 (2.13)

The spacecraft position vector is expressed using either Cartesian coordinates as in

Eq. 2.14 or spherical coordinates as in Eq. 2.15.

~r = x x̂+ y ŷ + z ẑ (2.14)

= r (cos θ sinφ x̂+ sin θ sinφ ŷ + cosφ ẑ) (2.15)

The use of spherical coordinates is depicted in Fig. 2.5. The terms x, y, and z are

the components of the position along each of the synodic reference axes while r is the

magnitude of the position, the angle θ is measured from the vector ~R1 and the angle

φ is measured from the ẑ = Z verical axis. Whenever possible, the system dynamics

are presented in both sets of standard coordinate systems, however, on occasion only

one of the two may be used for the sake of simplicity or consistency.

Incorporating the rotational effects, the spacecraft inertial velocity vector is ex-

pressed in either Cartesian or spherical coordinates in Eqs. 2.16 and 2.17

~v = (ẋ− ν̇y)x̂+ (ẏ + ν̇x)ŷ + ż ẑ (2.16)

= ṙ êr + rφ̇ êφ + r
(
ν̇ + θ̇

)
sinφ êθ (2.17)
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êφ

êθ

êr

ν

ŷ

θ Y
x̂

X

ẑ, Z

φ

Figure 2.5: Cartesian and Spherical Coordinates

The spacecraft inertial kinetic energy is represented by

2T = v2 = (ẋ− ν̇y)2 + (ẏ + ν̇x)2 + ż2

= ṙ2 + r2φ̇2 + r2
(
ν̇ + θ̇

)2
sin2 φ (2.18)

The motion of the spacecraft is dictated by the gravitational potential field of the two

primary bodies represented by the potential function

U = −1− µ

r1
− µ

r2
(2.19)

The distances between the spacecraft and primaries are given by Eq. 2.20 and Eq. 2.21.

r21 = (x− µR)2 + y2 + z2

= r2 + µ2R2 − 2µrR sinφ cos θ (2.20)

r22 = (x+ (1− µ)R)2 + y2 + z2

= r2 + (1− µ)2 R2 + 2 (1− µ) rR sinφ cos θ (2.21)
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The gravitational potential field generated by the two primaries in Eq. 2.19 is

represented in Fig. 2.6 for motion within the 2-D orbital plane. Note that this is just

a snapshot of the potential field, which rotates and fluctuates as the two primaries

orbit about their mutual center of mass and periodically approach and recede from

one another. Note that in reference to spacecraft trajectory design, the primaries

are frequently referred to as the planet-moon system and the massless particle as the

spacecraft.

Figure 2.6: Two-Body Potential Field

2.1.2 Hamiltonian Dynamics

As an alternative and more generalized approach to solving the ERTBP, one may

now introduce the theory of Hamiltonian mechanics where the equations of motion are

derived according to Hamilton’s Principle and the calculus of variations.46;48 Hamil-

ton’s Principle states that the motion of a system over a given time interval is such

that the so-called action functional

I =

t∫

t0

L dt (2.22)
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has a stationary value along the path of motion. The integrand function is called the

Lagrangian function and defined as the difference between the specific kinetic energy

and the potential, L = T − U . According to the calculus of variations, the action

functional will have a stationary value when its variation vanishes

δI = δ

t∫

t0

L dt = 0 (2.23)

This is the first-order necessary condition for the standard calculus of variations

problem with fixed end points, i.e. the minimization of some functional with a set

of prescribed boundary conditions. The solution for such a problem is the classic

Euler-Lagrange equations

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 (2.24)

where qi represents the system coordinates and i ranges from 1 to n, the number of

system degrees of freedom. For any conservative system, using any set of reference

coordinates, one may construct the Lagrangian function in terms of the kinetic and

potential energy and apply the Euler-Lagrange equations to derive the corresponding

equations of motion. This represents a generalized and robust approach to analyzing

dynamical systems as compared to the traditional application of Newton’s laws of

motion.

The Hamiltonian formulation is an extension of the Lagrangian formulation ex-

pressed in terms of the generalized momenta

pi =
∂L
∂q̇i

(2.25)

instead of the generalized velocities q̇i. In place of the Lagrangian function, L =
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L(q, q̇, t), the so-called Hamiltonian function is defined as

H(q, p, t) =
n∑

i=1

(pi q̇i)− L(q, q̇, t) (2.26)

where the generalized velocities q̇i are implicit functions of pi through Eq. 2.25. To

derive the Hamiltonian equations of motion, consider the total differential of the

Lagrangian function

dL =
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i +
∂L
∂t

dt (2.27)

In light of Eq. 2.24, the time rate of change of the generalized momenta satisfies

ṗi =
d

dt

∂L
∂q̇i

=
∂L
∂qi

(2.28)

such that the total differential of the Lagrangian reduces to

dL = ṗi dqi + pi dq̇i +
∂L
∂t

dt

= ṗi dqi + d(pi q̇i)− q̇i dpi +
∂L
∂t

dt

d (L − piq̇i) = ṗi dqi − q̇i dpi +
∂L
∂t

dt (2.29)

Substituting the Hamiltonian function into the left-hand side of Eq. 2.29 yields

dH = −ṗi dqi + q̇i dpi −
∂L
∂t

dt (2.30)

which must be equivalent to the total differential of the Hamiltonian function given

by

dH =
∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt (2.31)
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Comparing like-terms yields the Hamiltonian form of the system equations of motion

dqi
dt

=
∂

∂pi
H(q, p, t)

dpi
dt

= − ∂

∂qi
H(q, p, t)

∂H
∂t

= −∂L
∂t

(2.32)

which includes 2n first-order differential equations of motion in place of the n second-

order differential equations contained in the Euler-Lagrange equations.

Thus, provided the potential and kinetic energies of a system, the Lagrangian

function is computed by the difference between the two and expressed in terms of

generalized coordinates and velocities qi and q̇i. The Hamiltonian function is com-

puted from Eq. 2.26 in terms of the generalized coordinates and momenta qi and pi

and the system dynamics are represented in canonical form in Eq. 2.32. The advan-

tage of the Hamiltonian formulation is that the equations of motion are represented

as first-order differential equations rather than second-order equations. In addition,

the time rate of change of the Hamiltonian function is

dH
dt

=
∂H
∂qi

dqi
dt

+
∂H
∂pi

dpi
dt

+
∂H
∂t

=
∂H
∂t

(2.33)

wherein the first two terms in Eq. 2.33 cancel each other out under Eqs. 2.32.Thus,

the Hamiltonian itself is conserved if it is not explicitly dependent on the time (i.e.

if it is autonomous).

2.1.2.1 ERTBP as a Hamiltonian System

Returning to the ERTBP, the Lagrangian function is expressed in terms of spheri-

cal coordinates as the difference in the kinetic energy from Eq. 2.18 and the potential
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function in Eq. 2.19 such that

L =
1

2

[
ṙ2 + r2φ̇2 + r2

(
ν̇ + θ̇

)2
sin2 φ

]
+

1− µ

r1
+

µ

r2
(2.34)

Note the inclusion of the ν̇ term, which appears due to the definition of θ as being

measured from the rotating x̂-axis. To formulate the dynamics using Hamiltonian

mechanics, generalized momenta are introduced according to

pr =
∂L
∂ṙ

= ṙ

pφ =
∂L
∂φ̇

= r2φ̇

pθ =
∂L
∂θ̇

= r2
(
ν̇ + θ̇

)
sin2 φ (2.35)

whose inverse equations are

ṙ = pr

φ̇ =
pφ
r2

θ̇ =
pθ

r2 sin2 φ
− ν̇ (2.36)

The Hamiltonian function is defined in Eq. 2.26 with q = (r, φ, θ) and p = (pr, pφ, pθ)

representing the generalized coordinate and momentum vectors respectively. Upon

substituting in Eqs. 2.35 and 2.36, the Hamiltonian function becomes

H(q, p, t) = ṙpr + φ̇pφ + θ̇pθ − L

=
1

2

[
p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

]
− ν̇pθ −

1− µ

r1
− µ

r2
(2.37)

where again the distances between the spacecraft and primaries are given by Eq. 2.20

and Eq. 2.21.
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Since the terms ν̇ and R depend explicitly on the true anomaly ν, which is itself a

function of time, the Hamiltonian function will vary with time such that the system

is non-autonomous. Nonetheless, the representation of the system dynamics may

be considerably simplified through a series of canonical transformations referred to

collectively as the Nechvile transformation. The details of the transformation are

discussed in the sequel and in Szebehely’s Theory of Orbits, but first dictate a brief

introduction to the theory of canonical transformations in general.11

2.1.2.2 Canonical Transformations

One of the advantages to using a Hamiltonian formulation is that transforma-

tions of the phase space may be derived directly in terms of the Hamiltonian function

through so-called generating functions (or sometimes, generators). Consider the gen-

eral state transformation

qi = Qi (q̂, p̂, t)

pi = Pi (q̂, p̂, t) (2.38)

where the set (q, p) corresponds to the original set of generalized coordinates and

momenta and the set (q̂, p̂) represents an alternative set of generalized coordinates

and momenta. The transformation is called canonical if the form of the Hamiltonian

equations of motion remain intact in the transformed phase space, that is, if they

take the form

dq̂i
dt

=
∂

∂p̂i
K(q̂, p̂, t)

dp̂i
dt

= − ∂

∂q̂i
K(q̂, p̂, t) (2.39)
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where K(q̂, p̂, t) is the transformed Hamiltonian function. Thus, under a canonical

transformation the fundamental form of the Hamiltonian dynamics is not changed,

only the phase space representation and corresponding Hamiltonian function. To

derive a necessary condition between the two canonical representations, recall that

the Euler-Lagrange equations were derived based on Hamilton’s principle and the

calculus of variations whereby the variation of the functional vanishes under the

condition shown in Eq. 2.23. Substituting the Hamiltonian function in place of the

Lagrangian function yields the equivalent condition

δ

t∫

t0

[
q̇ipi −H(q, p, t)

]
dt = 0 (2.40)

Likewise, if the transformation from (q, p) to (q̂, p̂) is canonical with a transformed

Hamiltonian given by K(q̂, p̂, t), then Hamilton’s principle must also hold in the trans-

formed phase space such that

δ

t∫

t0

[
˙̂qip̂i −K(q̂, p̂, t)

]
dt = 0 (2.41)

In order for both of these canonical formulations to represent the same physical sys-

tem, the integrands in Eqs. 2.40 and 2.41 can at most differ by the total time derivative

of a scalar function. Thus, the two formulations must satisfy the necessary condition

n∑

j=1

q̇ipi −H(q, p, t) =
n∑

j=1

˙̂qip̂i −K(q̂, p̂, t) +
dW
dt

(2.42)

where W is called the generating function and may depend on time and any of the

old or new variables, but must include some of both to be non-trivial. The various

formulations ofW includeW(q, q̂, t),W(q, p̂, t),W(p, q̂, t), andW(p, p̂, t). Depending

on which of the four possible generating functions is applied, the transformation
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equations will take on different forms. For example, applying the generating function,

W(q, p̂, t), results in the transformation equations

pi =
∂

∂qi
W(q, p̂, t)

q̂i =
∂

∂p̂i
W(q, p̂, t) (2.43)

The necessary condition for this to represent a canonical transformation is

K(q̂, p̂, t) = H
(
Q(q̂, p̂, t), P (q̂, p̂, t), t

)
+

∂W
∂t

(2.44)

wherein the first part on the right-hand side is the original Hamiltonian function

written explicitly in terms of the state transformation equations in Eqs. 2.38 and

the second part is the so-called remainder function whose form and dependencies

change depending on the form for W . Note that in order to derive the explicit state

transformation equations (as well as the inverse equations), one must invert Eqs. 2.43,

which is often difficult for complicated systems. This foreshadows the motivation

behind the Deprit-Hori Lie transform method discussed in the sequel.

2.1.2.3 Nechvile Transformation

Having introduced the notion of canonical transformation, one may apply the

so-called Nechvile transformation to the ERTBP. Consider again the Hamiltonian

function from Eq. 2.37

H(q, p, t) = 1

2

[
p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

]
− ν̇pθ −

1− µ

r1
− µ

r2
(2.37)

Pulsating coordinates are introduced through a normalization of the spacecraft posi-

tion r by the distance between the primaries R, that is, r → r/R. The transformed

is described in terms of a rotating and pulsating reference frame in Szebehely and

26



defined in the form of a generating function in Schmidt.11;32 In both references, the

transformation is expressed starting from a set of Cartesian coordinates along either

the inertial reference axes (X, Y, Z) or synodic reference axes (x̂, ŷ, ẑ). However, the

generating function in Schmidt can be re-formulated into spherical coordinates with

the result being

W (q, p̂, t) =
r

R
p̂r + φp̂φ + θp̂θ +

Ṙ

2R
r2 (2.45)

where Ṙ = (∂R/∂ν)ν̇ = R2e sin ν/p. The corresponding state transformation equa-

tions are in the form q̂ = Q̂(q, p, t) and p = P (q̂, p̂, t) as shown in Eqs. 2.46

r̂ =
∂W
∂p̂r

=
r

R
pr =

∂W
∂r

=
p̂r
R

+ Ṙr̂

φ̂ =
∂W
∂p̂φ

= φ pφ =
∂W
∂φ

= p̂φ

θ̂ =
∂W
∂p̂θ

= θ pθ =
∂W
∂θ

= p̂θ (2.46)

with the inverse equations in the form q = Q(q̂, p̂, t) and p̂ = P̂ (q, p, t) as shown in

Eqs. 2.47.

r = Rr̂ p̂r = Rpr − Ṙr

φ = φ̂ p̂φ = pφ

θ = θ̂ p̂θ = pθ (2.47)

Substituting the generating function and state transformation equations in Eqs. 2.45-

2.47 into the canonical transformation condition in Eq. 2.44 yields the transformed

Hamiltonian function

K (q̂, p̂, t) = H(Q(q̂, p̂, t), P (q̂, p̂, t), t) +
∂

∂t
W(p̂, Q(q̂, p̂, t), t)

=
1

2R2

[
p̂2r +

p̂2φ
r̂2

+
p̂2θ

r̂2 sin2 φ̂

]
−
√
p

R2
p̂θ −

1

R

(
1− µ

r̂1
+

µ

r̂2

)
+

e cos ν

2R
r̂2 (2.48)
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where r̂1 , r1/R and r̂2 , r2/R are expressed in terms of the spherical coordinates

by the relations

r̂21 = r̂2 + µ2 − 2µr̂ sin φ̂ cos θ̂ (2.49)

r̂22 = r̂2 + (1− µ)2 + 2 (1− µ) r̂ sin φ̂ cos θ̂ (2.50)

The distances r̂1 and r̂2 are independent of R and therefore time whereby the positions

of the primaries are fixed relative to the pulsating reference frame. However, the

Hamiltonian function is still explicitly dependent on time through the term R such

that the system is still non-autonomous.

The second step in the Nechvile transformation is a change of independent vari-

able from time to the true anomaly of the primaries. This serves to isolate the

non-autonomous terms in the Hamiltonian function and to circumvent the need to

solve Kepler’s equation in order to relate the instantaneous true anomaly to time.

Szebehely applies such a transformation directly to the equations of motion while

Broucke discusses the general process of transforming the independent variable of

a Hamiltonian system and includes an application to the ERTBP.11;21 As Broucke

demonstrates, the change of independent variables is facilitated by a transformation

in the form

G(q̂, p̂, ν, t) = 1

ν̇
K(q̂, p̂, t) (2.51)

where in the case of the ERTBP, the multiplier is given by

ν̇ =

√
p

R2
(2.11)

In general, such a transformation would lose the canonical form of the Hamiltonian

equations of motion. However, since in this case Eq. 2.11 is only dependent on ν and

not on q or t, the canonical form is preserved. Substituting Eq. 2.11 into Eq. 2.51

28



yields the transformed Hamiltonian function

G(q̂, p̂, ν) = R2

√
p
K(q̂, p̂, t)

=
1

2
√
p

[
p̂2r +

p̂2φ
r̂2

+
p̂2θ

r̂2 sin2 φ̂

]
− p̂θ −

R√
p

(
1− µ

r̂1
+

µ

r̂2

)
+

Re cos ν

2
√
p

r̂2 (2.52)

with the canonical equations of motion

dq̂

dν
=

∂

∂p̂
G(q̂, p̂, ν)

dp̂

dν
= − ∂

∂q̂
G(q̂, p̂, ν)

dG
dν

=
∂G
∂ν

(2.53)

To further simplify the formulation, a scaling transformation is applied in Eq. 2.54

where the generalized momenta is normalized by the primary orbit’s angular momen-

tum
√
p. 




pr

pφ

pθ





=
1√
p





p̂r

p̂φ

p̂θ





(2.54)

As discussed in Goldstein, et al, such a transformation is canonical with multiplier

1/
√
p such that the resultant Hamiltonian function is

H(q, p, ν) = 1√
p
G(q̂, p̂, ν)

=
1

2

(
p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

)
− pθ −

R

p

(
1− µ

r1
+

µ

r2

)
+

Re cos ν

2p
r2

=
1

2

(
r2 + p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

)
− pθ −

R

p

(
r2

2
+

1− µ

r1
+

µ

r2

)
(2.55)
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where the distances to the primaries are

r21 = r2 + µ2 − 2µr sinφ cos θ (2.56)

r22 = r2 + (1− µ)2 + 2 (1− µ) r sinφ cos θ (2.57)

and the notation (q, p) andH(q, p, ν) is recycled to represent the new scaled, pulsating

system with ν as the independent variable.46

This completes the so-called Nechvile transformation under which the system dy-

namics have been transformed from the original synodic barycentric reference frame

to a scaled and pulsating synodic barycentric reference frame with ν serving as the

independent variable of integration. The form of the resultant Hamiltonian function

is consistent with those derived in Schmidt and in Deprit and Rom, which both use

Cartesian coordinates rather than spherical coordinates.28;32 While the Hamiltonian

function is still non-autonomous, the ν-dependency has been isolated within the term

R/p = 1/(1+e cos ν) pre-multiplying the amended potential function
r2

2
+
1− µ

r1
+

µ

r2
.

While the transformation was presented in terms of spherical coordinates, other

coordinates systems are certainly valid and in fact, most texts favor the use of Carte-

sian coordinates. Unfortunately, the nonlinear transformation between spherical and

Cartesian coordinates is not canonical, so switch between the two, one would need to

repeat the entire Nechvile transformation using the Cartesian coordinates (qx, qy, qz)

and momenta (px, py, pz) instead resulting in the equivalent Hamiltonian function

H(q, p, ν) =1

2

(
p2x + p2y + p2z

)
+ qypx − qxpy +

q2x + q2y + q2z
2

− R

p

(
q2x + q2y + q2z

2
+

1− µ

r1
+

µ

r2

)
(2.58)

The distances from the primaries are expressed in terms of Cartesian coordinates by
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the relations

r21 = (qx − µ)2 + q2y + q2z (2.59)

r22 = (qx + 1− µ)2 + q2y + q2z (2.60)

The essential features of the Hamiltonian function are the same in either representa-

tion including the isolation of the non-autonomous effects within the term R/p and

the representation of the positions of the primaries as being fixed relative to the scaled,

pulsating and rotating reference frame. One advantage to expressing the dynamics

in Cartesian coordinates is that the symmetry across the x̂-axis is readily appar-

ent wherein the dynamics are invariant under the mapping (qx, qy, qz, px, py, pz, ν)→

(qx,−qy, qz,−px, py, pz,−ν). As such, the time-forward dynamics are equivalent to

the time-reverse dynamics with qy and px negated. In any event, the underlying

system dynamics are the same regardless of the choice of coordinate system. Both

representations in spherical and Cartesian coordinates are applied at various stages

of this study for the sake of simplicity, ease of visualization, and to allow comparisons

to formulations from other studies.

In the circular case where e → 0, the distance between the primaries is fixed

even in the non-pulsating reference frame. Further, the time rate of change of ν is

effectively unity such that time and true anomaly are equivalent independent vari-

ables. Substituting R/p = 1 into the elliptic Hamiltonian function yields the circular

Hamiltonian function in spherical coordinates as

H(q, p) = 1

2

(
p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

)
− pθ −

(
1− µ

r1
+

µ

r2

)
(2.61)
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where

r21 = r2 + µ2 − 2µr sinφ cos θ (2.62)

r22 = r2 + (1− µ)2 + 2 (1− µ) r sinφ cos θ (2.63)

Since the Hamiltonian function is no longer explicitly dependent on the independent

variable, it is autonomous and conserved in the Hamiltonian equations of motion.

Historically, this conservation property is presented in terms of the classic Jacobi

integral.

2.2 Lagrange Equilibrium Points

The canonical state space equations of motion generated from the Hamiltonian

function in Eq. 2.55 are

dr

dν
=

∂H
∂pr

= pr

dφ

dν
=

∂H
∂pφ

=
pφ
r2

dθ

dν
=

∂H
∂pθ

=
pθ

r2 sin2 φ
− 1

dpr
dν

= −∂H
∂r

=
p2φ
r3

+
p2θ

r3 sin2 φ
− Re cos ν

p
r

− R

p

[
1− µ

r31
(r − µ sinφ cos θ) +

µ

r32
(r + (1− µ) sinφ cos θ)

]

dpφ
dν

= −∂H
∂φ

=
p2θ cosφ

r2 sin3 φ
+

R

p
µ (1− µ) r cosφ cos θ

(
1

r31
− 1

r32

)

dpθ
dν

= −∂H
∂θ

= −R

p
µ (1− µ) r sinφ sin θ

(
1

r31
− 1

r32

)
(2.64)

which can be validated against those included in Szebehely and in Broucke.11;21 The

system possesses five equilibrium points defined by setting the terms on the left-hand
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side of Eq. 2.64 to zero yielding

φe = π/2 pr,e = 0 pφ,e = 0 pθ,e = r2e (2.65)

and

0 = re − re

(
1− µ

r31,e
+

µ

r32,e

)
+ µ(1− µ) cos θe

(
1

r31,e
− 1

r32,e

)

0 = µ (1− µ) re sin θe

(
1

r31,e
− 1

r32,e

)
(2.66)

wherein a factor of R/p was divided out as a common multiplier. Since the equilibrium

equations are independent of the true anomaly, they are fixed relative to the synodic,

pulsating reference frame. Since they are further independent of the eccentricity, the

form of the equations match those presented in Szebehely for the CRTBP. As such,

the elliptic equilibrium points are co-located with the five classic Lagrange points

depicted in Fig. 2.7. While the locations of the elliptic Lagrange points correspond to

those of the classic circular Lagrange points, the distinction must be made that the

former are fixed only in the pulsating synodic frame and with ν as the independent

variable while the latter are fixed even in the original, non-pulsating synodic reference

frame with time as the independent variable.

Three of the equilibrium points lie along the x̂-axis and are referred to as the

collinear Lagrange points, L1, L2 and L3. Their locations are defined by θe = 0 (or

π) and

0 = re − re

(
1− µ

r31,e
+

µ

r32,e

)
± µ(1− µ)

(
1

r31,e
− 1

r32,e

)
(2.67)

where r1,e = |re ∓ µ| and r2,e = |re ± (1 − µ)|. The sign of the ∓ and ± symbols

are determined based on whether the point in question is on the positive or negative

side of the x̂-axis and whether or not it is between the two primaries. For each of the
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L3L1

L4

L5

L2
ŷ

x̂

Figure 2.7: Five Lagrange Points

three possible locations dictated by the ∓ and ± symbols, there is one real solution

such that in total there are three collinear equilibrium points corresponding to the

classic L1, L2 and L3 Lagrange points depicted in Fig. 2.7.

The remaining two Lagrange points L4 and L5 are located at the vertices of

an equilateral triangle with sides of length r1 = r2 = 1 as depicted in Fig. 2.7.

Substituting these constraints into Eqs. 2.66 defines the locations of the triangular

equilibrium explicitly in terms of µ as

re cos θe = µ− 1

2
pr,e = 0

φe =
π

2
pφ,e = 0

re sin θe = ±
√

3/4 pθ,e =

(
µ− 1

2

)2

+
3

4
(2.68)

where the ± changes sign for motion about either L4 or L5. The corresponding

normalized Cartesian coordinates are xe = µ− 1

2
, ye = ±

√
3

4
and ze = 0, which again

emphasize the symmetry about the x̂-axis. The stability of motion about the elliptic

Lagrange points, particularly for the triangular points, is a major point of focus for

this study and will be treated in the sequel using canonical perturbation theory and
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KAM theory.

