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Analytical methods for fitting integrated rate equations

A discontinuous assay

Elizabeth A. BOEKER

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, U.S.A.

The integrated rate equation for reactions with stoichiometry A -> P + Q is:

e0t =-Cf - ln ( - AP/AO)+ C1AP+ lC2(AP)2

where the coefficients C are linear or quadratic functions of the kinetic constants and the initial substrate
and product concentrations. I have used the 21 progress curves described in the accompanying paper [Cox
& Boeker (1987) Biochem. J. 245, 59-65] to develop computer-based analytical and statistical techniques
for extracting kinetic constants by fitting this equation. The coefficients C were calculated by an unweighted
non-linear regression: first approximations were obtained from a multiple regression of t on AP and were
refined by the Gauss-Newton method. The procedure converged in six iterations or less. The bias in the
coefficients C was estimated by four methods and did not appear to be significant. The residuals in the
progress curves appear to be normally distributed and do not correlate with the amount of product pro-
duced. Variances for Cf, Cl and C2 were estimated by faur resampling procedures, which gave essentially
identical results, and by matrix inversion, which came close to the others. The reliability of C2 can also be
estimated by using an analysis-of-variance method that does not require resampling. The final kinetic
constants were calculated by standard multiple regression, weighting each coefficient according to its
variance. The weighted residuals from this procedure were normally distributed.

INTRODUCTION

In this paper I develop computational procedures that
extract kinetic constants from integrated rate equations
(Boeker, 1984a,b, 1985) for a relatively simple enzyme
system. For the stoichiometry A -* P+ Q, the equations to
be fit are:

predicts the actual data. The difficulty here is that it is the
measurement of AP, rather than t, which is ordinarily
subject to experimental error. Eqn. (1) is 'backwards'
with respect to the dependent and independent variables.
An ordinary multiple regression of t on AP gives a curve

eot =-Cfrln(1-A)+C1lP+ 2C2(AP)2

Jo JQ____
Cf = s k + (AO+ PO)+ (Ao+Qo)+ JPQ (Ao+Po)(Ao+Qo)

JAkcat. JAk at. JAk at. JAkcat.

1
iJ+JQ JAP p __ __C kca J k + k + JAQ Qo- JPQ (Ao+Po+Qo)

kcat. JAkcat. JAk at. JAk at. JAkcat.

C JAP+JAQ - JPQ
C2= JAkcat.

The terminology of these equations is described in detail
in the accompanying paper (Cox & Boeker, 1987). Eqn.
(1) describes any progress curve in terms of three
coefficients, Cf, Cl and C2. These coefficients are related
to the Dalziel (1957) constants for the enzyme and the
initial conditions of the progress curve by eqns. (2)-(4).
The first step of the calculation is to obtain values of

Cf, Cl and C2 such that the calculated progress curve

in which (tt-ji)2 is minimized, rather than

I(APi - AP,)2.

The direct approach to this problem, which would be
to solve for AP, is not possible. Estimates of Cf, C1 and
C2 that minimize the product residuals must instead be
obtained by a non-linear regression, a technique that has
been applied to enzyme kinetic data in other contexts
(Wilkinson, 1961; Fernley, 1974; Darvey et al., 1975;

Notation used: A, P and Q and AO, PO and QO are respectively the instantaneous and initial concentrations of substrates and products; AP is P- PO,
the net change in product concentration at time t. The coefficients J are collections of microscopic rate constants that, for a particular mechanism,
result directly from a King& Altman (1956) derivation. The coefficients C are defined by eqns. (284). kcat. is the catalytic constant or turnover number
and eo is the enzyme concentration. The subscript i indicates a particular measurement, a circumflex (0) indicates a best-fit (rather than a measured)
value, and an overbar () indicates an average value.
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Duggleby & Morrison, 1977, 1978; Duggleby, 1981;
Matyska & Kova"r, 1985). For non-linear regression, a
first estimate of Cf, Cl and C2 is made and the sum of
(APi-APZ)2 is formed, by repeatedly solving eqn. (1)
(numerically) for APE. Better approximations are ob-
tained, and the process is repeated until a minimum sum

& Boeker, 1987). The comparison were carried out in
FORTRAN on a VAX 11/780 computer; the programs
are available from the author on request.