Linearization about the Circular Lagrange Points

As the eccentricity goes to zero, the pulsation effect disappears such that the

five equilibrium points correspond exactly to the five classic Lagrange points whose

locations are fixed in the synodic reference frame and defined by

0 = re − re

(
1− µ

r31,e
+

µ

r32,e

)
± µ(1− µ)

(
1

r31,e
− 1

r32,e

)
(2.67)

for L1-L3, the collinear points, and by

re cos θe = µ− 1

2
pr,e = 0

φe =
π

2
pφ,e = 0

re sin θe = ±
√

3/4 pθ,e =

(
µ− 1

2

)2

+
3

4
(2.68)

for L4 and L5, the triangular points. As a first-cut stability analysis, the circular

Hamiltonian function is linearized about any of the five Lagrange points. The corre-

sponding linearized state space equations of motion are

d

dν




δr

δφ

δθ

δpr

δpφ

δpθ




= J




a(µ) 0 d(µ) 0 0 −2/re
0 b(µ) 0 0 0 0

d(µ) 0 c(µ) 0 0 0

0 0 0 1 0 0

0 0 0 0 1/r2e 0

−2/re 0 0 0 0 1/r2e







δr

δφ

δθ

δpr

δpφ

δpθ




(2.69)

wherein the matrix

J =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0


 (2.70)
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is the so-called symplectic matrix. The second matrix in Eq. 2.69 is the Hessian of

the Hamiltonian function evaluated at the equlibrium point with coefficients defined

by

a(µ) = 3 +
1− µ

r31,e
+

µ

r32,e
− 3(1− µ)(re − µ cos θe)

2

r51,e
− 3µ(re + (1− µ) cos θe)

2

r52,e

b(µ) = r2e + µ(1− µ)re cos θe
R

p

(
1

r31,e
− 1

r32,e

)

c(µ) = µ(1− µ)

(
−re cos θe

(
1

r31,e
− 1

r32,e

)
+ 3r2e sin

2 θe

(
µ

r51,e
+

1− µ

r52,e

))

d(µ) = µ(1− µ) sin θe

(
1

r31,e
− 1

r32,e
− 3re

(
re − µ cos θe

r51,e
− re + (1− µ) cos θe

r52,e

))

(2.71)

For motion about the collinear Lagrange points where θe = 0, the Hessian coeffi-

cients are

a(µ) = 1− 1− µ

r31,e
− µ

r32,e
+

3(1− µ)(re − µ cos θe)
2

r51,e
+

3µ(re + (1− µ) cos θe)
2

r52,e

b(µ) = −µ(1− µ)re cos θe

(
1

r31,e
− 1

r32,e

)

c(µ) = µ(1− µ)

(
re cos θe

(
1

r31,e
− 1

r32,e

)
− 3r2e sin

2 θe

(
µ

r51,e
+

1− µ

r52,e

))

d(µ) = −µ(1− µ) sin θe

(
1

r31,e
− 1

r32,e
− 3re

(
re − µ cos θe

r51,e
− re + (1− µ) cos θe

r52,e

))

(2.72)

where the radial distance, re is implicitly defined by the constraint

0 = re

(
1− 1− µ

r31,e
− µ

r32,e

)
+ µ(1− µ)

(
1

r31,e
− 1

r32,e

)
(2.73)

Across the range 0 < µ < 1, the characteristic eigenvalues of the collinear points take

the form of λ = ±ia, ±c, ±i wherein one of the planar eigenvalues has a positive

real part. As such, the collinear Lagrange points are unstable. While it is of interest
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to further study the stability properties of the collinear points, the remainder of the

present study focuses instead on motion about the triangular Lagrange points.

For motion about the triangular Lagrange points, r1,e = r2,e = 1, re cos θe = µ−1/2

and re sin θe = ±
√
3/4 such that the Hessian coefficients simplify to

a(µ) = 3r2e + 3µ(1− µ) cos2 θe

b(µ) = 0

c(µ) = 3µ(1− µ)r2e sin
2 θe

d(µ) = −3µ(1− µ)re sin θe cos θe (2.74)

and the linearized Hamiltonian function simplifies to

H =
1

2

[(
1

re
δpθ − 2δr

)2

+ δp2r + r2eδφ
2 +

1

r2e
δp2φ

]

− 3

2

[
r2eδr

2 + µ(1− µ) (cos θeδr − re sin θeδθ)
2

]
(2.75)

Note that b(µ) is zero, which also extends to the ERTBP such that the non-autonomous

terms divide out of the out-of-plane dynamics in the linearized phase space. Further,

the in-plane and out-of-plane linearized dynamics are de-coupled and the latter is

characterized by a pair of imaginary eigenvalues λ = ±i. Thus, in the linearized

space, the out-of-plane dynamics are in the form of a center with harmonic oscilla-

tion about the Lagrange point. For the planar dynamics, the CRTBP and ERTBP

are distinct and must be treated separately. In the former, the linearized system

characteristic equation is

λ4 + λ2 +
27

4
µ(1− µ) = 0 (2.76)
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which possesses four complex roots and a bifurcation at Routh’s critical mass ratio

µc =

(
1−
√
69

9

)
/2 ≈ 0.0385

as shown in Fig. 2.8. The bifurcation proceeds as follows: for mass ratios less than

Routh’s critical value, µ < µc, the linearized circular system has distinct eigenvalues

lying on the imaginary axis λ = ±iωs, ±iωℓ where 0 < ωℓ <
√
2/2 < ωs < 1. As the

mass ratio approaches µc, these imaginary eigenvalues converge into a pair of identical

eigenvalues λ(2) = ±i
√
2

2
at the critical point where µ = µc. Finally, for mass ratios

greater than Routh’s critical value, µ > µc, the eigenvalues become complex and

are symmetric about the imaginary axis such that some of the eigenvalues include a

positive real part λ = ±a± ib.
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Figure 2.8: Bifurcation of the Linearized Triangular Lagrange Points

Since the circular triangular Lagrange points are linearly stable in the sense of

Lyapunov, they serve as the starting point for the normalization and analysis of

the non-circular and nonlinear system associated with the ERTBP. In subsequent
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chapters, the nonlinear stability of the elliptic triangular Lagrange points is treated

by applying canonical perturbation theory and KAM theory.

2.3 Jacobi Integral

A useful property in Hamiltonian mechanics is that the rate of change of the

Hamiltonian function is given directly by its partial derivative

dH
dν

=
∂H
∂ν

(2.77)

so that in the case of the autonomous CRTBP, where there is no explicit ν-dependence,

the Hamiltonian function is itself an integral of motion. In fact, it is directly related to

the celebrated Jacobi’s integral, which is used extensively in the dynamical analysis of

the CRTBP and was first introduced by Jacobi in 1836.8 To map the correspondence

between the two, consider the classic derivation of Jacobi’s integral in terms of spher-

ical coordinates. Representing the potential function by U(r, φ, θ) the Hamiltonian

function of the ERTBP derived in Eq. 2.55 assumes the compact form

H(q, p, ν) = 1

2

(
p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

)
− pθ +

R

p

(e cos ν
2

r2 + U(r, φ, θ)
)

(2.78)
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whose state space equations of motion are

dr

dν
=

∂H
∂pr

= pr

dφ

dν
=

∂H
∂pφ

=
pφ
r2

dθ

dν
=

∂H
∂pθ

=
pθ

r2 sin2 φ
− 1

dpr
dν

= −∂H
∂r

=
p2φ
r3

+
p2θ

r3 sin2 φ
− R

p

(
re cos ν +

∂U

∂r

)

dpφ
dν

= −∂H
∂φ

=
p2θ cosφ

r2 sin3 φ
− R

p

∂U

∂φ

dpθ
dν

= −∂H
∂θ

= −R

p

∂U

∂θ
(2.79)

The corresponding second-order differential equations of motion are

d2r

dν2
− r

(
dφ

dν

)2

− r sin2 φ

(
1 +

dθ

dν

)2

= −R

p

(
re cos ν +

∂U

∂r

)

d2φ

dν2
+

2

r

dr

dν

dφ

dν
− cosφ sinφ

(
1 +

dθ

dν

)2

= − 1

r2
R

p

∂U

∂φ

d2θ

dν2
+

2

r

dr

dν

(
1 +

dθ

dν

)
+

2 cosφ

sinφ

dφ

dν

(
1 +

dθ

dν

)
= − 1

r2 sin2 φ

R

p

∂U

∂θ
(2.80)

which are consistent with those derived in Szebehely.11 Multiplying each in turn by

dr

dν
, r2

dφ

dν
, and r2 sin2 φ

dθ

dν
and summing the three together yields

1

2

d

dν

((
dr

dν

)2

+

(
r
dφ

dν

)2

+

(
r sinφ

(
1 +

dθ

dν

))2
)

= −∂U

∂θ
− R

p

(
re cos ν

dr

dν
+

dU

dν

)

(2.81)

where the left-hand side represents the total ν-derivative of the inertial kinetic energy.

For the circular case, e = 0 and R/p = 1 and Eq. 2.81 simplifies to

1

2

d

dν

((
dr

dν

)2

+

(
r
dφ

dν

)2

+

(
r sinφ

(
1 +

dθ

dν

))2
)

=
d

dν

(
pθ − U

)
(2.82)
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wherein the right-hand side is the total derivative of the amended potential function,

(pθ−U). Integrating Eq. 2.82 and converting back to generalized momenta yields the

equation for Jacobi’s integral

p2r +
p2φ
r2

+
p2θ

r2 sin2 φ
= 2pθ − 2U + C (2.83)

where C is the integration constant called Jacobi’s constant. In fact, comparing

Eq. 2.83 to Eq. 2.61 yields

H =
C

2
(2.84)

that is, the circular Hamiltonian function in the synodic reference frame is equivalent

to half of Jacobi’s integral function.

A useful application of Jacobi’s integral is the generation of Hill regions to quali-

tatively describe the dynamical regions of motion. These are shown in Fig. 2.9 for the

Earth-Moon system (µ = 0.0124) where the blue regions denote areas of accessibility

for a given value of C. The black and blue dots correspond to the primaries and

Lagrange points respectively. As the value of C increases, the kinetic energy of the

spacecraft increases and the regions of accessibility expand. The maximum amount

of energy is scaled to C = 0, which corresponds to the energies at the triangular

Lagrange points.

Unfortunately, Eq. 2.81 does not represent a perfect first integral in the non-

circular case when e > 0. This again reflects the non-autonomous nature of the

ERTBP wherein the Hamiltonian function is not itself an integral of motion. However,

one of the subsequent goals of this study is to apply canonical perturbation theory

to the ERTBP in order to extend the conservative properties of the CRTBP within

the local phase space of an equilibrium point. One may then derive local regions of

motion in the tradition of Hill’s regions.
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(a) C = −0.20 (b) C = −0.18

(c) C = −0.10 (d) C = −0.02

Figure 2.9: Hill Regions in the Earth-Moon CRTBP
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2.4 KAM Theory

2.4.1 Integrability and Invariant Tori

If a Hamiltonian system with n degrees of freedom is conservative, that is if

the energy is conserved, the phase space will be confined to a (2n − 1)-dimensional

energy manifold. Thus, specifying the energy level of the system effectively reduces

the system degrees of freedom by one. If in addition, the system possesses n − 1

other independent functions, which all depend on the system state variables and

are all conserved, then the system phase space will be further reduced onto an n-

dimensional manifold parameterized by n integrals of motion. As such, one may then

apply a change of variables such that the system solution is easily defined in terms

of these n integrals of motion. This property of possessing n independent integrals

of motion is known formally as Liouville’s theorem of integrability, which is stated in

Boccaletti and Pucacco as

when we have a system of n (independent) first integrals in involution,

the Hamiltonian system is completely integrable . . . if the n first integrals

are in involution [all their Poisson brackets vanish indentically], then the

corresponding momenta are also constant and we have all the possible

2n independent first integrals and therefore the complete solution of the

problem.18

In more general terms, a system is integrable if its phase space is “foliated” by invari-

ant submanifolds parameterized by the integrals of motion. The so-called Poincaré-

Hopf theorem dictates that this n-dimensional manifold has the topology of an n-

dimensional torus. The space of the torus is defined by n initial conditions (or n

values for the integrals of motion) and is invariant: the solution remains on this torus

for all time. Varying the set of initial conditions will then cause the solution to tran-

sition to a different torus manifold. In this manner, the (2n− 1)-dimensional energy
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manifold is said to have a foliation in n-dimensional invariant tori.18;45;47

The trajectory curves are said to “wind” the n-dimensional tori and are often eas-

iest to describe in terms of action-angle variables. Action-angle variables are derived

from a canonical transformation of an integrable system from the phase space vari-

ables (q, p) to the set (θ, I) wherein the action variables I are constant representing

the n integrals of motion that parameterize the invariant tori. The angular variables

θ are then linear functions of the independent variable characterizing the winding of

the tori by the trajectories. On occasion, the nomenclature is abused and a set of

canonical variables (θ, I) is called action-angle variables even when I is not constant

and θ does not follow a linear curve. Since this is technically incorrect, every effort

is made to use the term correctly and when necessary to label some sets as being

action-angle-type variables when they are not precisely so.

In the simplest case of harmonic oscillation, the Hamiltonian expressed in terms

of action-angle variables takes the form

H =
∑

i

ωiIi (2.85)

where ωi are the system natural frequencies such that the angular histories follow the

linear functions

θi(t) = θi(t0) +
∂H
∂Ii

(t− t0) = θi(t0) + ωi(t− t0) (2.86)

Eq. 2.85 is the simplest example of a system in Birkhoff normal form. In general, a

system is said to be in Birkhoff normal form of degree N if it may be transformed

into

H = H2 +H4 + . . .+H2N +H2N+1 (2.87)
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where H2k for 1 ≤ k ≤ N is a homogeneous polynomial of degree k in the action-

type variables Ii and H2N+1 has a series expansion that starts with terms not less

than degree 2N + 1.16 In such a system, the action-type variables are truly action

variables (constants of motion) when the system is truncated to terms of order 2N .

Thus, if one can express a system in Birkhoff normal form, there must exist a set

of local integrals of motion wherein up to the truncation of order 2N , the action-

type variables are conserved and parameterize local invariant tori in the local phase

space of the expansion in Eq. 2.87. The transformation of the ERTBP into Birkhoff

normal form represents the primary goal of Chapters III and IV. In deriving such a

transformation, one must take care to account for (and generally avoid) any resonant

modes as evident in the statement of the KAM theorem to follow.

2.4.2 Resonance and Degeneracy

The effects from resonance plays a pivotal role in dynamical systems particularly

in the areas of perturbation and KAM theory. For an integrable system possessing

an infinite family of invariant tori (as parameterized by the values of I), one may

differentiate between resonant and nonresonant cases depending on the natural fre-

quencies of the system: ωi. In the non-resonant case, the natural frequencies are all

linearly independent satisfying

~k · ~ω 6= 0 ∀~k ∈ Z
n − {0} (2.88)

where ~ω represents the vector of natural frequencies. In particular, for a 2-dimensional

system with two natural frequencies, ω1 and ω2, resonance occurs if the ratio of the

frequencies is a non-zero integer in the form

ω1

ω2

∈ Z− {0} (2.89)
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As mentioned previously, resonant and non-resonant tori densely fill the phase space

of an integrable system. Non-resonant tori exhibit quasi-periodic phase curves in

which a single trajectory will move along the torus without repeating itself and is

therefore dense everywhere on the torus. On the other hand, phase curves moving

along resonant tori will have some degree of periodicity wherein the trajectories will

eventually return to its initial state. Generally, one speaks of a set of frequencies

as being strictly resonant or strictly non-resonant. However, in certain instances,

one may further characterize the non-resonant frequencies as being either strongly

or weakly non-resonant where essentially the latter are closer to resonance than the

former. Formally, one may define the boundary for strong non-resonance in terms of

the Diophantine condition, which requires the existence of a pair of constants κ > 0

and τ > 0 such that

|~k · ~ω| ≥ κ/|~k|τ ∀ ~k ∈ Z− {0} (2.90)

In addition to resonance, one may also classify a Hamiltonian system based on

its degeneracy properties. For a Hamiltonian system in Birkhoff normal form with

natural frequencies ωi = ∂H2/∂Ii, the system is called non-degenerate if the integrable

part satisfies the condition

det

(
∂2H0

∂~I2

)
= det

(
∂~ω

∂~I

)
6= 0 (2.91)

where ~I and ~ω represent the vector of action variables and vector of natural frequen-

cies. In non-degenerate systems, dependency on the action-type variables causes the

natural frequencies to vary from torus to torus. On the other hand, degenerate sys-

tems such as the oscillator have constant natural frequencies across all possible tori.

Independent from the non-degeneracy condition, one may also classify a system as
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being isoenergetically non-degenerate if its integrable part satisfies the condition

det




∂2H0

∂~I2
∂H0

∂~I
∂H0

∂~I
0


 6= 0 (2.92)

Isoenergetically non-degenerate systems exhibit variations in the ratio of the natural

frequencies on different tori even as the energy is held fixed.18

2.4.3 KAM Theorem

Most practical problems of interest do not immediately exhibit the ideal properties

of integrability discussed in the previous sections. However, by expanding about small

parameters, often the full system can be approximated by an integrable one under

perturbation from higher-order terms. This general topic is referred to as perturbation

theory about which the entirety of Chapter III is based. Nonetheless, it is useful to

preview one of the major tenets of modern perturbation theory: namely the combined

theories of Kolmogrov, Arnold, Moser, or simply KAM theory.

Consider the case of an integrable Hamiltonian systemH0, which being integrable,

possesses the properties discussed in the previous sections: n integrals of motion and

a phase space foliated by invariant tori. To this integrable system a series of higher-

order perturbations are applied in the form

H = H0 +Hn (2.93)

The aim of KAM theory is to answer the question of whether the invariant tori

of the unperturbed system persist in the perturbed, “nearly-integrable” system of

Eq. 2.93. In 1954, Kolmogorov provided a theorem addressing this issue whose proof

was later derived by Moser for the case of twist maps and then by Arnold for analytic

Hamiltonian systems.49;50;51 In their honor, the theorem is referred to as the KAM
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theorem and may be stated as follows.

If the unperturbed system [H0] is non-degenerate or isoenergetically non-

degenerate, then for a sufficiently small Hamiltonian perturbation most

non-resonant invariant tori do not vanish but are only slightly deformed, so

that in the phase space of the perturbed system [H0+Hn] there are invari-

ant tori densely filled with [quasi-periodic] phase curves winding around

them, with a number of independent frequencies equal to the number of

degrees of freedom.18

Kolmogorov also required that the Hamiltonian function be real-analytic in the neigh-

borhood of the origin, which is unnecessarily strong in general, but suffices for the

present study.50 It also requires periodicity in the higher-order terms with respect

to the angle-type variables, differentiability to a sufficiently high order, and non-

resonance as defined by the Diophantine condition in Eq. 2.90. The basic premise

of the theorem is that up to a certain order of truncation and away from resonance,

a nearly-integrable system behaves like an integrable one. As such, by expanding

and truncating a complicated system around the unperturbed case, one may derive

approximate, local integrals of motion and foliate the local space with invariant tori.

Unfortunately, while the KAM theorem dictates the preservation of invariant tori

in nearly-integrable systems, it does not necessarily guarantee stability. The only time

this is true is for 2-dimensional systems in which a family of invariant tori effectively

separate the phase space into non-communicating parts, that is, any trajectory orig-

inating in the space between two non-resonant tori is necessarily confined to remain

in this space for all time. Unfortunately, this property does not extend to systems of

dimension n > 2 for which trajectories could escape through gaps in the tori in what

is known as Arnold diffusion. Thus, application of the KAM theorem as a rigorous

means to prove stability is only valid for the 2-dimensional, planar systems.18

Another complication with KAM theory is the requirement of non-degeneracy.
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Consider the case of a perturbed harmonic oscillator with an unperturbed system

defined by H0 = ~ω · ~I, which is both degenerate and isoenergetically degenerate.

While it is conceivable that sufficiently small perturbations to such a system could still

preserve invariant tori, the KAM theorem as stated above is invalidated by the system

degeneracy. However, Arnold proved that in such a properly degenerate system, the

first-order perturbation term can effectively “remove the degeneracy” if the perturbed

Hamiltonian is of the necessary form. Arnold provides a tractable statement to this

effect in the framework of a Hamiltonian system in Birkhoff normal form. Consider

the 2-D Hamiltonian system

H = H2 +H4 + . . .+H2N +H2N+1 (2.87)

whereH is real-analytic in the neighborhood of the origin,H2 is in the form ωsIs−ωℓIℓ,

H2k is a homogeneous polynomial of degree k in Is and Iℓ, and H2N+1 has a series

expansion of degree not less than 2N + 1. It is further assumed that the frequencies

are sufficiently non-resonant. Under these assumptions, Arnold proved that the origin

of the system is stable if for at least one k in the range 1 ≤ k ≤ N , the system satisfies

the inequality

D2k = H2k(Is = ωℓ, Iℓ = ωs) 6= 0 (2.94)

Often it is sufficient to demonstrate satisfaction of Eq. 2.94 only to second-order, that

is

D4 = (AI2s + 2BIsIℓ + CI2ℓ )/2 6= 0 (2.95)

where A, B and C are coefficients depending on the natural frequencies ωi. However,

if for certain values of ωi (including non-resonant cases) Eq. 2.95 is not satisfied, one

must then demonstrate that a higher-order part is non-zero, for instance D6 6= 0.

Meyer et al. provides a nice proof of the theorem by applying a canonical transfor-

mation of the Hamiltonian for small perturbations and in the neighborhood of the
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origin and invoking Moser’s invariant curve theorem to show that the transformed

system is stable. They also include a thorough treatment of the planar CRTBP and

by applying the stating formulation of the KAM theorem, demonstrate the nonlinear

stability of the planar triangular Lagrange points of the CRTBP.16;51
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Chapter III

Canonical Perturbation Theory

The previous Chapter introduced the basic topics and definitions associated with

the perturbation theory and Kolmogrov-Arnold-Moser (KAM) theory. This Chapter

further details some of the relevant methods used in perturbation theory with a focus

on the Lie transform method derived by Deprit and Hori in the 1960s and herein

referred to as the DH method. Motivation is provided in terms of its application to the

elliptic restricted three-body problem (ERTBP) and advantages over the classic Von

Zeipel method. This then leads to an introduction of the classic, single parameter DH

method described in the original papers of Deprit and Hori as well as the more recent

works of Meyer et al. and Boccaletti and Pucacco.16;18;36;37 Following a description of

the single parameter method, an original derivation is provided detailing an extension

of the DH method to non-autonomous, two-parameter systems that may be compared

to similar methods derived in Varadi, Ahmed and Andrade.40;41;42 Validation of the

two-parameter DH method is achieved through the normalization of the single degree-

of-freedom damped oscillator. Finally, a preliminary investigation into incorporating

control terms in the normalization is conducted with the goal of deriving control laws

in the transformed phase space.
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3.1 Motivation

The basic theory of canonical transformations was introduced in Section 2.1.2.2

for the purposes of transforming the ERTBP from the time-dependent synodic refer-

ence frame to a ν-dependent pulsating, synodic reference frame. While the resultant

Hamiltonian system still exhibited non-autonomous and non-integrable characteris-

tics, the formulation was significantly simplified with the positions of the primaries

and equilibrium points fixed and the non-autonomous and non-circular effects isolated

within a single term R/p.

Thus, the primary motivation for applying a canonical transformation is to realize

a set of canonical variables in which the system formulation is as simple as possible.

In the ideal case, the transformed system is integrable and autonomous possessing

useful properties of conservation that may be used to apply qualitative analysis of the

system behavior. In perturbation theory, the system is represented as an expansion

about a simplified form that exhibits the desired properties of integrability. The goal

is then to derive a canonical transformation that normalizes the expanded system

about the simplified integrable form. Within the expanded formulation, the canonical

transformation is derived term by term yielding a series of first-order differential

equations for each order in the expansion. The classic method is Von Zeipel’s method,

which results in a mixed variable solution. An improved direct formulation is provided

in the DH method, which harnesses the unique properties of the Lie transform.

The DH method applies to a system expanded about a single parameter. For sys-

tems expanded about two parameters, the transformation could be derived as a com-

position of a pair of single parameter transformations. However, the differential equa-

tions associated with each application of the single parameter method is often more

complicated and less solvable than those generated from a synchronous two-parameter

transformation. Such an extension of the DH method to two-parameter expansions is

presented in Varadi, but only for autonomous systems.40 While in principle Varadi’s
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method could be used for a non-autonomous two-parameter system, it would first

require an expansion of the phase space. However, with the aim of developing a more

intuitive methodology, the sequel presents a non-autonomous two-parameter exten-

sion to the DH method expressed directly in terms of the original phase space and

incorporating a remainder function as first described in Section 2.1.2.2.

Finally, in the interest of generating a novel and potential useful feedback control

algorithm, the two-parameter DH method is presented in the formulation of control

theory by appending a forcing function to the original Hamiltonian function. This

provides a differential control law that is unique from any of the traditional methods

of linearized control, Lyapunov theory and controlled Lagrangians.52;53 In presenting

the DH control method, the foundation is laid for a future trade study comparing the

relative merits of each of these possible control strategies.

3.2 Perturbation Theory and Von Zeipel’s Method

Consider a Hamiltonian system H(q, p, ν) where (q, p) are generalized state vari-

ables and ν represents the generalized independent variable. Jacobi postulated a

canonical transformation under which the transformed state variables are indepen-

dent integrals of motion in the form

dq̂i
dν

=
∂K
∂p̂i

= 0

dp̂i
dν

= −∂K
∂q̂i

= 0 (3.1)

If such a set exists then the system is integrable and the transformed Hamiltonian

function is identically zero

K(q̂, p̂, ν) ≡ 0 (3.2)
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On the other hand, for a given Hamiltonian system, one can search for integrals

of motion by attempting to derive a transformation that satisfies Eq. 3.2. In his

celebrated lectures from the late 19th century, Jacobi postulated such an approach

wherein the transformation is defined implicitly through a generating function in the

form W(q, p̂, ν) as introduced in section 2.1.2.2. The state transformation equations

q = Q(q̂, p̂, ν) and p = P (q̂, p̂, ν) are derived from Eqs. 2.43

pi =
∂

∂qi
W(q, p̂, ν)

q̂i =
∂

∂p̂i
W(q, p̂, ν) (2.43)

and the transformed Hamiltonian must satisfy the necessary condition

K(q̂, p̂, ν) = H(q, p, ν) + ∂W
∂ν

(2.44)

Substituting Eqs. 2.43 into Eq. 2.44 and constraining it to zero yields the condition

H(q, ∂W
∂q

, ν) +
∂W
∂ν

= 0 (3.3)

which is a first-order partial differential equation forW known as the Hamilton-Jacobi

equation (HJE). The HJE is often very difficult to solve except for a few known

solutions and cases that can be solved using separation of variables. Nonetheless,

it has been successfully applied to many dynamical systems including the celestial

two-body problem for which Delaunay derived a set of canonical constants of motion,

which are directly related to the classical orbital elements.4

In addition to the celebrated HJE, Jacobi further presented the fundamental prob-

lem of perturbation theory: an integrable system perturbed by higher-order effects
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as defined by the expanded Hamiltonian function

H = H0 +
∞∑

n=1

ǫn

n!
Hn (3.4)

where ǫ parameterizes the order of the perturbation terms and goes to zero for the

unperturbed system. The unperturbed system H0 is assumed autonomous and in

the form of an integrable system whose phase space is foliated by invariant tori as

described in Chapter II. The aim of perturbation theory is to derive a canonical

transformation of the Hamiltonian system in the expanded form

H =
∞∑

n=0

ǫn

n!
Hn(q, p, ν) → K =

∞∑

n=0

ǫn

n!
Kn(q̂, p̂, ν) (3.5)

where K is the new Hamiltonian function under the transformation q = Q(q̂, p̂, ν) and

p = P (q̂, p̂, ν). The transformation is designed such that the transformed Hamiltonian

function K(q̂, p̂, ν) possesses ideal properties of integrability and autonomy.

Upon presenting the main ideas of perturbation theory, Jacobi left the develop-

ment of the method of solution to his successors: Poincaré and Von Zeipel for whom

the following method is named. Since the unperturbed part of Eq. 3.4 is already

integrable, its form is left un-changed under the transformation corresponding to a

“near-identity” transformation of the form

qi = Qi(q̂, p̂, ν, ǫ) = q̂i + . . .

pi = Pi(q̂, p̂, ν, ǫ) = p̂+ . . . (3.6)

in addition to the near-identity inverse transformation of the form

q̂i = Q̂i(q, p, ν, ǫ) = qi + . . .

p̂i = P̂i(q, p, ν, ǫ) = p+ . . . (3.7)
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Von Zeipel’s method introduces a corresponding generating function that is also for-

mulated in expanded form

W(q, p̂, ν) = q · p̂+
∞∑

n=1

ǫn

n!
Wn(q, p̂, ν) (3.8)

where the zeroth-order part corresponds to the identity transformation. The resultant

transformed Hamiltonian function is

K(q, p̂, ν) =
∞∑

n=0

ǫn

n!
Kn(q, p̂, ν)

=
∞∑

n=0

[
H
(
q,

∂Wn

∂q
, ν

)
+

∂Wn

∂ν

]

= H0(q, p̂, ν) +
∞∑

n=1

[
H
(
q,

∂Wn

∂q
, ν

)
+

∂Wn

∂ν

]
(3.9)

Separating Eqs. 3.9 into terms of equal power in ǫ yields the series of ordered differ-

ential equations

K1(q, p̂, ν) = H1(q, p̂, ν) +
∂W1

∂ν

K2(q, p̂, ν) = H2(q, p̂, ν) +
∂W1

∂q
· ∂H1

∂p
(q, p̂, ν) +

∂W2

∂ν

...

Kn(q, p̂, ν) = Qn(q, p̂, ν) +
∂Wn

∂ν
(3.10)

which term by term, relates the defined generating function W to the transformed

Hamiltonian K through the functions Qi known a priori in increasing order of ǫ

(that is, Qi depends only on the original Hamiltonian function and terms of lesser

order in ǫ). One may then choose a desired form for K and solve Eqs. 3.10 for

the necessary generating function to achieve this desired form. Limitations on how

one may define the new Hamiltonian terms are provided by the constraint that the
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expanded transformation remain analytic in the original state variables such that the

series remains convergent. For many problems including those of celestial mechanics,

the terms in H and thereby Qi consist of periodic parts and secular parts. Thus,

to average out the former, one may define the new Hamiltonian terms Ki by the

secular terms < Qi > and thereby insure the convergence of the transformation and

normalization to Birkhoff normal form.4;18;38

There are two major disadvantages to Von Zeipel’s method. The first is that the

transformation is not canonically invariant, but instead varies for different sets of

canonical variables.38 In addition, the entire transformation is formulated based on a

generating function in the formW(q, p̂, ν), which includes both new and old variables.

As such, an important and often difficult step to solving Von Zeipel’s method is the

inversion of the resultant state transformation equations introduced in Eqs. 2.43.

For complicated systems and high-order expansions, such inversions are costly if not

impossible to implement. Due to these inherent limitations in Von Zeipel’s method,

both Deprit and Hori independently set out to devise a new method that avoids these

issues by harnessing the elegant properties of the Lie transform.36;37 In doing so, the

so-called Deprit-Hori Lie transform method (or sometimes just Deprit’s method or

simply the Lie transform method) achieves the same result as Von Zeipel’s method,

but in a canonically invariant form and with the resultant transformation equations

expressed directly in terms of the new state variables.

3.3 Deprit-Hori Lie Transform Method

The primary feature of the Deprit-Hori Lie transform method (DH method) is the

application of the Lie transform operator to construct a canonical transformation in

expanded form. For Hamiltonian systems, the Lie transform between two functions
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H and W is equivalent to the classic Poission bracket

LWH , [H,W ] =
N∑

i=1

(
∂H
∂qi

∂W
∂pi
− ∂H

∂pi

∂W
∂qi

)
(3.11)

which is generally referred to as the Lie derivative of H generated byW . Further, the

nth Lie derivative is defined as Ln
WH = LW

(
Ln−1

W H
)
and the zero-order derivative is

the identity operator L0
WH = H. For the purposes of the DH method, the functions

H and W as operated on by Eq. 3.11 are assumed real and analytic in a bounded

domain of the phase space. This insures a convergent, real-valued series expansion for

the resultant canonical transformation in a neighborhood of the unperturbed system

(that is, for small ǫ).

3.3.1 Single Parameter Deprit-Hori Lie Transform Method

In the original formulation of the DH method, the original Hamiltonian function

is represented by the series expansion

H(q, p, ǫ, ν) =
∞∑

n=0

ǫn

n!
H(0)

n (q, p, ν) (3.12)

about the single system parameter ǫ. The Hamiltonian system is transformed under

the near-identity state transformation (q, p)→ (q̂, p̂) given explicitly by

q = Q(q̂, p̂, ǫ, ν)

p = P (q̂, p̂, ǫ, ν) (3.13)

and defined implicitly through a generating function W(q̂, p̂, ν), which is also repre-

sented by its series expansion

W(q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
Wn+1(q̂, p̂, ν) (3.14)
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Note that the generating function is formulated directly in terms of the transformed

state variables rather than the mixed variable formulation seen in Von Zeipel’s method.

The transformed Hamiltonian function is constructed term by term in the series

K(q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
Kn(q̂, p̂, ν)

=
∞∑

n=0

ǫn

n!

(
H(n)

0 (q̂, p̂, ν) +R(n)
0 (q̂, p̂, ν)

)

= Ĥ(q̂, p̂, ǫ, ν) +R(q̂, p̂, ǫ, ν) (3.15)

where Ĥ represents the original Hamiltonian function written explicitly in terms of

the state transformation equations

Ĥ(q̂, p̂, ǫ, ν) = H
(
Q(q̂, p̂, ǫ, ν), P (q̂, p̂, ǫ, ν), ǫ, ν

)
(3.16)

and R is a remainder function in the manner of
dW
dν

of Eq. 2.44. Based on the

descriptions and proofs included in the original papers of Deprit and Hori and the

recent works of Boccaletti and Pucacco and Meyer et al., the DH method is stated

concisely in Theorem III.1.18;16;36;37

Theorem III.1. Consider a non-autonomous Hamiltonian function expanded about

a small parameter ǫ as represented by the series

H(q, p, ǫ, ν) =
∞∑

n=0

ǫn

n!
H(0)

n (q, p, ν) (3.12)

A canonical transformation is generated from the function

W(q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
Wn+1(q̂, p̂, ν) (3.14)

such that the transformed Hamiltonian function may be constructed term by term in
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the series

K(q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!

(
H(n)

0 (q̂, p̂, ν) +R(n)
0 (q̂, p̂, ν)

)
(3.15)

by the recursive equations

H(r+1)
n = H(r)

n+1 +
n∑

i=0

(
n

i

)
LWi+1

H(r)
n−i (3.17)

and

R(n)
0 = S(n−1)

0 (3.18)

where

S(0)
n = − ∂

∂ν
Wn+1

S(r+1)
n = S(r)

n+1 +
n∑

i=0

(
n

i

)
LWi+1

S(r)
n−i (3.19)

The expansion of the explicit state transformation equations q = Q(q̂, p̂, ǫ, ν) and

p = P (q̂, p̂, ǫ, ν) is represented by the series

q = Q(q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
q
(n)
0 (q̂, p̂, ν) (3.20)

p = P (q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
p
(n)
0 (q̂, p̂, ν) (3.21)

and may be constructed using the recursive equations

q(r+1)
n = q

(r)
n+1 +

n∑

i=0

(
n

i

)
LWi+1

q
(r)
n−i (3.22)

and

p(r+1)
n = p

(r)
n+1 +

n∑

i=0

(
n

i

)
LWi+1

p
(r)
n−i (3.23)

where q
(0)
0 = q̂, p

(0)
0 = p̂, and q

(0)
n = p

(0)
n = 0 for n > 0. Moreover, the inverse
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transformation

q̂ = Q̂(q, p, ǫ, ν) =
∞∑

n=0

ǫn

n!
q̂
(n)
0 (q, p, ν) (3.24)

p̂ = P̂ (q, p, ǫ, ν) =
∞∑

n=0

ǫn

n!
p̂
(n)
0 (q, p, ν) (3.25)

is obtained by defining the inverse generating function

Ŵ =
∞∑

n=0

ǫn

n!
Ŵ (n)

0 (3.26)

with Ŵ (0)
n = −Wn and constructed using the recursive equation

Ŵ (r+1)
n = Ŵ (r)

n+1 +
n∑

i=0

(
n

i

)
LWi+1

Ŵ (r)
n−i (3.27)

and applying the recursive equations

q̂(r+1)
n = q̂

(r)
n+1 +

n∑

i=0

(
n

i

)
LŴi+1

q̂
(r)
n−i (3.28)

and

p̂(r+1)
n = p̂

(r)
n+1 +

n∑

i=0

(
n

i

)
LŴi+1

p̂
(r)
n−i (3.29)

where q̂
(0)
0 = q, p̂

(0)
0 = p, and q̂

(0)
n = p̂

(0)
n = 0 for n > 0.

For a proof of the original DH method described in Theorem III.1, please refer to

the original papers of Deprit and Hori or to either of the recent books by Boccaletti

and Pucacco and Meyer et al.18;16;36;37

Just like Von Zeipel’s method, the algorithmic scheme presented in Eq. 3.17 and

elsewhere in the proof is recursive in the sense that each successive term is dependent

only on the original Hamiltonian function and terms of lesser order. This is visual-

ized in Deprit’s triangle in Figure 3.1 where the terms along the left-most vertical
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correspond to the original Hamiltonian function under the identity transformation

H(q̂, p̂, ǫ, ν) and the terms along the right-most diagonal correspond to the trans-

formed Hamiltonian Ĥ. Similarly, the recursive construction of the remainder func-

tion R through Eqs. 3.18 and 3.19 can also be visualized by Deprit’s triangle, but

with −∂W/∂ν along the left-most vertical and S along the right-most diagonal.

H(0)
0

H(0)
1

H(0)
2

H(1)
0

H(1)
1 H(2)

0

Figure 3.1: Deprit’s Triangle

In deriving the ordered equations in Eq. 3.15, the DH method produces a series of

first-order differential equations relating the original Hamiltonian to the transformed

Hamiltonian through the generating functionW . Carrying out this operation to order

3 yields the series of first-order differential equations

K0 = H(0)
0

K1 = −
∂W1

∂ν
+ LW1

H(0)
0 +H(0)

1

K2 = −
∂W2

∂ν
+ LW2

H(0)
0 +H(0)

2 + LW1

(
H(0)

1 +K1

)

K3 = −
∂W3

∂ν
+ LW3

H(0)
0 +H(0)

3 + LW2

(
2H(0)

1 +K1

)
+ LW1

(
H(0)

2 + 2K2 − LW1
K1

)

(3.30)

which relate the generating function W to the transformed Hamiltonian K in the

same manner as Von Zeipel’s Eqs. 3.10. Unlike Von Zeipel’s method, the differential

equations in Eqs. 3.30 are expressed directly in terms of the transformed state vari-
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ables (q̂, p̂). Further, for every order of ǫ, the differential equations in Eqs. 3.30 take

the form of the so-called homological differential equation

∂Wi

∂ν
− LWi

H(0)
0 = Qi −Ki (3.31)

where H(0)
0 is the unperturbed Hamiltonian (ǫ = 0) and Qi is known prior to solving

the homological equation based on the original Hamiltonian function and terms of

lesser order. The form of K is also prescribed prior to solving Eq. 3.31 based on the

desired form for the normalized system. Thus, provided a solution to Eq. 3.31 exists,

one may derive the necessary generating function to normalize the Hamiltonian, which

in turn defines the state transformation equations

q = Q(q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
q
(n)
0 (q̂, p̂, ν) (3.20)

p = P (q̂, p̂, ǫ, ν) =
∞∑

n=0

ǫn

n!
p
(n)
0 (q̂, p̂, ν) (3.21)

and the inverse equations

q̂ = Q̂(q, p, ǫ, ν) =
∞∑

n=0

ǫn

n!
q̂
(n)
0 (q, p, ν) (3.24)

p̂ = P̂ (q, p, ǫ, ν) =
∞∑

n=0

ǫn

n!
p̂
(n)
0 (q, p, ν) (3.25)

through Eqs. 3.28 and 3.29.

3.3.2 Two-Parameter Deprit-Hori Lie Transform Method

The DH method provides a robust methodology for normalizing a perturbed

Hamiltonian system about its unperturbed form as parameterized by the small param-

eter ǫ. As an extension to the single parameter method, consider a doubly-expanded
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Hamiltonian system

H(q, p, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(0,0)

m,n (q, p, ν) (3.32)

whose higher-order terms are parameterized by two quantities: ǫ and γ. This two-

parameter case was treated for autonomous systems in 1985 by Varadi, whose analysis

was subsequently extended to three parameters by Ahmed and to N parameters by

Andrade.40;41;42 While it is possible to apply Varadi’s method to non-autonomous

systems, it requires an expansion of the phase space to incorporate the independent

variable and Hamiltonian function as extra state variables. This renders the system

autonomous and allows for the application of Varadi’s formulation.

To circumvent the need to expand the phase space, an original theorem is pre-

sented in the sequel in which the two-parameter DH method is formulated directly

in terms of the original non-autonomous system by applying a remainder function in

the tradition of the single parameter method presented in Theorem III.1. As before,

the Lie transform operator defined in Eq. 3.11 is applied to formulate the canonical

transformation, but now through a pair of generating functions

W(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Wm+1,n+1(q̂, p̂, ν) (3.33)

V(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Vm+1,n+1(q̂, p̂, ν) (3.34)

The transformed Hamiltonian function is constructed term by term in the series

K(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Km,n(q̂, p̂, ν)

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
H(m,n)

0,0 (q̂, p̂, ν) +R(m,n)
0,0 (q̂, p̂, ν)

)

= Ĥ(q̂, p̂, ǫ, γ, ν) +R(q̂, p̂, ǫ, γ, ν) (3.35)
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where as before, the terms in Ĥ represent the old Hamiltonian written explicitly in

terms of the transformed state variables

Ĥ(q̂, p̂, ǫ, γ, ν) = H
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)
(3.36)

and the terms in R comprise the remainder function and are generated from a pair

of intermediary functions S and T . The two-parameter, non-autonomous theorem

is presented in Theorem III.2 followed by a proof that is modeled in part on those

included in Deprit and Meyer et al. for the single parameter case.16;37 In addition,

the construction of the explicit state transformation equations are treated separately

in Corollary III.3.

Theorem III.2. Consider a non-autonomous Hamiltonian function expanded about

two small parameters as represented by the series

H(q, p, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(0,0)

m,n (q, p, ν) (3.32)

A canonical transformation is generated from the pair of functions

W(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Wm+1,n+1(q̂, p̂, ν) (3.33)

V(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Vm+1,n+1(q̂, p̂, ν) (3.34)

such that the transformed Hamiltonian function may be constructed term by term in

the series

K(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
H(m,n)

0,0 (q̂, p̂, ν) +R(m,n)
0,0 (q̂, p̂, ν)

)
(3.35)
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by the extended recursive equations

H(r,s+1)
m,n = H(r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

H(r,s)
m−j,n−i

H(r+1,s)
m,n = H(r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

H(r,s)
m−j,n−i (3.37)

and

R(m,n)
0,0 =





S(0,n−1)
0,0 m = 0, n 6= 0

T (m−1,0)
0,0 m 6= 0, n = 0

S(m,n−1)
0,0 = T (m−1,n)

0,0 m,n 6= 0

(3.38)

where

S(0,0)
m,n = − ∂

∂ν
Wm+1,n+1

S(r,s+1)
m,n = S(r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

S(r,s)
m−j,n−i

S(r+1,s)
m,n = S(r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

S(r,s)
m−j,n−i (3.39)

and

T (0,0)
m,n = − ∂

∂ν
Vm+1,n+1

T (r,s+1)
m,n = T (r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

T (r,s)
m−j,n−i

T (r+1,s)
m,n = T (r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

T (r,s)
m−j,n−i (3.40)

Moreover, the terms appearing in the expanded transformation containing “mixed

parameters” (i.e. of the form ǫnγm with both m and n non-zero) may be obtained

equivalently using either of the two generating functions W or V such that these
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generating functions satisfy the Deprit commutation condition,

∂V
∂ǫ
− ∂W

∂γ
+ LWV = 0 (3.41)

which term by term implies

Vm+1,n+2 −Wm+2,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

Vm−j+1,n−i+1 = 0 (3.42)

Proof. The canonical transformation from coordinates (q, p) to (q̂, p̂) may be for-

mulated in terms of the generating functions W and V through the pair of non-

autonomous systems

∂

∂ǫ




q

p


 =




∂

∂p
W(q̂, p̂, ǫ, γ, ν)

− ∂

∂q
W(q̂, p̂, ǫ, γ, ν)


 (3.43)

and

∂

∂γ




q

p


 =




∂

∂p
V(q̂, p̂, ǫ, γ, ν)

− ∂

∂q
V(q̂, p̂, ǫ, γ, ν)


 (3.44)

with initial conditions q(ǫ, γ = 0) = q̂ and p(ǫ, γ = 0) = p̂. Notice that both these

systems are in Hamiltonian form where W and V take the place of the Hamiltonian

function and ǫ and γ serve as the independent variables. For well-behaved functions,

the general solution for this coupled system is a pair of analytic functions defining

the near-identity state transformation equations,

q = Q(q̂, p̂, ǫ, γ, ν)

p = P (q̂, p̂, ǫ, γ, ν) (3.45)

where Q(ǫ, γ = 0) = q̂ and P (ǫ, γ = 0) = p̂.
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In the spirit of Deprit’s original proof, one may define an extended phase space by

appending the independent variable ν and the Hamiltonian function to the original

state variables

q → {q, ν}

p→ {p,−H} (3.46)

To apply the Lie operator within the extended phase space but still maintain its

definition within the original (q, p) phase space, one must incorporate the additional

terms

LW −
∂W
∂H

∂

∂ν
+

∂W
∂ν

∂

∂H = LW +
∂W
∂ν

∂

∂H
LV −

∂V
∂H

∂

∂ν
+

∂V
∂ν

∂

∂H = LV +
∂V
∂ν

∂

∂H (3.47)

wherein the generating functions will vary with ν, but will not be explicitly dependent

on the Hamiltonian itself such that
∂W
∂H =

∂V
∂H = 0. The Deprit operators are defined

as

DW ,
∂

∂ǫ
+ LW

DV ,
∂

∂γ
+ LV (3.48)

and incorporating the additional terms from Eqs. 3.47 for the expanded phase space,

the extended Deprit operators are defined as

EW ,
∂

∂ǫ
+ LW +

∂W
∂ν

∂

∂H = DW +
∂W
∂ν

∂

∂H
EV ,

∂

∂γ
+ LV +

∂V
∂ν

∂

∂H = DV +
∂V
∂ν

∂

∂H (3.49)

Note that the original Deprit operators satisfy the following conditions: the zeroth-
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order Deprit operators act as identity operations, D0
WH = D0

VH = H and successive

applications of the Deprit operators are given by

Ds
WDr

V =

(
∂

∂ǫ
+ LW

)s(
∂

∂γ
+ LV

)r

(3.50)

The question of commutativity will be treated in the sequel.

When applied to a function F (q, p, ǫ, γ, ν) with no explicit dependence on the

Hamiltonian, the right-most terms in Eqs. 3.49 are zero and the extended Deprit

operators reduce to the original Deprit operators, EWF = DWF and EVF = DVF .

Furthermore, under the transformation q = Q(q̂, p̂, ǫ, γ, ν) and p = P (q̂, p̂, ǫ, γ, ν), the

partial derivative of F with respect to ǫ is

∂

∂ǫ


F (q, p, ǫ, γ, ν)

∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)


 =

(
∂F

∂ǫ
+

∂F

∂q

∂q

∂ǫ
+

∂F

∂p

∂p

∂ǫ

) ∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)

=

(
∂F

∂ǫ
+

∂F

∂q

∂W
∂p
− ∂F

∂p

∂W
∂q

) ∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)

=

(
∂F

∂ǫ
+ LWF

) ∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)

=
(
DWF

)∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)

(3.51)

and by the same logic, the partial derivative with respect to γ is

∂

∂γ


F (q, p, ǫ, γ, ν)

∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)


 =

(
DVF

)∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)

(3.52)

By extension, one may also express the mixed ǫ- and γ-derivatives to any order by

∂n

∂ǫn
∂m

∂γm


F (q, p, ǫ, γ, ν)

∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)


 =

(
Dn

WDm
V F
)∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)

p=P (q̂,p̂,ǫ,γ,ν)

(3.53)
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Upon examining Eq. 3.53, it is evident that the Deprit operators may be applied

within an expansion series in ǫ and γ. This approach is subsequently applied to the

Hamiltonian function under the transformation (q, p)→ (q̂, p̂).

Consider the canonical transformation of a non-autonomous Hamiltonian function

resulting in a transformed Hamiltonian function in the form

K = H
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)
+R (q̂, p̂, ǫ, γ, ν)

= Ĥ (q̂, p̂, ǫ, γ, ν) +R (q̂, p̂, ǫ, γ, ν) (3.54)

where Ĥ represents the original Hamiltonian function written explicitly in terms

of the state transformation equations and R represents a remainder function. The

expansion of Ĥ in a Taylor series about ǫ = 0 and γ = 0 is

Ĥ(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

∂n

∂ǫn
∂m

∂γm
Ĥ(q̂, p̂, ǫ, γ, ν)

∣∣∣
ǫ,γ=0

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

∂n

∂ǫn
∂m

∂γm


H(q, p, ǫ, γ, ν)

∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)



∣∣∣∣∣∣
ǫ,γ=0

(3.55)

For the time being, the Hamiltonian function is treated as in function F used pre-

viously, that is, with no explicit dependence on the Hamiltonian as a state variable.

Eq. 3.55 is represented in terms of the extended Deprit operators by substituting

Eq. 3.53 in for the ǫ and γ partial derivatives such that

Ĥ(q̂, p̂, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!


Dn

WDm
V H(q, p, ǫ, γ, ν)

∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)



∣∣∣∣∣∣
ǫ,γ=0

(3.56)
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Further introducing the subscripted and superscripted formulation

H =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(0,0)

m,n

Ds
WDr

VH =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n (3.57)

the expansion of the original Hamiltonian function is represented by the series of

functions H(0,0)
m,n and the expansion of Ĥ is represented by

Ĥ =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!


Dn

WDm
V H(q, p, ǫ, γ, ν)

∣∣∣∣ q=Q(q̂,p̂,ǫ,γ,ν)
p=P (q̂,p̂,ǫ,γ,ν)



∣∣∣∣∣∣
ǫ,γ=0

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(m,n)

0,0 (q̂, p̂, ν) (3.58)

Within the subscripted and superscripted formulation, the Lie derivatives satisfy

LWH(r,s)
m,n =

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

H(r,s)
m−j,n−i

LVH(r,s)
m,n =

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

H(r,s)
m−j,n−i (3.59)

such that the terms included in the expansion series under the Deprit operator satisfy

∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s+1)

m,n = DW

( ∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n

)

=
∂

∂ǫ

( ∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n

)
+ LW

( ∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n

)

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
H(r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

H(r,s)
m−j,n−i

)
(3.60)
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and likewise

∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r+1,s)

m,n = DV

( ∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n

)

=
∂

∂γ

( ∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n

)
+ LV

( ∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(r,s)

m,n

)

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
H(r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

H(r,s)
m−j,n−i

)
(3.61)

Thus, comparing Eqs. 3.60 and 3.61 to Eq. 3.57, all the unknown functions H(r,s)
m,n may

be constructed term by term using recursive equations

H(r,s+1)
m,n = H(r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

H(r,s)
m−j,n−i

H(r+1,s)
m,n = H(r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

H(r,s)
m−j,n−i (3.37)

referred to as the extended recursive equations. The formulae in Eqs. 3.37 are re-

cursive in the sense that each successive term is dependent only on terms preceding

it, starting with the original Hamiltonian H(0,0)
m,n . The construction may be visualized

in the tradition of Deprit’s triangle, but now in the form of a pyramid as shown in

Figure 3.2. The terms in the central column correspond to the original Hamiltonian

function under the identity transformation while the terms along each outermost di-

agonal correspond to terms in Ĥ with increasing order in ǫ and γ toward the base of

the pyramid.

Thus far, the method has provided the means to construct the explicit substitution

of the state transformation equations into the original Hamiltonian through the Deprit

operators DW and DV . While this provides the function Ĥ in Eq. 3.54, one must still

account for the remainder function.
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2,0 H(0,0)

0,2

Figure 3.2: Deprit’s Pyramid

Applying the extended Deprit operators to the Hamiltonian state variable yields

EWH = DWH−
∂W
∂ν

EVH = DVH−
∂V
∂ν

(3.62)

and for higher-order and mixed terms,

EsWErVH = Ds
WDr

VH−Ds−1
W Dr

V
∂W
∂ν
−Ds

WDr−1
V

∂V
∂ν

(3.63)

The first term appearing in Eq. 3.63 is equivalent to the explicit substitution of the

state transformation equations into the original Hamiltonian function while treating it

as being independent of the Hamiltonian state variable. This effectively generates the

autonomous part of the transformation represented by the term Ĥ in Eq. 3.54. The

other two terms appearing in Eq. 3.63, −Ds−1
W Dr

V
∂W
∂ν

and −Ds
WDr−1

V
∂V
∂ν

comprise

the remainder function and may be constructed term by term in the same manner as
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the Hamiltonian function, but as acting on the functions
∂W
∂ν

and
∂V
∂ν

. To do so in

a constructive manner, define the intermediary functions S and T by

S(0,0)
m,n = − ∂

∂ν
Wm+1,n+1

T (0,0)
m,n = − ∂

∂ν
Vm+1,n+1 (3.64)

such that in Eq. 3.63, the remainder functionR is constructed term by term according

to

R(m,n)
0,0 =





S(0,n−1)
0,0 m = 0, n 6= 0

T (m−1,0)
0,0 m 6= 0, n = 0

S(m,n−1)
0,0 = T (m−1,n)

0,0 m,n 6= 0

(3.65)

and the recursive formulae

S(r,s+1)
m,n = S(r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

S(r,s)
m−j,n−i

S(r+1,s)
m,n = S(r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

S(r,s)
m−j,n−i (3.39)

and

T (r,s+1)
m,n = T (r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

T (r,s)
m−j,n−i

T (r+1,s)
m,n = T (r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

T (r,s)
m−j,n−i (3.40)

Together with Eqs. 3.37, Eqs. 3.39 and 3.40 define the complete transformation of

the Hamiltonian function into K as formulated in Eq. 3.35.

To complete the proof, one must address the issue of commutativity in the Deprit

operators. Based on the preceding discussion, one may derive either of the following
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representations

DWDVH =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(1,1)

m,n

DVDWH =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(1,1)

m,n (3.66)

For consistency’s sake, the terms on the right-hand side should be the same in either

case, which implies that the Deprit operators are commutative, that is,

DWDV = DVDW (3.67)

The Lie derivatives are not themselves commutative, but instead satisfy the condition

LVLW = LWLV − LLWV (3.68)

wherein the last term represents the Lie derivative generated by LWV . Expanding

the Deprit commutative condition in Eq. 3.67 based on the definition of the Deprit

operator in Eq. 3.48 yields the constraint

DWDV =
∂

∂ǫ

∂

∂γ
+

∂

∂ǫ
LV + LW

∂

∂γ
+ LWLV

= DVDW =
∂

∂γ

∂

∂ǫ
+

∂

∂γ
LW + LV

∂

∂ǫ
+ LVLW (3.69)

wherein the first two terms

∂

∂ǫ

∂

∂γ
=

∂

∂γ

∂

∂ǫ
(3.70)

are equivalent operations according to the symmetry of second-order derivatives

(Clairaut’s theorem). Substituting the Lie commutation condition in Eq. 3.68 into
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Eq. 3.69 and re-arranging terms yields

0 =
∂

∂ǫ
LV + LW

∂

∂γ
− ∂

∂γ
LW − LV

∂

∂ǫ
+ LLWV (3.71)

Moreover, the partial derivatives and Lie operators satisfy the conditions

∂

∂ǫ
LV − LV

∂

∂ǫ
= L∂V/∂ǫ

∂

∂γ
LW − LW

∂

∂γ
= L∂W/∂γ (3.72)

where the last terms are the Lie derivatives generated by
∂V
∂ǫ

and
∂W
∂γ

respectively.

Substituting Eqs. 3.72 into Eq. 3.71 yields

0 = L∂V/∂ǫ − L∂W/∂γ + LLWV

= L∂V/∂ǫ−∂W/∂γ+LWV (3.73)

which implies the condition

0 =
∂V
∂ǫ
− ∂W

∂γ
+ LWV (3.74)

This condition is herein referred to as the Deprit commutation condition in reference

to its derivation from Eq. 3.67. By applying the recursive algorithms used previously,

the Deprit commutation condition can also be expressed term by term as

0 = Vm+1,n+2 −Wm+2,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

Vm−j+1,n−i+1 (3.75)

QED

Having presented the transformation of the Hamiltonian function in Theorem III.2,

one may further derive the corresponding state transformation equations through
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Corollary III.3.

Corollary III.3. The expansion of the explicit state transformation equations q =

Q(q̂, p̂, ǫ, ν) and p = P (q̂, p̂, ǫ, ν) are represented by the series

q = Q(q̂, p̂, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
q
(m,n)
0,0 (q̂, p̂, ν) (3.76)

p = P (q̂, p̂, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
p
(m,n)
0,0 (q̂, p̂, ν) (3.77)

and may be constructed using the recursive equations

q(r,s+1)
m,n = q

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

q
(r,s)
m−j,n−i

q(r+1,s)
m,n = q

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

q
(r,s)
m−j,n−i (3.78)

and

p(r,s+1)
m,n = p

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

p
(r,s)
m−j,n−i

p(r+1,s)
m,n = p

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

p
(r,s)
m−j,n−i (3.79)

where q
(0,0)
0,0 = q̂, p

(0,0)
0,0 = p̂, and q

(0,0)
m,n = p

(0,0)
m,n = 0 for m + n > 0. The inverse

transformation is constructed in terms of the inverse generating functions

Ŵ =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Ŵ (m,n)

0,0 (q, p, ν) (3.80)

V̂ =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
V̂ (m,n)
0,0 (q, p, ν) (3.81)
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derived from

Ŵ (0,0)
m,n = −Wm,n

V̂ (0,0)
m,n = −Vm,n (3.82)

and the recursive equations

Ŵ (r,s+1)
m,n = Ŵ (r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

Ŵ (r,s)
m−j,n−i

Ŵ (r+1,s)
m,n = Ŵ (r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

Ŵ (r,s)
m−j,n−i (3.83)

The explicit inverse state transformation equations are represented by the series

q̂ = Q̂(q, p, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
q̂
(m,n)
0,0 (q, p, ν) (3.84)

p̂ = P̂ (q, p, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
p̂
(m,n)
0,0 (q, p, ν) (3.85)

and generated in terms of the inverse generating functions through the recursive equa-

tions

q̂(r,s+1)
m,n = q̂

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LŴj+1,i+1

q̂
(r,s)
m−j,n−i

q̂(r+1,s)
m,n = q̂

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LV̂j+1,i+1

q̂
(r,s)
m−j,n−i (3.86)

and

p̂(r,s+1)
m,n = p̂

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LŴj+1,i+1

p̂
(r,s)
m−j,n−i

p̂(r+1,s)
m,n = p̂

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LV̂j+1,i+1

p̂
(r,s)
m−j,n−i (3.87)
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where q̂
(0,0)
0,0 = q, p̂

(0,0)
0,0 = p, and q̂

(0,0)
m,n = p̂

(0,0)
m,n = 0 for m+ n > 0.

Proof. Consider the explicit state transformation equations q = Q(q̂, p̂, ǫ, γ, ν) and

p = P (q̂, p̂, ǫ, γ, ν) expanded about ǫ = 0 and γ = 0 as represented by the Taylor

series

q =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

∂n

∂ǫn
∂m

∂γm

(
Q(q̂, p̂, ǫ, γ, ν)

)∣∣∣
ǫ,γ=0

p =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

∂n

∂ǫn
∂m

∂γm

(
P (q̂, p̂, ǫ, γ, ν)

)∣∣∣
ǫ,γ=0

(3.88)

The expansion series are represented in terms of the Deprit operators by substituting

in Eq. 3.53 yielding

q =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
Dn

WDm
V Q(q̂, p̂, ǫ, γ, ν)

)∣∣∣
ǫ,γ=0

p =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
Dn

WDm
V P (q̂, p̂, ǫ, γ, ν)

)∣∣∣
ǫ,γ=0

(3.89)

The subscripted and superscripted formulation is defined as before such that the

expanded state transformation equations are

q = Q(q̂, p̂, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
q
(m,n)
0,0 (q̂, p̂, ν) (3.76)

p = P (q̂, p̂, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
p
(m,n)
0,0 (q̂, p̂, ν) (3.77)

and the zero superscript terms correspond to the identity transformation,

q(0,0)m,n =





q̂ m = n = 0

0 m+ n > 0
(3.90)
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and

p(0,0)m,n =





p̂ m = n = 0

0 m+ n > 0
(3.91)

Since the state transformation equations are not explicitly dependent on the Hamil-

tonian function as a state variable, they transform in the same manner as Ĥ from

Theorem III.2. Therefore, by the same logic used in the proof of Theorem III.2,

Eqs. 3.76 and 3.77 may be generated using the recursive equations

q(r,s+1)
m,n = q

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

q
(r,s)
m−j,n−i

q(r+1,s)
m,n = q

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

q
(r,s)
m−j,n−i (3.78)

and

p(r,s+1)
m,n = p

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

p
(r,s)
m−j,n−i

p(r+1,s)
m,n = p

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

p
(r,s)
m−j,n−i (3.79)

Thus, after deriving the generating functions from Theorem III.2, the explicit state

transformation equations are generated directly in terms of the transformed state

variables through the recursive equations in Eqs. 3.78 and 3.79.

Recall that the canonical transformation q = Q(q̂, p̂, ǫ, γ, ν) and p = P (q̂, p̂, ǫ, γ, ν)

is defined by the coupled pair of systems

∂

∂ǫ




q

p


 =




∂

∂p
W(q̂, p̂, ǫ, γ, ν)

− ∂

∂q
W(q̂, p̂, ǫ, γ, ν)


 (3.43)
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and

∂

∂γ




q

p


 =




∂

∂p
V(q̂, p̂, ǫ, γ, ν)

− ∂

∂q
V(q̂, p̂, ǫ, γ, ν)


 (3.44)

wherein the generating functions serve as the system Hamiltonian functions and the

parameters ǫ and γ act as independent variables. The inversion of the canonical

transformation, defined as

q̂ = Q̂(q, p, ǫ, γ, ν) (3.92)

p̂ = P̂ (q, p, ǫ, γ, ν) (3.93)

satisfies the complementary system equations

∂

∂ǫ




q̂

p̂


 =




∂

∂p̂
Ŵ(q, p, ǫ, γ, ν)

− ∂

∂q̂
Ŵ(q, p, ǫ, γ, ν)


 (3.94)

and

∂

∂γ




q̂

p̂


 =




∂

∂p̂
V̂(q, p, ǫ, γ, ν)

− ∂

∂q̂
V̂(q, p, ǫ, γ, ν)


 (3.95)

in terms of the inverse generating functions Ŵ(q, p, ǫ, γ, ν) and V̂(q, p, ǫ, γ, ν). Wintner

demonstrated that for the canonical transformation (q, p) → (q̂, p̂) with remainder

functionR(q̂, p̂, ǫ, γ, ν), the remainder function for the inverse transformation (q, p)←

(q̂, p̂) is43

R̂ = −R
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)
(3.96)

implying that the inverse generating functions in Eqs. 3.94 and 3.95 are

Ŵ(q̂, p̂, ǫ, γ, ν) = −W
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)

V̂(q̂, p̂, ǫ, γ, ν) = −V
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)
(3.97)
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Thus, to construct the inverse generating functions under the canonical transforma-

tion as described in Eqs. 3.97, one need only apply the DH method in the same

manner as in the transformation of the Hamiltonian function. The subscript and

superscript formulation is introduced such that

Ŵ =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
Ŵ (m,n)

0,0 (q, p, ν) (3.80)

V̂ =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
V̂ (m,n)
0,0 (q, p, ν) (3.81)

and the zeroth-order terms correspond to the negative identity transformation

Ŵ (0,0)
m,n = −Wm,n(q̂, p̂, ν)

V̂ (0,0)
m,n = −Vm,n(q̂, p̂, ν) (3.82)

The transformed inverse generating functions are then constructed through the DH

recursive equations

Ŵ (r,s+1)
m,n = Ŵ (r,s)

m,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

Ŵ (r,s)
m−j,n−i

Ŵ (r+1,s)
m,n = Ŵ (r,s)

m+1,n +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVj+1,i+1

Ŵ (r,s)
m−j,n−i (3.83)

The inverse state transformation equations are constructed using the DH method

in the same manner as the forward state transformation equations, but starting from

Eqs. 3.94 and 3.95 instead of Eqs. 3.43 and 3.44. Thus, the inverse transformation

equations are represented by the expansion series

q̂ = Q̂(q, p, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
q̂
(m,n)
0,0 (q, p, ν) (3.84)

p̂ = P̂ (q, p, ǫ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
p̂
(m,n)
0,0 (q, p, ν) (3.85)
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with q̂
(0,0)
0,0 = q, p̂

(0,0)
0,0 = p, and q̂

(0,0)
m,n = p̂

(0,0)
m,n = 0 for m + n > 0 and are generated

through the recursive equations

q̂(r,s+1)
m,n = q̂

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LŴj+1,i+1

q̂
(r,s)
m−j,n−i

q̂(r+1,s)
m,n = q̂

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LV̂j+1,i+1

q̂
(r,s)
m−j,n−i (3.98)

p̂(r,s+1)
m,n = p̂

(r,s)
m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LŴj+1,i+1

p̂
(r,s)
m−j,n−i

p̂(r+1,s)
m,n = p̂

(r,s)
m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LV̂j+1,i+1

p̂
(r,s)
m−j,n−i (3.99)

QED

3.3.3 Homological Equations and Averaging

Having presented and proved the two-parameter DH method in Theorem III.2

and the state transformation equations in Corollary III.3, the practical application

of the method to perturbed Hamiltonian systems is presented here. Starting with an

expanded Hamiltonian function in the form

H(q, p, ǫ, γ, ν) =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
H(0,0)

m,n (q, p, ν) (3.32)

the application of Eq. 3.35 and Eqs. 3.37 through 3.40 in the two-parameter DH

method yields a series of first-order partial differential equations - one for each order

in the expansion. Through order 3, the un-mixed (m = 0 and/or n = 0) equations
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are

K0,0 = H(0,0)
0,0

K0,1 = H(0,1)
0,0 + S(0,0)

0,0 = −∂W1,1

∂ν
+ LW1,1

H(0,0)
0,0 +H(0,0)

0,1

K1,0 = H(1,0)
0,0 + T (0,0)

0,0 = −∂V1,1
∂ν

+ LV1,1
H(0,0)

0,0 +H(0,0)
1,0

K0,2 = H(0,2)
0,0 + S(0,1)

0,0 = −∂W1,2

∂ν
+ LW1,2

H(0,0)
0,0 +H(0,0)

0,2 + LW1,1

(
H(0,0)

0,1 +K0,1

)

K2,0 = H(2,0)
0,0 + T (1,0)

0,0 = −∂V2,1
∂ν

+ LV2,1
H(0,0)

0,0 +H(0,0)
2,0 + LV1,1

(
H(0,0)

1,0 +K1,0

)

K0,3 = H(0,3)
0,0 + S(0,2)

0,0 = −∂W1,3

∂ν
+ LW1,3

H(0,0)
0,0 +H(0,0)

0,3 + LW1,2

(
2H(0,0)

0,1 +K0,1

)

+ LW1,1

(
H(0,0)

0,2 + 2K0,2 − LW1,1
K0,1

)

K3,0 = H(3,0)
0,0 + T (2,0)

0,0 = −∂V3,1
∂ν

+ LV3,1
H(0,0)

0,0 +H(0,0)
3,0 + LV2,1

(
2H(0,0)

1,0 +K1,0

)

+ LV1,1

(
H(0,0)

2,0 + 2K2,0 − LV1,1
K1,0

)
(3.100)

which are consistent with the single-parameter equations presented in the original

papers of Deprit and Hori.36;37 In addition, the mixed-variable terms are those ap-

pearing in the transformed Hamiltonian with non-zero powers of both ǫ and γ. This

is a departure from the single-parameter case, which obviously has no such mixing

of multiple parameters. The lowest order mixed term is K1,1, which is derived from

either of the two formulations

K1,1 = H(1,1)
0,0 + S(1,0)

0,0 = −∂W2,1

∂ν
+ LW2,1

H(0,0)
0,0 +H(0,0)

1,1 + LW1,1
H(0,0)

1,0 + LV1,1
K0,1

= H(1,1)
0,0 + T (0,1)

0,0 = −∂V1,2
∂ν

+ LV1,2
H(0,0)

0,0 +H(0,0)
1,1 + LV1,1

H(0,0)
0,1 + LW1,1

K1,0

(3.101)
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Likewise, the terms K1,2 and K2,1 are derived from

K1,2 = H(1,2)
0,0 + S(1,1)

0,0 = −∂W2,2

∂ν
+ LW2,2

H(0,0)
0,0 +H(0,0)

1,2 + LW1,2
H(0,0)

1,0 + LV1,1
K0,2

+ LW2,1

(
K0,1 +H(0,0)

0,1

)
+ LW1,1

(
H(0,0)

1,1 +K1,1 − LV1,1
K0,1

)

= H(1,2)
0,0 + T (0,2)

0,0 = −∂V1,3
∂ν

+ LV1,3
H(0,0)

0,0 +H(0,0)
1,2 + 2LV1,2

H(0,0)
0,1 + LV1,1

H(0,0)
0,2

+ LW1,2
K1,0 + LW1,1

(
2K1,1 − LW1,1

K1,0

)

K2,1 = H(2,1)
0,0 + S(2,0)

0,0 = −∂V2,2
∂ν

+ LV2,2
H(0,0)

0,0 +H(0,0)
2,1 + LV2,1

H(0,0)
0,1 + LW1,1

K2,0

+ LV1,2

(
K1,0 +H(0,0)

1,0

)
+ LV1,1

(
H(0,0)

1,1 +K1,1 − LW1,1
K1,0

)

= H(2,1)
0,0 + T (1,1)

0,0 = −∂W3,1

∂ν
+ LW3,1

H(0,0)
0,0 +H(0,0)

2,1 + 2LW2,1
H(0,0)

1,0 + LW1,1
H(0,0)

2,0

+ LV2,1
K0,1 + LV1,1

(
2K1,1 − LV1,1

K0,1

)
(3.102)

This pattern continues for higher orders wherein each mixed term appearing in the

original Hamiltonian has two available avenues for deriving the corresponding trans-

formed term. The pair of formulations are distinguished by a pair of complementary

generating functions that are related according to the Deprit commutation condition

0 =
∂V
∂ǫ
− ∂W

∂γ
+ LWV (3.74)

where at each order in the expansion of W and V , the complementary generating

functions satisfy Eq. 3.74 in the expanded form

0 = Vm+1,n+2 −Wm+2,n+1 +
n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWj+1,i+1

Vm−j+1,n−i+1 (3.75)
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From Eqs. 3.75, one may derive the ordered Deprit commutation conditions

V1,2 −W2,1 + LW1,1
V1,1 = 0

V2,2 −W3,1 + LW1,1
V2,1 + LW2,1

V1,1 = 0

V1,3 −W2,2 + LW1,1
V1,2 + LW1,2

V1,1 = 0

V1,4 −W2,3 + LW1,1
V1,3 + 2LW1,2

V1,2 + LW1,3
V1,1 = 0

V3,2 −W4,1 + LW1,1
V3,1 + 2LW2,1

V2,1 + LW3,1
V1,1 = 0

V2,3 −W3,2 + LW1,1
V2,2 + LW2,1

V1,2 + LW1,2
V2,1 + LW2,2

V1,1 = 0 (3.103)

and likewise for higher-orders. Thus, one need only derive a solution for one of the

two complementary mixed-parameter generating functions and use Eqs. 3.103 to solve

for the other (for example, solve the homological differential equation for W2,1 then

apply the first of Eqs. 3.103 to determine V1,2 or vice versa).

Whether one is applying the DH method about a single parameter or multiple

parameters, the key operation is to solve the homological equation appearing in

Eqs. 3.100, 3.101 and 3.102 in either of the forms

∂Wi+1,j

∂ν
− LWi+1,j

H0,0 = Qi,j −Ki,j (3.104)

or

∂Vi,j+1

∂ν
− LVi,j+1

H0,0 = Pi,j −Ki,j (3.105)

All of the terms included in H0,0, Qi,j, and Pi,j are known prior to solving the homo-

logical equation, either from the expansion of the original Hamiltonian function or

from previously derived terms of lesser order. The goal is then to prescribe a desired

form for K and solve the homological equations for each of the corresponding terms

in the expanded generating function. However, one must take some care in choosing

the form of K in order to insure a realizable transformation. Since the transformation
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is formulated in terms of expansion series the DH method is convergent to the real

solution if the state transformation equations are everywhere analytic in the original,

real-valued coordinate system. This insures that the expanded solution converges to

the true solution as more and more terms are included in the expansion. To remain

analytic and locally convergent, the secular variations in the system response must

remain intact within the transformed phase space. However, one may still average

out the periodic variations by defining the transformed Hamiltonian function in terms

of the functional average

Ki,j =< Qi,j > or < Pi,j > (3.106)

where Qi,j and Pi,j are the terms appearing in the homological equations shown

in Eqs. 3.104 and 3.105. When expressed in action-angle variables, the averaging

normalization in Eq. 3.106 eliminates periodic variations in the independent variable

ν and fast variables θi, leaving only secular variations in the slow variables Ii. Thus,

while one speaks of prescribing a desired form for K, in fact the desired form is itself

dictated by the conditions of the averaging method.

In any event, having prescribed the form for K, the solution to the ordered series

of homological equations defines the necessary ordered generating functions, Wi and

Vi, that achieve the desired transformation. The form of the homological equations

is essentially the same at all orders and depends primarily on the form of the unper-

turbed system H(0,0)
0,0 . Therefore, one may immediately determine the practicality of

applying the DH method based on the form of the unperturbed system and whether

it permits a solution to the homological equation.
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3.4 Incorporation of Control

To incorporate control authority in the perturbed Hamiltonian system, one may

append the original Hamiltonian function with a non-autonomous forcing function

U(q, p, ǫ, γ, ν). Expanding about the two parameters ǫ and γ results in the controlled

Hamiltonian function

Hc(q, p, ǫ, γ, ν) = H(q, p, ǫ, γ, ν) + U(q, p, ǫ, γ, ν)

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
H(0,0)

m,n (q, p, ν) + U (0,0)
m,n (q, p, ν)

)
(3.107)

which may be normalized using the DH method in the same manner as the un-

controlled system, but in place of H one inserts Hc. Since the forcing function is

non-autonomous, it will also contribute to the remainder function R → Rc and the

generating functions W → Wc and V → Vc. Nonetheless, under the same general

assumptions stated previously, the controlled Hamiltonian function in Eq. 3.107 may

be normalized using the DH method in the same manner as the uncontrolled case

resulting in a transformed controlled Hamiltonian function in the form

Kc = Hc

(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)
+Rc (q̂, p̂, ǫ, γ, ν)

= H
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)

+ U
(
Q(q̂, p̂, ǫ, γ, ν), P (q̂, p̂, ǫ, γ, ν), ǫ, γ, ν

)
+Rc (q̂, p̂, ǫ, γ, ν)

= Ĥ (q̂, p̂, ǫ, γ, ν) + Û (q̂, p̂, ǫ, γ, ν) +Rc (q̂, p̂, ǫ, γ, ν) (3.108)

where Ĥ and Û are the uncontrolled Hamiltonian function and forcing function writ-

ten explicitly in terms of the state transformation equations and Rc is the con-

trolled remainder function. The question persists as to how the state transforma-

tion (q, p)→ (q̂, p̂) is itself affected by the additional forcing function. Consider, the
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homologic equation in the controlled case

∂Wc,i+1,j

∂ν
− LWc,i+1,j

H(0,0)
c,0,0 = Qc,i,j −Kc,i,j (3.109)

where Qc,i,j is comprised of terms known a priori and Kc,i,j is the portion of Eq. 3.108

at order γi and ǫj. The controlled generating function Wc,i+1,j is then defined by the

solution to the homological equation in Eq. 3.109, which will depend in large part on

the form of the controlled unperturbed system

H(0,0)
c,0,0 = H(0,0)

0,0 + U (0,0)
0,0 (3.110)

However, for the purposes of this study, it is assumed that the unperturbed system

already possesses ideal properties of integrability and stability and thereby represents

the desired solution. Therefore, setting the zeroth order forcing function term to zero

U (0,0)
0,0 ≡ 0 (3.111)

the unperturbed system is left in its uncontrolled form. As such, the controller is

in the form of a perturbation-damping controller. In other applications, it may be

desired to incorporate control at the zeroth-order for the purposes of affecting the

unperturbed system as well. However, in this case, Eq. 3.110 implies that control

terms only appear on the right-hand side of Eq. 3.109 within Qc,i,j. Therefore, the

conjecture is made that if the forcing function is in the same form as the original

Hamiltonian function then the solution to Eq. 3.109 may be de-coupled into a sum

of independent generating functions

Wc =W +Wu (3.112)
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and likewise

Vc = V + Vu (3.113)

The resultant controlled homological equation then takes either the form

Kc,i,j = −
∂Wi+1,j

∂ν
+ LWi+1,j

H(0,0)
0,0 +Qi,j

− ∂Wu,i+1,j

∂ν
+ LWu,i+1,j

H(0,0)
0,0 +Qu,i,j

+ U (0,0)
i,j +Qc,i,j (3.114)

or

Kc,i,j = −
∂Vi,j+1

∂ν
+ LVi,j+1

H(0,0)
0,0 + Pi,j

− ∂Vu,i,j+1

∂ν
+ LVu,i,j+1

H(0,0)
0,0 + Pu,i,j

+ U (0,0)
i,j + Pc,i,j (3.115)

where Qu,i,j, Qc,i,j, Pu,i,j, and Pc,i,j are known a priori to solving the homological

equation. The first line in Eq. 3.114 corresponds to the uncontrolled result

Ki,j = −
∂Wi+1,j

∂ν
+ LWi+1,j

H(0,0)
0,0 +Qi,j (3.116)

while the remaining terms U (0,0)
i,j and Wu,i+1,j are designed as to modify Ki,j into the

desired form for Kc,i,j through the control law

Kc,i,j −Ki,j = −
∂Wu,i+1,j

∂ν
+ LWu,i+1,j

H(0,0)
0,0 +Qu,i,j

+ U (0,0)
i,j +Qc,i,j (3.117)

and likewise for Vu,i,j+1.

There are effectively two control functions introduced in the control law in Eq. 3.117:
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the input function U (0,0)
i,j and its corresponding generating functionWu,i+1,j. As such,

there is some flexibility in how one may design the control scheme in order to achieve

some desired form for the controlled Hamiltonian function Kc. One approach is to

define the control input by

U (0,0)
i,j = Kc,i,j −Ki,j −Qc,i,j (3.118)

such that Eq. 3.117 dictates the condition

− ∂Wu,i+1,j

∂ν
+ LWu,i+1,j

H(0,0)
0,0 +Qu,i,j = 0 (3.119)

which effectively sets the control generating functions W and V to zero. Thus, this

control formulation acts on the secular terms in the transformed Hamiltonian func-

tion without affecting the underlying state transformation equations. An alternative

approach is to define the controlled generating function by

0 = −∂Wi+1,j

∂ν
+ LWi+1,j

H(0,0)
0,0

− ∂Wu,i+1,j

∂ν
+ LWu,i+1,j

H(0,0)
0,0 (3.120)

such that Wu,i+1,j = −Wi+1,j and the differential terms are removed from the control

law. Eq. 3.117 then dictates a control input function

U (0,0)
i,j = Kc,i,j −Ki,j +

∂Wu,i+1,j

∂ν
− LWu,i+1,j

H(0,0)
0,0 − (Qu,i,j +Qc,i,j)

= Kc,i,j −H(0,0)
i,j (3.121)

wherein (Qi,j +Qu,i,j +Qc,i,j) → H(0,0)
i,j at all orders. Thus, the control law in

Eq. 3.121 is expressed directly in terms of the higher-order terms in the original

Hamiltonian function.
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In either control strategy, one may first derive the complete transformation of

the uncontrolled system in terms of the generating functions W and V yielding the

transformed Hamiltonian K. Upon deriving the uncontrolled response, Eq. 3.117 is

imposed in terms of a prescribed solution for Kc. The corresponding controlled state

transformation equations are defined implicitly through the controlled generating

functions Wc = W +Wu and Vc = V + Vu in the same manner as the uncontrolled

system presented in Corollary III.3. The controlled state transformation equations

are represented by the series

q =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
q
(m,n)
c,0,0 (q̂, p̂, ν) (3.122)

p =
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!
p
(m,n)
c,0,0 (q̂, p̂, ν) (3.123)

where the zero superscript terms correspond to the identity transformation,

q(0,0)c,m,n =





q̂ m = n = 0

0 m+ n > 0
(3.124)

and

p(0,0)c,m,n =





p̂ m = n = 0

0 m+ n > 0
(3.125)

and are otherwise generated from

q(r,s+1)
c,m,n = q

(r,s)
c,m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWc,j+1,i+1

q
(r,s)
c,m−j,n−i

q(r+1,s)
c,m,n = q

(r,s)
c,m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVc,j+1,i+1

q
(r,s)
c,m−j,n−i (3.78)
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and

p(r,s+1)
c,m,n = p

(r,s)
c,m,n+1 +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LWc,j+1,i+1

p
(r,s)
c,m−j,n−i

p(r+1,s)
c,m,n = p

(r,s)
c,m+1,n +

n∑

i=0

m∑

j=0

(
n

i

)(
m

j

)
LVc,j+1,i+1

p
(r,s)
c,m−j,n−i (3.79)

To see this control scheme in effect, consider the zeroth and first-order controlled

homological equations

Kc,0,0 = H(0,0)
c,0,0 = K0,0

Kc,0,1 = H(0,1)
c,0,0 + S

(0,0)
c,0,0 = K0,1 + U (0,0)

0,1 −
∂Wu,1,1

∂ν
+ LWu,1,1

H(0,0)
0,0

Kc,1,0 = H(1,0)
c,0,0 + T

(0,0)
c,0,0 = K1,0 + U (0,0)

1,0 −
∂Vu,1,1
∂ν

+ LVu,1,1
H(0,0)

0,0 (3.126)

and the second-order equations

Kc,0,2 = H(0,2)
c,0,0 + S

(0,1)
c,0,0 = K0,2 + U (0,0)

0,2 + LW1,1

(
U (0,0)
0,1 + U (0,1)

0,0 + S(0,0)
u,0,0

)

− ∂Wu,1,2

∂ν
+ LWu,1,2

H(0,0)
0,0 + LWu,1,1

(
H(0,0)

c,0,1 +H
(0,1)
c,0,0 + S

(0,0)
c,0,0

)

Kc,2,0 = H(2,0)
c,0,0 + T

(1,0)
c,0,0 = K2,0 + U (0,0)

2,0 + LV1,1

(
U (0,0)
1,0 + U (1,0)

0,0 + T (0,0)
u,0,0

)

− ∂Vu,2,1
∂ν

+ LVu,2,1
H(0,0)

0,0 + LVu,1,1

(
H(0,0)

c,1,0 +H
(1,0)
c,0,0 + T

(0,0)
c,0,0

)

Kc,1,1 = H(1,1)
c,0,0 + S

(1,0)
c,0,0 = K1,1 + U (0,0)

1,1 + LV1,1
U (0,0)
0,1 + LW1,1

(
U (1,0)
0,0 + T (0,0)

u,0,0

)

− ∂Vu,1,2
∂ν

+ LVu,1,2
H(0,0)

0,0 + LVu,1,1
H(0,0)

c,0,1 + LWu,1,1

(
H(1,0)

c,0,0 + T
(0,0)
c,0,0

)

= H(1,1)
c,0,0 + T

(0,1)
c,0,0 = K1,1 + U (0,0)

1,1 + LW1,1
U (0,0)
1,0 + LV1,1

(
U (0,1)
0,0 + S(0,0)

u,0,0

)

− ∂Wu,2,1

∂ν
+ LWu,2,1

H(0,0)
0,0 + LWu,1,1

H(0,0)
c,1,0 + LVu,1,1

(
H(0,1)

c,0,0 + S
(0,0)
c,0,0

)

(3.127)

Within these controlled homological equations, the control laws are designed using
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Eqs. 3.118 and 3.119, Eqs. 3.120 and 3.121, or some other formulation of Eq. 3.117. In

the first case, the control generating functions are Wu,i,j = Vu,i,j = 0 and the control

laws to first and second-order are

U (0,0)
0,1 = Kc,0,1 −K0,1

U (0,0)
1,0 = Kc,1,0 −K1,0 (3.128)

and

U (0,0)
0,2 = Kc,0,2 −K0,2 − LW1,1

(
U (0,0)
0,1 + U (0,1)

0,0

)

U (0,0)
2,0 = Kc,2,0 −K2,0 − LV1,1

(
U (0,0)
1,0 + U (1,0)

0,0

)

U (0,0)
1,1 = Kc,1,1 −K1,1 − LV1,1

U (0,0)
0,1 − LW1,1

U (1,0)
0,0

= Kc,1,1 −K1,1 − LW1,1
U (0,0)
1,0 − LV1,1

U (0,1)
0,0 (3.129)

Alternatively, one could impose the control generating functions Wu,i,j = −Wi,j and

Vu,i,j = −Vi,j such that the control laws are expressed directly in terms of the higher-

order terms in the original Hamiltonian function

U (0,0)
0,1 = Kc,0,1 −H(0,0)

0,1

U (0,0)
1,0 = Kc,1,0 −H(0,0)

1,0

U (0,0)
0,2 = Kc,0,2 −H(0,0)

0,2

U (0,0)
2,0 = Kc,2,0 −H(0,0)

2,0

U (0,0)
1,1 = Kc,1,1 −H(0,0)

1,1 (3.130)

No matter how the control laws are formulated, the aim is to prescribe a desired

form for the controlled Hamiltonian function Kc and derive the corresponding series

of control functions that achieve the desired form within the DH transformation.
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3.5 Nonlinear Oscillator with Damping

To validate the two-parameter DH method and controlled DH method, a test case

is presented in the form of a nonlinear oscillator with external damping. The standard

equation of motion for the nonlinear oscillator with damping is

dq2

dt2
+ α

dq

dt
+ ω2

0 sin q = 0 (3.131)

where q is the angular displacement, ω0 is the natural, undamped frequency, and

α is the damping coefficient. The dynamics may be converted into a Hamiltonian

formulation by applying the method discussed in Huang and Lin with the resultant

Hamiltonian function

H(q, p, t) = e−αt

(
p2

2
− e2αtω2

0 cos q

)
(3.132)

where p = eαtq̇ is the generalized momenta.54 The origin is an equilibrium point at

which the Hamiltonian function assumes the time-dependent function

H(0, 0, t) = −ω2
0e

αt (3.133)

The function in Eq. 3.133 may be subtracted from the general Hamiltonian function

in Eq. 3.132 without affecting the underlying dynamics such that the Hamiltonian

function assumes a value of zero at the equilibrium point. Expanding the resultant

Hamiltonian function about the origin and the zero-damping case yields the series
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representation

H(q, p, t) = p2

2

(
1− αt+

α2t2

2
− α3t3

3!
+

α4t4

4!
+ O

(
α5
))

+ ω2
0

(
1 + αt+

α2t2

2
+

α3t3

3!
+

α4t4

4!
+ O

(
α5
))

(
q2

2
− γ2q4

4!
+

γ4q6

6!
− γ6q8

8!
+ O

(
γ8
))

(3.134)

where γ parameterizes the scale of the even-powered nonlinear terms. Due to the form

of Eq. 3.132, only even-powers of q and γ appear in the expansion. Action-angle type

variables are introduced in terms of the canonical transformation generating function

S(q, θ) = ω0

2
q2 tan−1 θ (3.135)

or directly in terms of the state transformation equations

q =

√
2I

ω0

sin θ

p =
√

2Iω0 cos θ (3.136)

Expressed in terms of action-angle type variables, the expanded Hamiltonian function

is

H(θ, I, t) = ω0I

(
1− αt cos 2θ +

α2t2

2
− α3t3

3!
cos 2θ +

α4t4

4!
+ O

(
α5
))

+

(
1 + αt+

α2t2

2
+

α3t3

3!
+

α4t4

4!
+ O

(
α5
))

(
−γ2I2

6
sin4 θ +

γ4I3

90ω0

sin6− γ6I4

2520ω2
0

sin8 θ +O
(
γ8
))

(3.137)
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In the spirit of the DH method, the expanded Hamiltonian function in Eq. 3.137 is

represented by the series

H(θ, I, t) =
∞∑

m=0

∞∑

n=0

γm

m!

αn

n!
H(0,0)

m,n (θ, I, t) (3.138)

where H(0,0)
m,n are non-autonomous functions of the action-angle variables and the time.

The unperturbed system is the linearized oscillator with zero damping

H(0,0)
0,0 = ω0I =

1

2

(
p2 + ω0q

2
)

(3.139)

which possesses an integral of motion in the action variable I such that the phase

space is foliated by invariant tori parameterized by the constant value I0 = I(t0) and

wound linearly by θ(t) = θ(t0)+ω0(t−t0). Being a single degree of freedom system, the

invariant tori correspond to 2-dimensional circles in the planar phase space as shown

in Figure 3.3. Points farther from the origin correspond to larger values of I0 and

thereby larger maximum displacements in q. A typical response for the unperturbed

Figure 3.3: Linearized Oscillator with Zero Damping

system is shown in Fig. 3.4 in terms of the state trajectories as functions of time.
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Figure 3.4: Linearized Oscillator Response

The perturbed system incorporates the nonlinear terms and time-dependent terms

in Eqs. 3.132 and 3.138 and is treated using the non-autonomous two-parameter

DH method presented in Theorem III.2 and Corollary III.3. The transformation

H(θ, I, t) → K(θ̂, Î , t) is defined implicitly through the pair of generating functions

W(θ̂, Î , t) and V(θ̂, Î , t) which are themselves derived from the solution to the homo-

logical differential equations in either of the two forms

∂Wm,n

∂t
+ ω0

∂Wm,n

∂θ
= Qm,n −Km,n

∂Vm,n

∂t
+ ω0

∂Vm,n

∂θ
= Pm,n −Km,n (3.140)

where the terms Km,n constitute the transformed Hamiltonian function and the terms

Qm,n and Pm,n are known prior to solving the homological equations. Many of these

terms are zero due to the form of Eq. 3.132 including P1,0 = Q0,2 = Q1,1 = 0 among
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others. Some of the lower-order cases that are not zero are listed in Eqs. 3.141

Q0,1 = −ω0tI cos 2θ

P2,0 = −
I2

3
sin4 θ

Q0,3 = −t2I cos θ sin θ

P2,1 =
I2

8ω0

(sin 2θ + ω0t (1− cos 2θ − cos 4θ))

Q0,4 = −
3It2

2ω0

P4,0 = −
I3

160ω0

(15− 35 cos 2θ + 2 cos 4θ + 3 cos 6θ)

Q2,2 = −
I2t

32ω0

(19 sin 2θ + 4 sin 4θ + 4ω0t(1− cos 2θ − cos 4θ)) (3.141)

Defining the transformed Hamiltonian by the secular part of the original Hamiltonian

yields

K(θ̂, Î , t) = ω0Î

(
1− α4t2

16ω2
0

+
α6t2

576ω4
0

(−3 + 16ω2
0t

2) + . . .

)

+
Î2

16

(
−1 + αt− α2t2

2
+

α3t(−67 + 8ω2
0t

2)

48ω2
0

− α4t2(9 + 8ω2
0t

2)

192ω2
0

+ . . .

)

+
Î3

128ω0

(
−1

2
+ αt+

α2(221− 96ω2
0t

2)

96ω2
0

+ . . .

)
+ . . . (3.142)

which is integrable up to the order of truncation. The generating functions that

achieve this transformation are computed from the homological equations at each
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order of α and γ with the first few non-zero terms being

W1,1 = −
Î

4ω0

(
cos 2θ̂ + 2ω0t sin 2θ̂

)

W1,3 =
Î

8ω3
0

[(
−1 + 2ω2

0t
2
)
cos 2θ̂ − 2ω0t sin 2θ̂

]

W3,1 =
Î2

384ω2
0

[
−48− 32 cos 2θ̂ + 5 cos 4θ̂ + 4ω0t

(
−8 sin 2θ̂ + sin 4θ̂

)]

V2,1 = −
Î2

96ω0

(
−8 sin 2θ̂ + sin 4θ̂

)

V2,2 = −
Î2

128ω2
0

[
8 + 12 cos 2θ̂ + cos 4θ̂ + 4ω0t

(
2 sin 2θ̂ + sin 4θ̂

)]
(3.143)

The mixed-parameter termK2,1 = Î2t/16 is derived from either of the two complemen-

tary generating functionsW3,1 and V2,2, which are related by the Deprit commutation

condition,

V2,2 −W3,1 + LW2,1
V1,1 + LW1,1

V2,1 = 0 (3.144)

Truncating to sufficiently high-order, the transformed Hamiltonian function in Eq. 3.142

is in Birkhoff normal form possessing the action-type variable Î as an integral of mo-

tion. The equations of motion are

dθ

dt
=

∂K
∂I

= ω0

(
1− α4t2

16ω2
0

+
α6t2

576ω4
0

(−3 + 16ω2
0t

2)

)

+
Î

8

(
−1 + αt− α2t2

2
+

α3t(−67 + 8ω2
0t

2)

48ω2
0

− α4t2(9 + 8ω2
0t

2)

192ω2
0

)

+
3Î2

128ω0

(
−1

2
+ αt+

α2(221− 96ω2
0t

2)

96ω2
0

)
− 5Î3

2048ω2
0

+ . . .

dI

dt
= −∂K

∂θ
= 0 (3.145)

wherein the angle-type variable is no longer a linear function of time, but rather varies

nonlinearly.

To numerically validate the transformation, set the natural frequency to ω0 =
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√
1.5 rads/s, the damping coefficient to α = 0.05, and consider an initial angular

displacement of q(0) = π/4 radians released from rest. The equations of motion

associated with the full nonlinear Hamiltonian function in Eq. 3.132 are integrated

with respect to time in the original state variables (q, p) resulting in the expected

damped oscillatory behavior seen in Figure 3.5.

Figure 3.5: Phase Portrait for the Damped Oscillator

To simplify the system formulation, one may now apply the two-parameter DH

method about the linearized, undamped oscillator. Using the Deprit inverse state

transformation equations, the initial conditions of the (q, p) and (θ, I) domain are

converted into initial conditions in the transformed (θ̂, Î) domain. The trajectories

in the transformed phase space are computed in closed-form from Eq. 3.145 and

converted back into the original (q, p) and (θ, I) phase space. This provides an ap-

proximate, local solution to the original system that converges to the true solution as

more terms are included in the expansion. The resultant state trajectory is plotted in

Figs. 3.6 and 3.7 for increasing orders in the expansion (dashed lines) as compared to

true solution (solid lines). As the truncation order increases, the solution converges

to the true solution. Note that the amplitude of the generalized momenta increases

exponentially as t→∞ while the angular displacement and angular velocity converge

on the origin.
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(a) 0th-Order Solution

(b) 2nd-Order Solution

(c) 4th-Order Solution

(d) 6th-Order Solution

Figure 3.6: DH Convergence for the Uncontrolled Damped Oscillator in (θ, I)
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(a) 0th-Order Solution

(b) 2nd-Order Solution

(c) 4th-Order Solution

(d) 6th-Order Solution

Figure 3.7: DH Convergence for the Uncontrolled Damped Oscillator in (q, p)
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Having analyzed the natural dynamics of the damped oscillator, one may now

consider the implementation of control using the method detailed in Section 3.4.

Since the natural motion of the damped oscillator converges toward the origin of the

(q, q̇) phase space, one may consider the control problem of eliminating or at least

slowing down the decay rate. A practical example for such a problem could be the

active control of a perpetual oscillator subject to damping.

A conservative approach to achieving this controlled behavior is to eliminate all

the secular variations in the system response by prescribing a controlled transformed

Hamiltonian function in the form

Kc = K0,0 = ω0Î (3.146)

This effectively forces the system to the unperturbed form, that is, the linearized

oscillator. The control law is defined at each order in the expansion by Eq. 3.117

Kc,i,j −Ki,j = −
∂Wu,i+1,j

∂ν
+ LWu,i+1,j

H(0,0)
0,0 +Qu,i,j

+ U (0,0)
i,j +Qc,i,j (3.117)

wherein Kc,i,j = 0 for i + j > 0 and H(0,0)
0,0 = ω0I. Two control strategies were

discussed in Section 3.4 and are applied in the sequel for the case of the damped

oscillator. First, consider the case where the control generating functions are zero,

Wu = Vu = 0 and the control law reduces to

U (0,0)
i,j = Ki,j −Qc,i,j i+ j 6= 0 (3.147)

Based on the transformed Hamiltonian function given in Eq. 3.142 the control law
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expressed in the transformed domain takes the explicit form

U(θ̂, Î , t) = −
[
ω0Î

(
− α4t2

16ω2
0

+
α6t2

576ω4
0

(−3 + 16ω2
0t

2)

)

+
Î2

16

(
−1 + αt− α2t2

2
+

α3t(−67 + 8ω2
0t

2)

48ω2
0

− α4t2(9 + 8ω2
0t

2)

192ω2
0

)

+
Î3

128ω0

(
−1

2
+ αt+

α2(221− 96ω2
0t

2)

96ω2
0

)
− 5Î4

8192ω2
0

+ . . .
]

(3.148)

The corresponding control law in the original phase space is

U(θ, I, t) = Iα4t2

16ω0

+
I2

384ω2
0

(
9α2 + 24ω2

0(1− αt+ 2α2t2 − 2αt(1− αt) cos 2θ)

− α2(3− 12ω2
0t

2) cos 4θ + 24αω0(1− αt) sin 2θ − 12α2ω0t sin 4θ
)

+
I3

768ω2
0

(
3ω0 + 8ω0 cos 2θ − 2ω0 cos 4θ

)
+ . . . (3.149)

Enforcing the control law for the numerical example introduced previously (ω0 =
√
1.5

rads/s, α = 0.05, q(0) = π/4) results in the controlled response shown in Figs. 3.8 and

3.9 for increasing orders in the expansion represented by dashed lines while the un-

controlled, damped response is represented by solid lines. The corresponding control

function profiles are shown in Fig. 3.10. Note that the zeroth-order case corresponds

to uncontrolled natural dynamics with U = 0. Otherwise, as the truncation order

and magnitude of the control input increase, the effect from the control law becomes

more pronounced and the controlled response converges toward the linearized oscil-

lator solution presented previously in Figs. 3.3 and 3.4. The controlled action-type

variable converges toward a fixed value while the state trajectories approach harmonic

oscillation. For further convergence, one need only incorporate more terms in the DH

normalization and resultant control law.
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(a) 0th-Order Solution

(b) 2nd-Order Solution

(c) 4th-Order Solution

(d) 6th-Order Solution

Figure 3.8: Controlled Response for the Damped Oscillator in (θ, I)
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(a) 0th-Order Solution

(b) 2nd-Order Solution

(c) 4th-Order Solution

(d) 6th-Order Solution

Figure 3.9: Controlled Response for the Damped Oscillator in (q, p)
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(a) 0th-Order Solution (b) 2nd-Order Solution

(c) 4th-Order Solution (d) 6th-Order Solution

Figure 3.10: Control Function Profile
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As an alternative to the previous approach, consider a control law defined by

Wu = −W and Vu = −V and the control law

U (0,0)
i,j = Kc,i,j −H(0,0)

i,j = −H(0,0)
i,j i+ j 6= 0 (3.150)

Since the control is designed to eliminate the higher-order perturbations, the control

law takes the form of direct negative feedback on the original Hamiltonian func-

tion. This is precisely the type of control one would achieve by simply eliminating

the higher-order perturbations directly from the original Hamiltonian function in

Eq. 3.137. In this case, the result is somewhat trivial since it can be derived without

ever applying the DH method transformation. Nonetheless, for illustration purposes,

the resultant control law is

U(θ, I, t) = −
[
ω0I

(
−αt cos 2θ + α2t2

2
− α3t3

3!
cos 2θ +

α4t4

4!
+ O

(
α5
))

+

(
1 + αt+

α2t2

2
+

α3t3

3!
+

α4t4

4!
+ O

(
α5
))

(
−γ2I2

6
sin4 θ +

γ4I3

90ω0

sin6− γ6I4

2520ω2
0

sin8 θ +O
(
γ8
)) ]

(3.151)

and as one might expect the controlled response converges much faster as shown

in Figs. 3.11 through 3.13 for the previous numerical example (ω0 =
√
1.5 rads/s,

α = 0.05, q(0) = π/4). As before, the system response converges to the linearized

oscillator solution for which the action variable is constant and the angle variable

varies linearly with time.
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(a) 0th-Order Solution

(b) 2nd-Order Solution

(c) 4th-Order Solution

(d) 6th-Order Solution

Figure 3.11: Controlled Response for the Damped Oscillator in (θ, I)
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(a) 0th-Order Solution

(b) 2nd-Order Solution

(c) 4th-Order Solution

(d) 6th-Order Solution

Figure 3.12: Controlled Response for the Damped Oscillator in (q, p)
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(a) 0th-Order Solution (b) 2nd-Order Solution

(c) 4th-Order Solution (d) 6th-Order Solution

Figure 3.13: Control Function Profile
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Chapter IV

Dynamical Analysis

The previous chapter outlined the major facets of the classic Deprit-Hori Lie

transform method (DH method) including a novel extension to two-parameter sys-

tems with dependence on the independent variable and the implementation of control

within the DH method. This chapter applies the DH method specifically to the ellip-

tic restricted-three body problem (ERTBP) and analyzes the system dynamics within

the transformed phase space.

4.1 System Normalization

One of the most powerful methods of analytical mechanics is the process of “nor-

malization” for dynamical systems. The term normalization or normal form is widely

used with varying connotations. However, the general idea is to apply a canonical

transformation to a complicated dynamical system in order to simplify its represen-

tation to something more tractable. For example, in the case of a linear system, the

Jordan normal form simplifies the equations of motion by describing them along the

system eigenvectors. Perturbation theory normalizes a system by decomposing it into

an unperturbed, integrable part plus a series of higher-order perturbation terms. The

fully perturbed system is then normalized about the unperturbed system using the

classic Von Zeipel method or more rigorously through the DH method. The system is

113



then expressed in the so-called Birkhoff normal form, which simplifies the equations

of motion by describing them along a set of local integrals of motion and angular

variables winding a local invariant torus.

For the ERTBP, the system Hamiltonian function is expanded about the circular

case in the hope of harnessing Jacobi’s integral as an approximate integral in the

non-circular case. The ERTBP Hamiltonian function was derived in Chapter II and

presented in Eq. 2.55

H(q, p, ν) = 1

2

(
r2 + p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

)
− pθ −

R

p

(
r2

2
+

1− µ

r1
+

µ

r2

)
(2.55)

where

r21 = r2 + µ2 − 2µr sinφ cos θ (2.56)

r22 = r2 + (1− µ)2 + 2 (1− µ) r sinφ cos θ (2.57)

The non-circular and non-autonomous effects are isolated within the multiplier R/p =

1/(1 + e cos ν), which is expanded about the circular case in the series

R

p
=

∞∑

n=0

(−e cos ν)n (4.1)

such that the expanded Hamiltonian function is represented by

H(q, p, ν) = 1

2

(
r2 + p2r +

p2φ
r2

+
p2θ

r2 sin2 φ

)
− pθ

−
(
r2

2
+

1− µ

r1
+

µ

r2

) ∞∑

n=0

(−e cos ν)n (4.2)

At this point, one could attempt a normalization of Eq. 4.2 about e = 0 using the

single parameter DH method. Doing so would result in a series of homologic equations
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in the form

∂Wn

∂ν
+

∂Wn

∂r
pr +

∂Wn

∂φ

pφ
r2

+
∂Wn

∂θ

(
pθ

r2 sin2 φ
− 1

)
+

∂Wn

∂pr

(
p2φ
r3

+
p2θ

r3 sin2 φ
+

∂U

∂r

)

+
∂Wn

∂pφ

(
p2θ cosφ

r2 sin3 φ
+

∂U

∂φ

)
+

∂Wn

∂pθ

∂U

∂θ
= Qn −Kn (4.3)

where

U =
1− µ

r1
+

µ

r2
(4.4)

Eq. 4.3 is a first-order partial differential equation with respect to the generating

function W , but is highly nonlinear with respect to the state variables. A solution

may exist for such a complicated nonlinear partial differential equation, in either

analytical or at least numerical form, but is outside the scope of this study and is

relegated to the auspices of future work.

In lieu of attempting to solve the complicated partial differential equation in

Eq. 4.3, one may instead limit motion to the neighborhood of one of the triangu-

lar Lagrange points (or possibly some other point such as a collinear Lagrange point

or one of the primaries). Expansion about either of the triangular Lagrange points

yields the series representation

H(δq, δp, ν) = 1

2

[(
1

re
δpθ − 2δr

)2

+ δp2r + r2eδφ
2 +

1

r2e
δp2φ

]

− 3

2

∞∑

n=0

(−e cos ν)n
[
r2eδr

2 + µ(1− µ) (cos θeδr − re sin θeδθ)
2

]

+O
(
||(δq, δp)||3

)
(4.5)

where the generalized coordinates and momenta (δq, δp) are defined relative to the
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Lagrange point coordinates and momenta

re cos θe = µ− 1

2
pr,e = 0

φe =
π

2
pφ,e = 0

re sin θe = ±
√

3/4 pθ,e =

(
µ− 1

2

)2

+
3

4
(2.68)

where the ± changes sign for motion about either L4 or L5.

While the expansion about the circular case is easily parameterized by the eccen-

tricity, it is less obvious how to parameterize the expansion about the Lagrange point.

In order to study the motion in the vicinity of the Lagrange point, the magnitude

of the nonlinear terms must be small as compared to the linear terms. One way to

parameterize this constraint is to scale the state variables by (δq, δp) → γ(δq, δp)

and taking γ < 1 such that higher-order terms remain small. Upon normalizing the

system, the scaling transformation is inverted (δq, δp)→ γ−1(δq, δp) to return to the

original phase space. This formally justifies the use of γ as a parameterization of the

expansion about the Lagrange point. In practice, one may simply skip the scaling

transformation by setting γ = 1 and confining the solution space to the neighborhood

of the Lagrange point. Nonetheless, to mirror the formulation used in Chapter III,

γ is incorporated as a small parameter of the system associated with the expansion

about the Lagrange point.

In the spirit of the DH method, the doubly-expanded Hamiltonian function in

Eq. 4.5 is represented as the perturbed system

H(δq, δp, e, γ, ν) =
∞∑

m=0

∞∑

n=0

γm

m!

en

n!
H(0,0)

m,n (δq, δp, ν) (4.6)

where γ parameterizes the magnitude of the nonlinear terms andH(0,0)
m,n corresponds to

terms of order ||(δq, δp)||m+2 and en. The function H(0,0)
0,0 corresponds to the linearized
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CRTBP, which represents the unperturbed system about which the DH method nor-

malizes the perturbed system, that is, the nonlinear ERTBP. The motiviation for

doing so lies in the ideal properties of autonomy and integrability in the unperturbed

system.

4.1.1 Unperturbed System

The simplest approximation of the full ERTBP system is the linearized, circu-

lar case represented by the term H(0,0)
0,0 and referred to as the unperturbed system.

It is represented through either of Eqs. 4.7 and 4.8 using spherical and Cartesian

coordinates respectively.

H(0,0)
0,0 (δq, δp) =

1

2

[(
1

re
δpθ − 2δr

)2

+ δp2r + r2eδφ
2 +

1

r2e
δp2φ

]

− 3

2

[
r2eδr

2 + µ(1− µ) (cos θeδr − re sin θeδθ)
2

]
(4.7)

H(0,0)
0,0 (δq, δp) =

1

2

[
(δpx + δqy)

2 + (δpy − δqx)
2 + δp2z + δq2z

]

− 3

8

[
δq2x + 3δq2y + 2

√
3(1− 2µ)δqxδqy

]
(4.8)

As discussed in Chapter II, the dynamics of the linearized CRTBP are characterized

by a set of purely imaginary eigenvalues within the range 0 < µ < µc = (1−
√
69/9)/2.

The ensuing motion is in the form of harmonic oscillation about the Lagrange point

with natural frequencies determined by the mass ratio µ through the equations

ωs =

√
1 +

√
1− 27µ(1− µ)

2
ωℓ =

√
1−

√
1− 27µ(1− µ)

2
ωz = 1 (4.9)
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and satisfying the inequality

0 < ωℓ <

√
2

2
< ωs < 1 (4.10)

with the unity eigenvalue identified with the linearized out-of-plane dynamics. The

frequency ωℓ corresponds to slow oscillation about the Lagrange point with period

2π/ωℓ while ωs corresponds to fast, epicyclic oscillation with period 2π/ωs. The

combination of both modes yields coupled harmonic oscillation in the planar dynamics

and circular oscillation in the out-of-plane.

To elucidate the oscillatory behavior of the unperturbed system, Breakwell and

Pringle provide a linear transformation of the planar CRTBP within the stable regime

that expresses the linearized system directly in the form of coupled harmonic oscil-

lators.12 Starting from the Cartesian representation in Eq. 4.8 the elements of the

Breakwell and Pringle transformation are given explicitly in Breakwell and Pringle,

Deprit and Rom, and Meyer and Schmidt.12;15;28 Extending the transformation to the

three-dimensional phase space and introducing the parameters

α , 3
√
3(1− 2µ) and β , 1 + (α2 − 27)/4, (4.11)

satisfying
√
23 < α < 3

√
3 and 0 < β < 1 yields the linear transformation




δqx
δqy
δqz
δpx
δpy
δpz


 =

1

2




0 0 0 9+4ω2
s −9−ω2

ℓ
0

−8 −8 0 −α α 0
0 0 2 0 0 0

−1−4ω2
s −1−4ω2

ℓ
0 α −α 0

α α 0 9−4ω2
s −9+4ω2

ℓ
0

0 0 0 0 0 2







qs ωs/

√√
β
√

11+2
√
β

qℓ ωℓ/

√√
β
√

11−2
√
β

qz

ps /ωs/

√√
β
√

11+2
√
β

pℓ /ωℓ/

√√
β
√

11−2
√
β

pz




(4.12)

where (qs, qℓ, qz, ps, pℓ, pz) are new generalized state variables identified with the short

and long-period (SLP) modes of the system. Note that the sign conventions used

in Eq. 4.12 correspond to the linear normalization about the L5 Lagrange point, but
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could easily be adapted for motion about L4, particularly in light of the symmetry be-

tween the two. The resultant transformed circular Hamiltonian function is expressed

in terms of the SLP variables as

H(0,0)
0,0 =

1

2

(
ω2
sq

2
s + p2s

)
− 1

2

(
ω2
ℓ q

2
ℓ + p2ℓ

)
+

1

2

(
ω2
zq

2
z + p2z

)
(4.13)

By expanding the non-canonical transformation from spherical coordinates to Carte-

sian coordinates, one may equally derive the linear transformation starting from

Eq. 4.7 as




δr
δφ
δθ
δpr
δpφ
δpθ


 =

1

2




cos θe 0 −re sin θe 0 0 0
sin θe 0 re cos θe 0 0 0
0 −re 0 0 0 0

sin θe 0 −re cos θe cos θe 0 − sin θe/re
− cos θe 0 −re sin θe sin θe 0 cos θe/re

0 0 0 0 −1/re 0




−1




0 0 0 9+4ω2
s −9−ω2

ℓ
0

−8 −8 0 −α α 0
0 0 2 0 0 0

−1−4ω2
s −1−4ω2

ℓ
0 α −α 0

α α 0 9−4ω2
s −9+4ω2

ℓ
0

0 0 0 0 0 2







qs ωs/

√√
β
√

11+2
√
β

qℓ ωℓ/

√√
β
√

11−2
√
β

qz

ps /ωs/

√√
β
√

11+2
√
β

pℓ /ωℓ/

√√
β
√

11−2
√
β

pz




(4.14)

which provides the same normalized form for the transformed Hamiltonian function

H(0,0)
0,0 =

1

2

(
ω2
sq

2
s + p2s

)
− 1

2

(
ω2
ℓ q

2
ℓ + p2ℓ

)
+

1

2

(
ω2
zq

2
z + p2z

)
(4.13)

The Hamiltonian state-space equations of motion take the convenient form

dqi
dν

=
∂H(0,0)

0,0

∂pi
= ±pi

dpi
dν

= −
∂H(0,0)

0,0

∂qi
= ∓ω2

i qi (4.15)
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and the corresponding orbit solutions are periodic in the form





qi(ν)

pi(ν)





=




cos (ωi (ν − ν0)) ω−1
i sin (ωi (ν − ν0))

−ωi sin (ωi (ν − ν0)) cos (ωi (ν − ν0))








qi,0

pi,0





(4.16)

for i = s, l, and z and with qi,0 and pi,0 representing the initial conditions at ν = ν0.

For the purposes of numerical analysis, it is often necessary to work within the

framework of complex coordinates. To this end, one may introduce the transformation




δqx
δqy
δqz
δpx
δpy
δpz


 =

1

2




0 0 0 9+4ω2
s −9−4ω2

ℓ
0

−8 −8 0 −α α 0
0 0 2 0 0 0

−1−4ω2
s −1−4ω2

ℓ
0 α −α 0

α α 0 9−4ω2
s −9+4ω2

ℓ
0

0 0 0 0 0 2





Id + i




0 0 0 ωs 0 0
0 0 0 0 ωℓ 0
0 0 0 0 0 1

1/ωs 0 0 0 0 0
0 1/ωℓ 0 0 0 0
0 0 1 0 0 0









ξs
ξℓ
ξz

ηs /(11
√
β+2β)/2

ηℓ /(11
√
β−2β)/2

ηz /2


 (4.17)

where (ξs, ξℓ, ξz, ηs, ηℓ, ηz) are complex-valued SLP state variables and Id is the iden-

tity matrix.15 Applying this transformation to the original unperturbed Hamiltonian

funciton in Eq. 4.8 yields

H(0,0)
0,0 = iωsξsηs − iωℓξℓηℓ + iξzηz (4.18)

such that the linearized equations of motion assume the decoupled form

dξi
dν

=
∂H(0,0)

0,0

∂ηi
= ±iωiξi

dηi
dν

= −
∂H(0,0)

0,0

∂ξi
= ∓iωiηi (4.19)
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and the corresponding orbit solutions decouple into

ξi(ν) = ξi,0 [cos (±ωi (ν − ν0)) + i sin (±ωi (ν − ν0))]

ηi(ν) = ηi,0 [cos (±ωi (ν − ν0)) + i sin (±ωi (ν − ν0))] (4.20)

for i = s, l, and z and with ξi,0 and ηi,0 representing the complex initial conditions at

ν = ν0.

Being integrable, the unperturbed system may be formulated using action-angle

variables through the explicit transformation equations

Is ,
ω2
sq

2
s + p2s
2ωs

tan θs , ωs
qs
ps

Iℓ ,
ω2
ℓ q

2
ℓ + p2ℓ
2ωℓ

tan θℓ , ωℓ
qℓ
pℓ

Iz ,
ω2
zq

2
z + p2z
2ωz

tan θz , ωz
qz
pz

(4.21)

or equivalently

Is , iξsηs tan θs ,
ξs + iωsηs/2/α

iξs + ωsηs/2/α

Iℓ , iξℓηℓ tan θℓ ,
ξℓ + iωℓηℓ/2/α

iξℓ + ωℓηℓ/2/α

Iz , iξzηz tan θz ,
ξs + iωzηz/2

iξz + ωzηz/2
(4.22)

with α = −9 + 14ω2
s + 8ω4

s = 13 − 30ω2
ℓ + 8ω4

ℓ . The resultant Hamiltonian function

is expressed in Birkhoff normal form

H(0,0)
0,0 = ωs Is − ωℓ Iℓ + ωzIz (4.23)
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with the corresponding equations of motion are

dθi
dν

=
∂H(0,0)

0,0

∂Ii
= ±ωi

dIi
dν

= −
∂H(0,0)

0,0

∂θi
= 0 (4.24)

and the orbit solution is

θi(ν) = θi,0 ± ωi (ν − ν0) (mod 2π)

Ii(ν) = Ii,0 (4.25)

for i = s, l, and z and with θi,0 and Ii,0 representing the action-angle initial condi-

tions at ν = ν0. The integrability of the unperturbed system is evident directly in

terms of the conserved action variables Ii, which together define n integrals of motion

parameterizing an n-dimensional torus on which the trajectories are wound by the

linearly ν-varying angular variables.

For the purposes of applying KAM theory in the planar dynamics, the unperturbed

system must either satisfy the non-degeneracy conditions in Eqs. 2.91 and/or 2.92,

or be in the proper Birkhoff normal form presented at the end of Chapter II. In

this case, since the natural frequencies of the unperturbed system are constant, the

system is properly degenerate such that the classic KAM theorem does not apply.

Therefore, one must resort to the second approach, that of normalizing the perturbed

system into Birkhoff normal form. Further, one must take care to avoid conditions

of resonance in the frequencies, which can de-stabilize the system regardless of its

degenerate properties. The first example of resonance was seen in Figure 2.8 at the

bifurcation point µ = µc. Resonance also occurs at mass ratios whose ratio of natural

frequencies ωs/ωℓ approaches an integer value. For example, the 2:1 resonance occurs
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at

ωs

ωℓ

= 2 =⇒ µ = µ2 =
45−

√
1833

90
≈ 0.0242939 (4.26)

and the 3:1 resonance occurs at

ωs

ωℓ

= 3 =⇒ µ = µ3 =
15−

√
213

30
≈ 0.013516 (4.27)

While it is possible to achieve stability in a resonant case, the conditions are more

strenuous. In the case of the CRTBP, Meyer et al demonstrated that motion about

the triangular Lagrange points in either of the 2:1 resonant case µ = µ2 or the 3:1

resonant case µ = µ3 is unstable.
16 Elsewhere in the range 0 < µ < µc, motion about

the triangular points is nonlinearly stable as demonstrated in the sequel.

4.1.2 Perturbed System

The unperturbed system H(0,0)
0,0 is autonomous and integrable with natural fre-

quencies ωs, ωℓ and ωz = 1 while the perturbed system

H(δq, δp, e, γ, ν) =
∞∑

m=0

∞∑

n=0

γm

m!

en

n!
H(0,0)

m,n (δq, δp, ν) (4.6)

is non-autonomous and non-integrable. The unperturbed system corresponds to the

linearized CRTBP while the perturbed system is the nonlinear ERTBP. The Breakwell

and Pringle linear transformation of the unperturbed, linearized CRTBP is applied to

the nonlinear and non-circular ERTBP such that the perturbed system is expressed

in terms of action-angle-type variables (θ, I) in the form

H(θ, I, ν) = ωs Is − ωℓ Iℓ + ωzIz +
∞∑

m+n>0

γm

m!

en

n!
H(0,0)

m,n (θ, I, ν) (4.28)

The higher-order perturbations are still explicitly dependent on ν and the angular

variables θi such that the normalized perturbed system is non-autonomous and non-
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integrable. However, since the system is represented in expanded form both about the

circular case and the linearized case, the true anomaly and angular variables only ap-

pear in the guise of periodic functions, that is,H(0,0)
m,n = H(0,0)

m,n (Ii, cos θi, sin θi, cos ν, sin ν)

for m + n > 0. Therefore, the DH method may be applied to average out these pe-

riodic terms with the goal of normalizing the perturbed Hamiltonian function into a

locally integrable form reminiscent of the unperturbed case.

Recall that the pivotal step to implementing the DH method is solving the ho-

mological equation in Eq. 3.31. Substituting the unperturbed Hamiltonian function

H(0,0)
0,0 = ωsIs−ωℓIℓ+ωzIz into Eqs. 3.31 yields a first-order partial differential equation

in the form

(
∂

∂ν
+ ωs

∂

∂θs
− ωℓ

∂

∂θℓ
+ ωz

∂

∂θz

)
Wi+1,j = Qi,j −Ki,j (4.29)

where the subscripts i, j denote a particular order in γ and ǫ respectively, Wi+1,j rep-

resents the corresponding part of the generating function and Qi,j encompasses all the

functions defined a priori through the original Hamiltonian function or from solutions

at lesser orders. Finally, Ki,j represents the corresponding part of the transformed

Hamiltonian function, which is defined by the periodic average

Ki.j ,< Qi,j >=
1

4(2π)

2π∫

0

2π∫

0

2π∫

0

2π∫

0

Qi,j dν dθs dθℓ dθz (4.30)

such that the true anomaly and angular variables are effectively eliminated from the

Hamiltonian function leaving only the action-type variables, that is, K = K(I).

Since the true anomaly and angular-type variables only appear in the form of

periodic functions in the original Hamiltonian function, they will likewise only appear

within periodic functions in the generating functions, transformed Hamiltonian, and
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terms appearing in Qi,j. Thus, the solution to Eq. 4.29 as given by the inversion

Wi+1,j =

(
∂

∂ν
+ ωs

∂

∂θs
− ωℓ

∂

∂θℓ
+ ωz

∂

∂θz

)−1

(Qi,j −Ki,j) , (4.31)

is equivalent to the explicit substitution defined by

cos (i1ν + i2θs + i3θℓ + i4θz) → sin (i1ν + i2θs + i3θℓ + i4θz)

i1 + i2ωs − i3ωℓ + i4ωz

sin (i1ν + i2θs + i3θℓ + i4θz) → − cos (i1ν + i2θs + i3θℓ + i4θz)

i1 + i2ωs − i3ωℓ + i4ωz

(4.32)

The term in the denominator goes to zero under resonant conditions further illustrat-

ing the pitfalls that arise when dealing with cases of resonance. However, even if ωs

and ωℓ are not in resonance, one must still account for resonance occurring between

the out-of-plane angular variable θz and the true anomaly (as in cos(ν−θz) for which

the denominator in Eq. 4.32 goes to zero). One option is to attempt to scale the

natural frequencies of the system away from ωz = 1. On the other hand, one can also

apply an alternative substitution solution in the form

cos (i1ν + i2θs + i3θℓ + i4θz) → ν cos (i1ν + i2θs + i3θℓ + i4θz) (4.33)

sin (i1ν + i2θs + i3θℓ + i4θz) → ν sin (i1ν + i2θs + i3θℓ + i4θz) . (4.34)

Since this substitution introduces secular terms with respect to ν, the corresponding

state transformation will also exhibit small secular drift within the out-of-plane dy-

namics. However, the scale of the drift is relatively small and the period of oscillation

is extremely large such that these secular effects are negligible. Note that previous

studies usually avoid this issue by simply limiting analyses to the planar system.
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4.1.3 Transformed Hamiltonian Function

Upon applying the DH method using the averaging operation discussed in the

previous section, the ERTBP Hamiltonian function is transformed into the Birkhoff

normal form

K =

(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
Îs −

(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃ℓ,n

)
Îℓ + ωz Îz

+

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
Î2s +

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
Î2ℓ

+

(
αzz +

∞∑

n=1

e2n

(2n)!
α̃zz,n

)
Î2z +

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
ÎsÎℓ

+

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
ÎsÎz +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
ÎℓÎz +O

(
Î3i

)
(4.35)

where the coefficients of the action-type variables are infinite series in the mass ratio

and even-powers of the eccentricity. The ordered perturbation coefficients ω̃i,j, αi, and

α̃i,j are fixed functions of the mass ratio and natural frequencies and due to the form

of Eq. 2.55, all odd-powers of the eccentricity are eliminated under the averaging

operation shown in Eq. 4.30. The resultant transformed Hamiltonian function as

shown in Eq. 4.35 is autonomous in ν and integrable with respect to the action-type

variables.

The ordered perturbation coefficients in Eq. 4.35 are comprised of the natural

frequencies ωi, the linearized non-circular coefficents ω̃i,j, and the nonlinear circular

and non-circular coefficients αi and α̃i,j. While all the coefficients are fixed functions

of the mass ratio, most of these functions are too large and complicated to display
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symbolically, with the exception of some of the lower-ordered terms listed in Eq. 4.36

ω̃s,1 =
ωs(1− ω2

s)(7− 6ω2
s)

2(1− 2ω2
s)(1− 4ω2

s)
αsℓ = −

ωsωℓ(43 + 64ω2
sω

2
ℓ )

3(1− 2ω2
s)(1− 2ω2

ℓ )(1− 5ω2
s)(1− 5ω2

ℓ )

ω̃ℓ,1 =
ωℓ(1− ω2

ℓ )(7− 6ω2
ℓ )

2(1− 2ω2
ℓ )(1− 4ω2

ℓ )
αzz = −

2ω2
sω

2
ℓ

3(12 + ω2
sω

2
ℓ )

αss =
ω2
ℓ (81− 696ω2

s + 124ω4
s)

72(1− 2ω2
s)

2(1− 5ω2
s)

αsz = −
16ωsω

2
ℓ

3(4− 9ω2
s + 2ω4

s)

αℓℓ =
ω2
s(81− 696ω2

ℓ + 124ω4
ℓ )

72(1− 2ω2
ℓ )

2(1− 5ω2
ℓ )

αℓz =
16ω2

sωℓ

3(4− 9ω2
ℓ + 2ω4

ℓ )
(4.36)

Eqs. 4.36 are consistent with those derived in previous studies that focused on either

the planar CRTBP or the planar linearized ERTBP.13;28;15

To validate the transformation, a numerical scenario is implemented for the Earth-

Moon system of mass ratio µ = 0.0124, which is sufficiently non-resonant per the

Diophantine condition in Eq. 2.90. For arbitrary eccentricity, its transformed Hamil-

tonian function is

K =
(
0.9535 + 0.0155e2 − 0.0355e4

)
Îs −

(
0.3015 + 0.8497e2 + 2.4324e4

)
Îℓ + Îz

+
(
0.1195− 0.5126e2 + 2.1422e4

)
Î2s +

(
0.3241− 69.7551e2 − 3732.5768e4

)
Î2ℓ

+
(
−0.0023 + 0.0009e2 + 0.0005e4

)
Î2z −

(
1.7880 + 11.2013e2 + 148.1181e4

)
ÎsÎℓ

+
(
0.0914− 0.0707e2 + 0.1499e4

)
ÎsÎz +

(
0.2286 + 1.6415e2 + 9.8214e4

)
ÎℓÎz

+O
(
I3
)

(4.37)

Two eccentricities are presented: the true Earth-Moon eccentricity of e = 0.0549 and

a hypothetical eccentricity of e = 0.2 to exaggerate the non-circular effects.

A Poincaré surface of section is generated by simulating a series of state trajec-

tories that each start at a different set of initial conditions. The surface of section

is then composed of all the points of intersection between the simulated state tra-

jectories and a given plane (in this case, the qx − qy plane). For the nearly circular
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Earth-Moon system of eccentricity e = 0.0549, the equations of motion for the full,

un-expanded Hamiltonian function in Eq. 2.55 are integrated over 1000 orbits to gen-

erate the Poincaré surface of sections shown in Fig. 4.1. In generating the surfaces of

section, any local trajectory that cross the qx axis and/or qy axis is deemed unstable

and excluded from the simulation. As such, the surfaces of section provide a rough

estimation of the region of stability about the Lagrange points.

Two cases are included in Fig. 4.1. The lower-left hand quadrant shows the stable

surface of section near the ERTBP L5 Lagrange point while the upper-left hand

quadrant shows the surface of section near the CRTBP L4 Lagrange point. Since

the dynamics are symmetric about the qx axis, the two can be compared in order to

characterize the non-circular effects. In addition, the small and large primaries are

represented as blue dots in Fig. 4.1 located on the x̂-axis at −µ and 1−µ respectively.

Figure 4.1: Poincaré Surface of Section near Earth-Moon L5

The surfaces of section in Fig. 4.1 give a rough numerical approximation of the

region of stability about the Lagrange points in both the circular and non-circular

systems. In comparing the two results, the non-circular effects appear to shrink the

size of the surface of section such that the region of stability in the ERTBP is smaller

than the corresponding region of stability for the CRTBP. Thus, while not entirely de-

stabilizing the system, the non-circular effects appear to reduce the region of stability
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about a triangular Lagrange point.

A typical state trajectory around the Earth-Moon L5 Lagrange point is shown in

Fig. 4.2. The initial conditions are defined as Is,0 = 0.0001, Iℓ,0 = 0.0002, Iz,0 = 0.0001

and θs,0 = θℓ,0 = θz,0 = 0 and the trajectory is integrated in terms of the full ERTBP

Hamiltonian function for a span of twice the long-period, 4π/ωℓ, which is equivalent

to approximately 6.3 short-period orbits. The corresponding phase portrait is rep-

(a) In-Plane Trajectory (b) Out-of-Plane Trajectory

(c) Phase Portrait in Cartesian Phase Space
(Red = x, Green = y, Yellow = z)

(d) Phase Portrait in SLP Phase Space
(Cyan = s, Brown = ℓ, Yellow = z)

Figure 4.2: State Trajectories relative to Earth-Moon L5

resented in Fig. 4.2(c) in terms of the Cartesian variables (δqx, δqy, δqz, δpx, δpy, δpz)

and in Fig. 4.2(d) in terms of the real-valued short and long-period (SLP) variables

(qs, qℓ, qz, ps, pℓ, pz) introduced in Eq. 4.12. The phase portraits are represented along

each reference direction with red, green and yellow corresponding to the x, y and z

dynamics in the Cartesian phase space and cyan, brown and yellow corresponding to

the s, ℓ and z dynamics in the SLP phase space. Fig. 4.2(d) particularly emphasizes

the oscillatory behavior of the system as the phase trajectories continuously wind the

origin.
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Rather than numerically integrating the full nonlinear dynamics, the solutions

may be approximated in the transformed phase space under the DH transformation.

Since the transformed Hamiltonian function is in integrable Birkhoff normal form,

the normalized equations of motion are expressed within the transformed local phase

space by

dθ̂s
dν

=
∂K
∂Îs

=

(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
+ 2

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
Îs

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
Îℓ +

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
Îz +O

(
Î2i

)

dθ̂ℓ
dν

=
∂K
∂Îℓ

= −
(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃ℓ,n

)
+ 2

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
Îℓ

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
Îs +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
Îz +O

(
Î2i

)

dθ̂z
dν

=
∂K
∂Îz

= ωz + 2

(
αzz +

∞∑

n=1

e2n

(2n)!
α̃zz,n

)
Îz

+

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
Îs +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
Îℓ +O

(
Î2i

)

(4.38)

and

dÎs
dν

= −∂K
∂θ̂s

= 0

dÎℓ
dν

= −∂K
∂θ̂ℓ

= 0

dÎz
dν

= −∂K
∂θ̂z

= 0 (4.39)
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For the Earth-Moon system, the truncated equations of motion are

dθ̂s
dν

=
(
0.9535 + 0.0155e2 − 0.0355e4

)
+ 2

(
0.1195− 0.5126e2 + 2.1422e4

)
Îs

−
(
1.7880 + 11.2013e2 + 148.1181e4

)
Îℓ +

(
0.0914− 0.0707e2 + 0.1499e4

)
Îz + . . .

dθ̂ℓ
dν

= −
(
0.3015 + 0.8497e2 + 2.4324e4

)
+ 2

(
0.3241− 69.7551e2 − 3732.5768e4

)
Îℓ

−
(
1.7880 + 11.2013e2 + 148.1181e4

)
Îs +

(
0.2286 + 1.6415e2 + 9.8214e4

)
Îz + . . .

dθ̂z
dν

= 1 + 2
(
−0.0023 + 0.0009e2 + 0.0005e4

)
Îz +

(
0.0914− 0.0707e2 + 0.1499e4

)
Îs

+
(
0.2286 + 1.6415e2 + 9.8214e4

)
Îℓ + . . .

dÎs
dν

=
dÎℓ
dν

=
dÎz
dν

= 0 (4.40)

The solutions are then transformed back into the original set of action-angle type

variables using the explicit state transformation mapping (θ̂, Î) → (θ, I) as derived

in Corollary III.3. This provides the solutions within the original phase space, which

are expressed using any of the real-valued set of variables (θ, I), (qi, pi) or (δq, δp) as

related to each other by the linear transformations presented in Section 4.1.1. For

the numerical Earth-Moon system, the validity of the approximation is demonstrated

in Figs. 4.3 through 4.6, which show the numerically-derived truth solution and the

analytically-derived DH solutions at increasing orders of truncation in the expan-

sion. Note that the zeroth-order DH solution corresponds to the unperturbed system

exhibiting constant action-type variables and linearly varying angle-type variables.

Due to the inherent ambiguity associated with the inverse tangent function, noise

appears in the convergence of the solution within the SLP phase space, particularly

at higher-orders in the DH transformation. Nonetheless, the solution derived in the

transformed phase space converges quickly to the truth solution.
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.3: DH Convergence for Earth-Moon along Is and θs
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.4: DH Convergence for Earth-Moon along Iℓ and θℓ
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.5: DH Convergence for Earth-Moon along qs and ps
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.6: DH Convergence for Earth-Moon along qℓ and pℓ
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To exaggerate the non-circular effects in the transformation, consider the Earth-

Moon system µ = 0.0124, but with an increased eccentricity of e = 0.2. The equations

of motion for the full Hamiltonian function in Eq. 2.55 are numerically integrated over

1000 orbits to generate the Poincaré surfaces of section shown in Fig. 4.7. As before,

the surfaces of section include the circular case near L4 and the non-circular case

near L5 and only include stable solutions as roughly defined by whether the state

trajectories cross either of the reference axes in the span of 1000 orbits. As such,

the surfaces of section provide a rough numerical approximation for the regions of

stability, which may be compared for the two symmetric cases of the CRTBP and

ERTBP included in Fig. 4.7.

Figure 4.7: Poincaré Surface of Section near Eccentric Earth-Moon L5

In this case, the higher eccentricity effectively shrinks the region of stability around

the ERTBP L5 Lagrange even further than seen previously in Fig. 4.1. The effects are

particularly strong on the Moon-side of the stability region, which shows a greater

reduction in Fig. 4.7 than the Earth-side. Based on these numerical results, one

would expect higher eccentricities to exhibit increasingly smaller regions of stability

as compared to the CRTBP. Eventually, the region of stability will shrink to zero

corresponding to an unstable system.

A typical state trajectory of the Earth-Moon system with e = 0.2 is shown in

Fig. 4.8 over a period of 4π/ωℓ. As before, the corresponding phase portrait is rep-
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(a) In-Plane Trajectory (b) Out-of-Plane Trajectory

(c) Phase Portrait
(Red = x, Green = y, Blue = z)

(d) Normalized Phase Portrait
(Cyan = s, Brown = ℓ, Yellow = z)

Figure 4.8: State Trajectories relative to Earth-Moon L5

resented in Fig. 4.8(c) in terms of the Cartesian variables (δqx, δqy, δqz, δpx, δpy, δpz)

and in Fig. 4.8(d) in terms of the real-valued SLP variables (qs, qℓ, qz, ps, pℓ, pz) intro-

duced in Eq. 4.12. The phase portraits are represented along each reference direction

with red, green and yellow corresponding to the x, y and z dynamics in the Cartesian

phase space and cyan, brown and yellow corresponding to the s, ℓ and z dynamics in

the SLP phase space. The state trajectories in Fig. 4.8 may be compared to those of

the nearly-circular case shown in Fig. 4.2. Larger eccentricities exhibit a more pro-

nounced asymmetry in the state trajectories with a shift toward the positive δps and

δpℓ planes corresponding to a shift toward the positive δqx and negative δqy planes.

This is most likely a reflection of the asymmetric properties of the two-body ellipse

about its minor axis, that is, the speeding up and slowing down of the two-body

rotation when passing from periapsis to apoapsis and vice versa.

In any event, the convergence of the DH transformation for the higher eccentricity

case is demonstrated in Figs. 4.9 through 4.12, which show the numerically-derived
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truth solution and the analytically-derived DH solutions at increasing orders of trun-

cation in the expansion. As before, the DH solutions are computed in closed-form

from Eqs. 4.40 and then transformed back to the original phase space using the state

transformation equations derived in Corollary III.3. The zeroth-order DH solution

corresponds to the unperturbed system exhibiting constant action-type variables and

linearly varying angle-type variables. As evident in Figs. 4.9 through 4.12, the DH

transformation converges toward the truth solution as the order of the expansion

is increased, but also exhibits more noise than the previous case due to the more

complicated, high-eccentricity state transformation equations.
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.9: DH Convergence for Eccentric Case along Is and θs
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.10: DH Convergence for Eccentric Case along Iℓ and θℓ
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.11: DH Convergence for Eccentric Case along qs and ps
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(a) 0th-Order DH Solution

(b) 2nd-Order DH Solution

(c) 4th-Order DH Solution

Figure 4.12: DH Convergence for Eccentric Case along qℓ and pℓ
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4.2 Stability Analysis

Since the unperturbed Hamiltonian system K0,0 = H(0,0)
0,0 is completely integrable,

its phase space is foliated by invariant tori parameterized by the action variables.

KAM theory dictates that the perturbed system K preserves the invariant tori for

sufficiently small perturbations. This is further supported by the numerical results

shown in Figs. 4.1 through 4.12, which exhibit stable solutions in the vicinity of the

Earth-Moon system, even in the exaggerated non-circular case. To rigorously analyze

the system stability, one may apply the KAM theorem for Birkhoff normal systems

as discussed in Chapter II. However, before treating the nonlinear and non-circular

system, one must first extend the linear stability analysis of the CRTBP to the non-

circular case.

4.2.1 Linearized, Non-circular Stability

The linearized system in the transformed phase space is defined by the reduced

Hamiltonian function

K0,i =

(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
Îs −

(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃ℓ,n

)
Îℓ + ωz Îz (4.41)

where ωi are the natural frequencies of the unperturbed system and ω̃i,j are the non-

circular coefficients whose first order terms were given in Eqs. 4.36. The circular

system is treated using the classic indirect Lyapunov method (see Section 2.2), which

shows linear stability for motion about the triangular Lagrange points for mass ratios

in the range 0 < µ < µc. The question of whether this linear stability persists to the

non-circular system was first addressed by Danby in 1964 who analyzed the system

variational equations in order to numerically generate a stability curve in the µ − e

phase space as shown in Fig. 4.13. For values of µ and e that lie beneath the stability

curve, the corresponding triangular Lagrange points are linearly stable.25
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Figure 4.13: Danby’s Stability Curve

Danby’s stability curve was subsequently verfied analytically by Alfriend and Rand

in 1969 and Deprit in 1970.27;28 In Deprit’s approach, the single parameter DH method

is applied to the linearized system yielding the same result shown in Eq. 4.41. Be-

ing a linear periodic system, one may appeal to Floquet theory in which a linear

system is averaged over its characteristic period providing a description of the secu-

lar response. The system stability is characterized by the Floquet exponents (akin

to the Lyapunov exponents), which are a measure of the secular growth over time.

Through the derivation of the linear variational equations, Deprit demonstrated that

in linearized Birkhoff normal form, the system Floquet exponents are equivalent to

the coefficients of Îs and Îℓ in Eq. 4.35, that is

σ = ±i
(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
and λ = ∓i

(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃ℓ,n

)
(4.42)

The Floquet multipliers are then exp(2πσ) and exp(2πλ) whose real parts must be

non-positive for linear stability. This provides the necessary check to verify Danby’s

stability curve in Fig. 4.13.
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4.2.2 Nonlinear System Stability

For a rigorous treatment of the nonlinear stability of the elliptic triangular La-

grange points, one may apply KAM theory in the transformed phase space of Eq. 4.35.

As mentioned previously, the phenomenon of Arnold diffusion in systems with more

than two degrees of freedom effectively eliminates the KAM theorem as a means to

prove stability. However, since the out-of-plane dynamics are roughly equivalent to

stable harmonic oscillation, it is sufficient for the time being to restrict the system to

the planar dynamics and apply KAM theory as a rigorous means of stability analysis.

Specifically, since the system is normalized into Birkhoff normal form in Eq. 4.35,

stability is achieved under satisfaction of Arnold’s condition

D2k = K2k(Îs = ωℓ, Îℓ = ωs) 6= 0 (2.94)

where K2k represents terms of order k in the action variables within the transformed

Hamiltonian function. Note that this condition also requires non-resonance as does

the DH transformation itself. Therefore, potentially unstable solutions are defined as

those that satisfy the conditions of resonance (namely ωs/ωℓ ∈ Z−{0}) or those that

do not satisfy Arnold’s condition in Eq. 2.94.

Substituting the normalized Hamiltonian function Eq. 4.35 into Arnold’s condition

for k = 2 yields

D4 =

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
ω2
ℓ +

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
ω2
s

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
ωsωℓ 6= 0 (4.43)
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For circular systems, this condition further reduces to

D4 = αssω
2
ℓ + αℓℓω

2
s + αsℓωsωℓ

=
ω4
ℓ (81− 696ω2

s + 124ω4
s)

72(1− 2ω2
s)

2(1− 5ω2
s)

+
ω4
s(81− 696ω2

ℓ + 124ω4
ℓ )

72(1− 2ω2
ℓ )

2(1− 5ω2
ℓ )

− ω2
sω

2
ℓ (43 + 64ω2

sω
2
ℓ )

3(1− 2ω2
s)(1− 2ω2

ℓ )(1− 5ω2
s)(1− 5ω2

ℓ )

= − 36− 541ω2
sω

2
ℓ + 644ω4

sω
4
ℓ

8(1− 4ω2
sω

2
ℓ )(4− 25ω2

sω
2
ℓ )
6= 0 (4.44)

which is in agreement with the solution derived by Deprit and Deprit-Bartholomé.13

Eq. 4.44 shows that in addition to the resonant cases µ2 = 0.0242939 and µ3 =

0.013516, a critical mass ratio occurs at the root of the function 36−541ω2
sω

2
ℓ+644ω4

sω
4
ℓ

given by

µ4 =
1449−

√
483(3265 + 2

√
199945)

2898
≈ 0.0109137 (4.45)

This does not necessarily prove instability at this mass ratio, but rather the necessity

to check the next order of Arnold’s condition at k = 3 as defined by

D6 =

(
αsss +

∞∑

n=1

e2n

(2n)!
α̃sss,n

)
ω3
ℓ +

(
αℓℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓℓ,n

)
ω3
s

+

(
αssℓ +

∞∑

n=1

e2n

(2n)!
α̃ssℓ,n

)
ωsω

2
ℓ +

(
αsℓℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓℓ,n

)
ω2
sωℓ 6= 0 (4.46)

which for the circular case reduces to

D6 = αsssω
3
ℓ + αℓℓℓω

3
s + αssℓωsω

2
ℓ + αsℓℓω

2
sωℓ 6= 0 (4.47)

wherein the αiii coefficients represent the coefficients of the nonlinear circular system
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at order I3i as listed in Eqs. 4.48

αsss = ω2
ℓ

(
− 18522432− 221117724ω2

ℓ + 1834402891ω4
ℓ − 5330237408ω6

ℓ

+ 8326473644ω8
ℓ − 7970990576ω10

ℓ + 4915656752ω12
ℓ − 1885370432ω14

ℓ

+ 349789120ω16
ℓ

)
/
(
62208ωs(−ω2

ℓ + ω2
s)

5(−ω2
ℓ + 4ω2

s)
3(−ω2

ℓ + 9ω2
s)
)

αℓℓℓ = −ω2
s

(
83835− 2577978ω2

ℓ + 28794339ω4
ℓ − 179112048ω6

ℓ + 703645324ω8
ℓ

− 1518361584ω10
ℓ + 1512159088ω12

ℓ − 912942528ω14
ℓ + 349789120ω16

ℓ

)

/
(
62208ωℓ(ωℓ − ωs)

5(ωℓ + ωs)
5(4ω2

ℓ − ω2
s)

3(9ω2
ℓ − ω2

s)
)

αssℓ =
(
13993776ωℓ − 291589800ω3

ℓ + 2566329143ω5
ℓ − 14020325316ω7

ℓ

+ 51393703020ω9
ℓ − 124356412922ω11

ℓ + 196481798617ω13
ℓ − 202885849514ω15

ℓ

+ 137831914700ω17
ℓ − 62566226600ω19

ℓ + 19008544000ω21
ℓ − 3176280000ω23

ℓ

)

/
(
1728(ω2

ℓ − 9ω2
s)(ω

2
ℓ − ω2

s)
5(4ω4

ℓ − 17ω2
ℓω

2
s + 4ω4

s)
3
)

αsℓℓ = −ωs

(
− 400896 + 31676688ω2

ℓ − 473884444ω4
ℓ + 3415134306ω6

ℓ

− 15654797925ω8
ℓ + 48114061414ω10

ℓ − 95635690781ω12
ℓ + 119761809514ω14

ℓ

− 93965844700ω16
ℓ + 47176186600ω18

ℓ − 15930536000ω20
ℓ + 3176280000ω22

ℓ

)

/
(
1728(ω2

ℓ − ω2
s)

5(9ω2
ℓ − ω2

s)(4ω
4
ℓ − 17ω2

ℓω
2
s + 4ω4

s)
3
)

(4.48)

Substituting the symbolic representation for these coefficients into Eq. 4.47 yields

D6 =
(
− 16096320 + 578209968ω2

ℓω
2
s − 5879019660ω4

ℓω
4
s + 23361243081ω6

ℓω
6
s

− 32843706320ω8
ℓω

8
s − 104264873152ω10

ℓ ω10
s + 481275622400ω12

ℓ ω12
s

+ 94280800000ω14
ℓ ω14

s

)
/
(
20736ωℓωs(ω

2
ℓ − ω2

s)
5(−4 + 25ω2

ℓω
2
s)

3(−9 + 100ω2
ℓω

2
s)
)

6= 0 (4.49)

At the critical mass ratio µ = µ4 in Eq. 4.45, D6 = 66 such that condition Eq. 4.49 is
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indeed satisfied and the circular triangular Lagrange points are nonlinearly stable at

the critical mass ratio. Furthermore, they are nonlinearly stable for all mass ratios in

the range µ < µc save for those exhibiting resonance. All of the preceding results are

consistent with those derived in Deprit and Deprit-Bartholomé and Meyer et al.13;16

Returning to the non-circular case, the fourth-order Arnold condition is given by

Eq. 4.43

D4 =

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
ω2
ℓ +

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
ω2
s

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
ωsωℓ 6= 0 (4.43)

and the sixth-order condition is given by Eq. 4.46

D6 =

(
αsss +

∞∑

n=1

e2n

(2n)!
α̃sss,n

)
ω3
ℓ +

(
αℓℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓℓ,n

)
ω3
s

+

(
αssℓ +

∞∑

n=1

e2n

(2n)!
α̃ssℓ,n

)
ωsω

2
ℓ +

(
αsℓℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓℓ,n

)
ω2
sωℓ 6= 0 (4.46)

Unfortunately, no symbolic representation of the stability equations is available due

to the complexity in simplifying and representing the coefficients in the infinite per-

turbation series in e. Instead, the DH transformation method is numerically applied

to the system within the ranges µ < µc and 0 < e < 1 and for each pair, Arnold’s

conditions are checked up to a maximum order of e6 in the expansion as dictated by

the limits of the author’s processing system. The resultant stability profile is shown

in Fig. 4.14 along with Danby’s linear stability curve shown in blue. The red curve

includes all the values of µ and e that fail Arnold’s fourth-order stability condition

while the green curve includes those that fail the sixth-order condition. The black

dots represent the three critical mass ratios including the two resonant cases (µ2 and

µ3) and Danby’s critical mass ratio µ4. Note that these curves were generated from
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Figure 4.14: Nonlinear and Non-circular Stability Curves

a DH transformation with a maximum order of eccentricity of e6, which was dictated

by the limitations of the author’s processing system. Nonetheless, the results display

a reasonable approximation of the instability curves defined by Arnold’s KAM con-

ditions. They are also consistent with the circular results wherein the left-branch of

the fourth-order curve intersects the zero eccentricity axis at roughly µ = µ4. Fur-

thermore, the general form of the higher-order stability curves resembles the form of

Danby’s linear stability curve.

Of all the results shown in Fig. 4.14, the only location at which the nonlinear

stability remains in question is the point where the green and red curves intersect

near µ = 0.0102 and e = 0.075. However, for a DH expansion through order e6, the

eighth-order Arnold condition is

D8 =

(
αssss +

∞∑

n=1

e2n

(2n)!
α̃ssss,n

)
ω4
ℓ +

(
αℓℓℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓℓℓ,n

)
ω4
s

+

(
αsssℓ +

∞∑

n=1

e2n

(2n)!
α̃sssℓ,n

)
ωsω

3
ℓ +

(
αssℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ssℓℓ,n

)
ω2
sω

2
ℓ

+

(
αsℓℓℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓℓℓ,n

)
ω3
sωℓ 6= 0 (4.50)
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which is numerically non-zero at the intersection point between the green and red

curves. Thus, a higher-order treatment would provide a more accurate representation

of the nonlinear stability curves, but the approximation up to order e6 suggests that

the entire region under Danby’s stability curve is nonlinearly stable except the afore-

mentioned cases of resonance. This then implies that the elliptic triangular Lagrange

points are nonlinearly stable in the sense of Lyapunov, but only when neglecting the

coupled effects caused by the out-of-plane dynamics.

4.3 Local Integrals of Motion

The transformed Hamiltonian function

K =

(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
Îs −

(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃ℓ,n

)
Îℓ + ωz Îz

+

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
Î2s +

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
Î2ℓ

+

(
αzz +

∞∑

n=1

e2n

(2n)!
α̃zz,n

)
Î2z +

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
ÎsÎℓ

+

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
ÎsÎz +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
ÎℓÎz +O

(
I3i
)

(4.35)

is in integrable Birkhoff normal form up the order of expansion. Thus, by truncat-

ing the higher-order, non-integrable terms, the normalized equations of motion are
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expressed within the transformed local phase space by

dθ̂s
dν

=
∂K
∂Îs

=

(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
+ 2

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
Îs

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
Îℓ +

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
Îz +O

(
I2i
)

dθ̂ℓ
dν

=
∂K
∂Îℓ

= −
(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃ℓ,n

)
+ 2

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
Îℓ

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
Îs +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
Îz +O

(
I2i
)

dθ̂z
dν

=
∂K
∂Îz

= ωz + 2

(
αzz +

∞∑

n=1

e2n

(2n)!
α̃zz,n

)
Îz

+

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
Îs +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
Îℓ +O

(
I2i
)

(4.38)

and

dÎs
dν

= −∂K
∂θ̂s

= 0

dÎℓ
dν

= −∂K
∂θ̂ℓ

= 0

dÎz
dν

= −∂K
∂θ̂z

= 0 (4.39)

As such, up to the order of truncation in the normalization, the action-type variables

represent local integrals of motion in the transformed phase space corresponding to

local invariant tori about the Lagrange point. The angular state variables wind the

tori according to the linear trajectories

θ̂i = θ̂i,0 ± Ωi(ν − ν0) mod 2π
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where Ωi are the perturbed natural frequencies, which are constant for a given system

and defined by

Ωs =

(
ωs +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
+ 2

(
αss +

∞∑

n=1

e2n

(2n)!
α̃ss,n

)
Îs,0

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
Îℓ,0 +

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
Îz,0 +O

(
Î2i,0

)

Ωℓ = −
(
ωℓ +

∞∑

n=1

e2n

(2n)!
ω̃s,n

)
+ 2

(
αℓℓ +

∞∑

n=1

e2n

(2n)!
α̃ℓℓ,n

)
Îℓ,0

+

(
αsℓ +

∞∑

n=1

e2n

(2n)!
α̃sℓ,n

)
Îs,0 +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
Îz,0 +O

(
Î2i,0

)

Ωz = ωz + 2

(
αzz +

∞∑

n=1

e2n

(2n)!
α̃zz,n

)
Îz,0

+

(
αsz +

∞∑

n=1

e2n

(2n)!
α̃sz,n

)
Isl,0 +

(
αℓz +

∞∑

n=1

e2n

(2n)!
α̃ℓz,n

)
Îℓ,0 +O

(
Î2i,0

)
(4.51)

where Îs,0, Îℓ,0, and Îz,0 are the fixed values of the action variables that parameterize

the local invariant tori.

For the CRTBP, Hill introduced a method of foliating the phase space by level

sets of the Jacobi integral, which was described in detail in Chapter II.9;11 Since the

action-type variables represent local integrals of motion, one may similarly generate

local level sets that foliate the phase space in the vicinity of the Lagrange point. To

do so, one must first provide an adequate velocity relation in the tradition of Hill’s

curves of zero velocity. From the transformation equations introduced in Eqs. 4.21,

one may derive the mixed variable equation

p̂2s + p̂2ℓ + p̂2z = 2
(
ωsÎs + ωℓÎℓ + ωz Îz

)
−
(
ω2
s q̂

2
s + ω2

ℓ q̂
2
ℓ + ω2

z q̂
2
z

)
(4.52)

where the term on the left-hand side is the magnitude of the generalized momentum

vector, which must be nonnegative for real solutions. Therefore, one may define a
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constant C = ωsÎs + ωℓÎℓ + ωz Îz to serve as a local Jacobi-type integral whose level

sets foliate the transformed phase space into impassable curves of zero momentum.

For the Earth-Moon system (µ = 0.0124, e = 0.0549), the local integral is plotted

along a typical state trajectory in Fig. 4.15 for the first two orders of truncation in

the expansion. As the order of truncation increases, C = ωsÎs+ωℓÎℓ+ωz Îz converges

(a) 0th-Order DH Solution (b) 2nd-Order DH Solution

Figure 4.15: Local Integral of Motion for the Nearly-Circular Earth-Moon System

to a constant value such that it does indeed represent an approximate local integral

of motion.

To exaggerate the non-circular effect, the eccentricity of the Earth-Moon system is

increased to 0.2. The corresponding local integral of motion is plotted for the first two

orders of truncation in Fig. 4.16. The non-circular effects degrade the convergence

properties, which would dictate the need for a higher-order expansion for higher

eccentricities.

(a) 0th-Order DH Solution (b) 2nd-Order DH Solution

Figure 4.16: Local Integral of Motion for the Eccentric Earth-Moon System
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By mapping the levels sets of the transformed local integral back into the original

phase space, the corresponding foliation of the local phase space for the Earth-Moon

system is generated in Fig. 4.17 for the real eccentricity of e = 0.0549 and in Fig. 4.18

for the eccentric case with e = 0.2. In both sets of figures, the foliation of the local

phase space is displayed at various values of ν with the green curves representing

level sets of the local integral of motion, ωsIs + ωℓIℓ + ωzIz. In addition, an example

state trajectory is plotted in blue up to the given value of ν and its corresponding

level set, as defined by its initial conditions, is shown as a dashed blue curve. The

level sets pulsate as ν varies due to the non-autonomous, ν-dependency in the state

transformation equations while the state trajectory remains confined within its cor-

responding level set (dashed blue curve) within the span of ν values represented in

the figures.

For this study, the order of truncation in Figs. 4.17 and 4.18 was relatively low

(O (e6)) due to memory limitations in the author’s processing system. Thus, it is

difficult to draw any definitive conclusions without first conducting a higher-order

analysis for longer durations of ν. Nonetheless, even in the low-order models of

Figs. 4.17 and 4.18, the non-circular level suggest a rough measure of the region of

motion and stability for a given set of initial conditions in the vicinity of the elliptic

triangular Lagrange points. Further study is required to validate this approach and

generate higher-accuracy simulations.
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Figure 4.17: Pulsating Level Sets of the Nearly-Circular Earth-Moon System
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Figure 4.18: Pulsating Level Sets of the Eccentric Earth-Moon System
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4.4 Control

The preceding sections focused on the transformation and analysis of the natural

dynamics of the ERTBP in the local phase space of the triangular Lagrange points.

Within Danby’s stability curve and away from resonance, the triangular Lagrange

points are neutrally stable such that a spacecraft placed near enough to the Lagrange

point equilibrium conditions will remain nearby as long as the higher-order perturba-

tions are sufficiently small. Within the region of stability the spacecraft flies around

the Lagrange point in an irregular, but bounded relative orbit as demonstrated pre-

viously in Figs. 4.1 through 4.12.

Since the Lagrange points are not asymptotically stable, higher-order perturba-

tions may eventually cause the spacecraft to diverge away from the Lagrange point

and escape the local phase space. Thus, even under the most ideal conditions, the

stability is fragile. To compensate for higher-order perturbations or to stabilize a

naturally unstable orbit, feedback control is incorporated into the system and nor-

malized along with the Hamiltonian function through the DH method. While this

approach is certainly not the only way to stabilize the system, it is the most relevant

to the present study since it acts directly on the transformed Hamiltonian function.

Further, no assertions are made as to the optimality of the control laws provided or

their performance in comparison to other control methods.

The basic approach of the DH method control strategy was derived and demon-

strated for the case of the damped oscillator at the end of Chapter III. A control input

is appended to Hamiltonian function to define the controlled Hamiltonian function

Hc(q, p, ǫ, γ, ν) = H(q, p, ǫ, γ, ν) + U(q, p, ǫ, γ, ν)

=
∞∑

n=0

∞∑

m=0

γm

m!

ǫn

n!

(
H(0,0)

m,n (q, p, ν) + U (0,0)
m,n (q, p, ν)

)
(3.107)

which is then normalized through the DH method in the same manner as the un-
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controlled case. If no control input is applied to the unperturbed system, that is

U (0,0)
0,0 = 0, and the control law is provided through the controlled homological equa-

tion

Kc,i,j −Ki,j = −
∂Wu,i+1,j

∂ν
+ LWu,i+1,j

H(0,0)
0,0 +Qu,i,j

+ U (0,0)
i,j +Qc,i,j (3.117)

where Ki,j is the uncontrolled, transformed Hamiltonian function, Qu,i+1,j and Qc,i+1,j

are known a priori, and Wu,i+1,j and Ui,j are derived in order to achieve a prescribed

form for the controlled, transformed Hamiltonian function Kc,i,j.

Consider the control problem of stabilizing motion about an unstable elliptic tri-

angular Lagrange point or a stable point with a small region of stability. This corre-

sponds to a system with relatively high eccentricity for which the regions of stability

about the triangular Lagrange points is small compared to the circular case (see

Figs. 4.1 and 4.7 for example). The desired solution is defined as the trajectory of the

circular solution, the CRTBP, as demonstrated in Figs. 4.19 and 4.20 starting from

a small displacement of roughly ||δqi|| ≈ 0.01 in the Cartesian coordinates. Fig. 4.19

includes the planar trajectory and phase portrait in the original Cartesian phase

space and the planar trajectory and phase portrait in the normalized short/long-

period (SLP) phase space. The phase portraits are represented along each reference

direction with red, green and yellow corresponding to the x, y and z dynamics in

the Cartesian phase space and cyan, brown and yellow corresponding to the s, ℓ and

z dynamics in the normalized SLP phase space. Fig. 4.20 shows the corresponding

Cartesian state trajectories as functions of ν.
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(a) Planar Trajectory in Cartesian Phase Space (b) Phase Portrait in Cartesian Phase Space
(Red = x, Green = y, Yellow = z)

(c) Planar Trajectory in SLP Phase Space (d) Phase Portrait in SLP Phase Space
(Cyan = s, Brown = ℓ, Yellow = z)

Figure 4.19: Motion near L5 for the Earth-Moon CRTBP

Figure 4.20: Motion near L5 for the Earth-Moon CRTBP
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As a first attempt at achieving the desired circular solution within the non-circular

system, the control generating functions are defined as Wu = Vu = 0 such that

Eq. 3.117 reduces to

U (0,0)
i,j = Kc,i,j −Ki,j −Qc,i,j (3.118)

which corresponds to the first control strategy applied to the damped oscillator in

Section 3.5. This approach only imposes control on the secular terms within the av-

eraged Hamiltonian function and does not affect the periodic behavior of the system.

Since the goal is to compensate for the non-circular effects, the controlled Hamiltonian

function is prescribed by the corresponding circular form, that is,

Kc,i,j =





0 j > 0

Ki,j j = 0
(4.53)

which effectively eliminates all the non-circular perturbation terms from the trans-

formed Hamiltonian function. Note that the circular nonlinear perturbations are

retained, that is, the control is forcing the system to the circular system not the un-

perturbed system (linearized CRTBP) as was done for the damped oscillator. For the

Earth-Moon system with µ = 0.0124, the resultant control law is expressed within

the transformed phase space as

U(θ̂, Î , ν) = e2
(
− 0.0155318Îs + 0.849718Îℓ + 0.512556Î2s + 69.7551Î2ℓ

+ 0.000941744Î2z + 11.2013ÎℓÎs + 0.0706855ÎsÎz − 1.64154ÎℓÎz + . . .
)

+ e4
(
0.0355463Îs + 2.43243Îℓ + . . .

)
+ . . . (4.54)

Unfortunately, since the secular terms only appear at orders of O (I2) = O (||δq, δp||4),

the lower-order perturbations tend to drown out the control function and the control

strategy is ineffective at high eccentricities and large initial displacements. However,
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for sufficiently small displacements the secular control law does eventually force the

response toward the circular solution as demonstrated in Figs. 4.21 and 4.22 for an

eccentricity of e = 0.2 and the same initial conditions used in Figs. 4.19 and 4.20.

Fig. 4.21 shows the phase portrait of the uncontrolled and controlled response. The

difference is somewhat subtle, but in reference to Fig. 4.19, the controlled response is

evidently forcing the system toward the circular solution. This is further evident in

the Cartesian state trajectories shown in Fig.4.22 which explicitly includes the circu-

lar solution as represented by dashed lines. The controlled response is again seen to

force the system toward the desired circular response. The control function is itself

plotted against ν in Fig. 4.23. The magnitude of the control is relatively small since

it only includes higher-order terms of order O (I2) = O (||δq, δp||4). It is also limited

to terms of order e4 or less as dictated by the processing power of the author’s com-

puter. Higher-order terms would likely produce even better convergence properties,

but would not increase the magnitude of the control significantly.

(a) Uncontrolled Phase Portrait (b) Controlled Phase Portrait

Figure 4.21: Uncontrolled and Controlled Response for Earth-Moon with e = 0.2
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(a) Uncontrolled δqx Trajectory (b) Controlled δqx Trajectory

(c) Uncontrolled δpx Trajectory (d) Controlled δpx Trajectory

(e) Uncontrolled δqy Trajectory (f) Controlled δqy Trajectory

(g) Uncontrolled δpy Trajectory (h) Controlled δpy Trajectory

Figure 4.22: Uncontrolled and Controlled Response for Earth-Moon with e = 0.2
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Figure 4.23: Control Function

As an alternative to the previous result, consider the case where the generating

functions are defined as Wu,i,j = −Wi,j and Vu,i,j = −Vi,j for the non-circular terms

(j > 0) and zero otherwise. The control law in Eq. 3.117 reduces to

U (0,0)
i,j = Kc,i,j −H(0,0)

i,j (3.121)

where again the controlled transformed Hamiltonian function is prescribed as

Kc,i,j =





0 j > 0

Ki,j j = 0
(4.55)

in order to eliminate all the non-circular effects. In this case, the control law is some-

what trivial since it is expressed directly in terms of the original Hamiltonian function

and therefore does not necessitate the application of the DH method. Nonetheless,

it is included for illustration purposes with the uncontrolled and controlled trajecto-

ries shown in Fig. 4.24, the corresponding control function plotted in Fig. 4.25, and

the uncontrolled and controlled Cartesian state trajectories compared side-by-side in

Fig. 4.26. Even when limited to terms of order e4 or less, the control law effectively

forces the non-circular solution to the circular case to the point where the two are
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nearly indistinguishable in Fig. 4.26. Since the control law now includes terms of

odd-power in the eccentricity, the magnitude of the control is significantly increased

and the convergence to the desired circular solution is much better than in the pre-

vious results derived solely from the secular control law. However, neither case is

necessarily optimal and further study is required to characterize additional control

strategies and to incorporate optimal control theory.

(a) Uncontrolled Phase Portrait (b) Controlled Phase Portrait

Figure 4.24: Uncontrolled and Controlled Response for Earth-Moon with e = 0.2

Figure 4.25: Control Function
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(a) Uncontrolled δqx Trajectory (b) Controlled δqx Trajectory

(c) Uncontrolled δpx Trajectory (d) Controlled δpx Trajectory

(e) Uncontrolled δqy Trajectory (f) Controlled δqy Trajectory

(g) Uncontrolled δpy Trajectory (h) Controlled δpy Trajectory

Figure 4.26: Uncontrolled and Controlled Response for Earth-Moon with e = 0.2
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Chapter V

Conclusions

The elliptic restricted three-body problem (ERTBP) represents a fundamental

generalization of the circular restricted three-body problem (CRTBP) that warrants

further study within the astrodynamics community. Unfortunately, the mathematical

distinction between the ERTBP and CRTBP is non-trivial and has serious implica-

tions for the method of solution. The key distinction is that while the CRTBP

potential field is fixed relative to the synodic reference frame, the ERTBP potential

field pulsates in rhythm with the distance between the primaries. This results in a

non-autonomous Hamiltonian function even after normalizing the system such that

the distance between the primaries is fixed. Being non-autonomous, the Hamiltonian

function is not conserved such that Jacobi’s integral no longer exists and the ERTBP

is non-integrable.

Despite the mathematical complications associated with the ERTBP, it still rep-

resents a close relative to the CRTBP, particularly when the eccentricity is relatively

small. To this effect, perturbation theory is applied in this study to represent the

former as a close expansion about the latter. In fact, by expanding the ERTBP

about zero eccentricity and about a triangular Lagrange point, it may be further be

represented as a close expansion of the linearized CRTBP, which is completely inte-

grable in the form of harmonic oscillators. In the absence of resonance, the system
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is normalized using the classic Deprit-Hori Lie transform method (DH method) in-

troduced in the 1960s.36;37 Since their formulation only applies to expansions about

a single small parameter, an extension to the method is presented in this study for

applications to non-autonomous Hamiltonian functions expanded about two small

parameters. While the extension to two parameters is not trivial, it follows the same

general approach as used in Deprit and Hori’s original method. The theorem, corol-

lary and associated proofs presented in Chapter III of this study are intentionally

formulated for an arbitrary, real-analytic Hamiltonian function. It may be compared

to similar methods introduced by Varadi and Andrade and applied to other systems

of interest.40;42

As demonstrated in this study, the extended DH method effectively normalizes the

expanded ERTBP about the linearized CRTBP such that the transformed dynamics

are in the form of perturbed harmonic oscillators. The corresponding Hamiltonian

function is expressed in Birkhoff normal form wherein only the action-type variables

explicitly appear in the function (up to the order of truncation). The coefficients of

the action variables are in the form of infinite series dependent on the mass ratio

of the system and even-powers in the eccentricity. Being in Birkhoff normal form,

the system stability may be treated in terms of Kolmogorov-Arnold-Moser (KAM)

theory, which dictates that perturbations to an integrable Hamiltonian system pre-

serve the unperturbed integrals of motion for sufficiently small perturbations. As

expressed in Birkhoff normal form, the preservation of the integrals of motion is ev-

ident directly in terms of the action-type variables, which are constant when the

un-normalized, higher-order terms are neglected. The linear stability of the system is

defined under Danby’s µ − e stability curve, which extends to the nonlinear system

using Arnold’s conditions in the transformed phase space. The triangular Lagrange

points are shown to be stable for all values of µ and e under Danby’s curve excepting

those that exhibit resonance in the natural frequencies. The local foliations in the
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phase space are represented in the spirit of Hill’s curves of zero velocity by applying

the action-type variables as local integrals of motion. The corresponding curves of

zero momentum effectively foliate the normalized phase space such that regions of

stability are approximated within the pulsating synodic frame.

The incorporation of control terms into the DH transformation results in an ad-

ditional series of homological equations for the control terms and the corresponding

control generating functions. Since the transformed Hamiltonian function encom-

passes the secular variations in the system with all periodic variations averaged out,

a control law may be defined solely in terms of the secular response and used to either

eliminate higher-order secular perturbations or confine them within a region of stabil-

ity. The control method is demonstrated on a damped oscillator system and shown to

force the system to the unperturbed, harmonic oscillator form. Further, the control

method is applied to the ERTBP to likewise track the system to the circular solution

of the CRTBP. While no conditions of optimality have been considered, the results

presented in this study provide a means of comparison to alternative control methods

such as linear feedback control or control derived from the CRTBP simplification.

5.1 Original Contributions

The original contributions presented in this study fall under two categories: the

extension of the DH method and the subsequent analysis of the ERTBP. The original

DH method applies to non-autonomous Hamiltonian systems, but only for expan-

sions about a single small parameter. In the 1980s, Varadi provided an extension for

expansions about two parameters, but in the form of diffeomorphisms and only for au-

tonomous systems.40 Andrade further extended the DH method to expansions about

N parameters, but also limited the method to explicitly autonomous systems. The

theorem, corollary and proofs provided in Chapter III generalize the two-parameter

method to non-autonomous Hamiltonian systems by explicitly incorporating the non-
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autonomous remainder functions. The proof of the methodology relies heavily on the

original proof presented in Deprit’s paper as well as the concise proof provided in

the book by Meyer et al.16;37 However, the formulation of the theorem and corol-

lary are original and to the author’s knowledge, the extension of the DH method

to non-autonomous two-parameter systems is a novel development. In addition, the

implementation of control within the DH transformation further represents a novel

achievement in the formulation of the theory.

The motivation for extending the DH method to non-autonomous two parameter

systems was borne out of the stability analysis of the triangular elliptic Lagrange

points. The nonlinear stability of the elliptic collinear points as well as the linear

stability of the triangular CRTBP Lagrange points may be determined using the

Lyapunov theory. However, since the linearized triangular points are not hyperbolic,

Lyapunov’s indirect method may not be applied in order to infer the stability of

the nonlinear system. Instead one must analyze the nonlinear system directly us-

ing KAM theory. Previous studies have applied canonical transformation theory and

KAM theory to demonstrate the nonlinear stability in the planar circular problem

as well as the linearized elliptic case. The analysis included in Chapter IV regarding

the nonlinear stability of the planar elliptic Lagrange points thereby extends previous

results to the general case of a nonlinear, non-circular system. Further, the results

regarding the curves of zero momentum, as derived from the local integrals of motion,

compliment previous work conducted in the areas of local integrals in the ERTBP,

but are entirely original and provide a novel means of describing the foliations in the

local phase space and the approximate regions of stability around the elliptic trian-

gular Lagrange points. The last section in Chapter IV introduces a novel method of

feedback stabilization for the ERTBP using the formulation of the DH transformation

as a means to derive control laws that effectively eliminate or otherwise modify the

secular variations in the system response.
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5.2 Future Work

A number of outstanding questions remain regarding the ERTBP and its treat-

ment using the DH transformation and KAM theory. Some regard the theory itself

while others are focused on the analysis of the ERTBP specifically. In the former,

since KAM theory only provides rigorous proof of stability in the planar, 2-degree

of freedom case, an advanced analysis is required to determine the onset of Arnold

diffusion in the full, three-dimensional problem. Many recent studies have focused on

the analysis of Arnold diffusion in general and as the theory develops it may become

possible to extend the stability study into the three-dimensional domain. In addi-

tion, in extension to the preliminary control studies conducted here, a full union of

the presented theory with control theory would be useful as a means of deriving novel

control strategies for non-integrable, non-autonomous and otherwise complicated sys-

tems. This could then be studied in comparison to, and incorporation with, existing

methods of control using linearized feedback, Lyapunov theory, optimal control the-

ory, and controlled Hamiltonian functions.

With regards to the ERTBP, a great deal of study remains in extension to the work

presented here and the many ongoing studies being conducted for the CRTBP. For

mission design purposes, an expansion of the analysis beyond the local phase space

of the Lagrange point is necessary to realize transfer trajectories starting from one of

the two bodies or from a point exterior to the three-body system. Unfortunately, the

homological equations derived in the DH method take a particularly difficult form for

motion away from the Lagrange point. One option is to expand the system dynamics

about a different point such as a collinear Lagrange point or upon regularizing the

system, one of the primaries. Otherwise, a novel approach is required to normalize

the non-autonomous ERTBP across the entire phase space of the three-body system.
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