Numerical solution to the non-linear equation

Eqn. (1) can be rewritten as:

0 = - Cf * In (1- AP/AO)+ C1AO(AP/AO) +1C2AC2(AP/A0)2-e0t

is reached. I have used a 'backwards' regression of t on

AP to obtain the initial estimates, and the Gauss-Newton
method for refining them. I have also examined the
structure of the experimental error, the effect of
weighting the data, and the possible bias introduced by
the non-linear procedure.

Eqns. (2)-(4), for Cf, C1 and C2 in terms of the initial
concentration of substrates and products, can be fitted
with ordinary multiple-regression techniques. The co-

efficients that result are the Dalziel constants for the
enzyme. For these regressions to be meaningful, the
values of Cf, Cl and C2 must be weighted according to
their uncertainties. This weighting is critically important.
Because the product terms in eqn. (1), -ln (1 - AP/AO),
AP and (AP)2, are highly correlated, it may be possible
to fit a progress curve by using a range of values in the
coefficients C. For example, if Cf is decreased, a

corresponding increase in C1 and/or C2 may produce a

curve with very nearly as good a fit. Since the seriousness
of this problem will depend greatly on the shape of the
progress curve (i.e. on the initial conditions), the
uncertainties in Cf, C1 and C2 must be calculated and
used as weighting factors.

There are two experimental situations. In the first,
exemplified by a spectrophotometric progress curve, all
the points result from a single addition of enzyme to
substrate. The points are not statistically independent,
but progress curves are easily come by. It is sensible
simply to do a number of progress curves for each set of
initial conditions and to calculate the mean and standard
deviation for each coefficient C.

In the second situation the assay is discontinuous, as

is the radioactivity assay in the accompanying paper

(Cox & Boeker, 1987). Each point in each progress curve

results from a separate addition of enzyme to substrate;
the points on any one curve can reasonably be
considered to be statistically independent. Although each
such curve is a great deal ofwork, it should be possible to
obtain coefficient variances without repeating the curve.

There is no standard statistical procedure for cal-
culating variance with non-linear regression. In the
present paper I examine two data-simulation (Monte
Carlo) methods and two non-parametric methods, the
jackknife and the bootstrap, as well as a matrix-inversion
method that is not theoretically sound but is compu-

tationally cheap. Monte Carlo methods and the
jackknife have been used before in order to estimate
variance in enzyme kinetic data (Cornish-Bowden &
Wong, 1978; Duggleby, 1979, 1980; Matyska & Kovar,
1985).

COMPUTATIONAL METHODS

The experimental data used in this paper are the 21
time courses reported in the accompanying paper (Cox

The root of the rewritten equation, AP/AO, represents the
fractional reaction, and must lie between 0 and 1. This
root is required in order to calculate both the sum of
squares and the partial derivatives needed for the
non-linear regression. The root was first obtained by a
simple bisection method [see King (1984) or any
standard numerical-analysis text]. However, since the
calculation is required seven times for each data point for
each iteration of the non-linear regression, bisection
slowed the overall computation unnecessarily. The final
procedure adopted was a modification of Newton's
method (King, 1984). An upper bound was first
established and the root was approached from above in
order to avoid the discontinuity at AP/AO= 1. The
routine was terminated when the root changed
< 0.00001 between iterations. If the value of the
function was > 0 at AP/AO < 0.0001 or < 0 at
AP/AO > 0.9999, the value of the root was taken to be
0 or 1 respectively.

Multiple regressions

For the non-linear regression, multiple regressions are
required to calculate both the initial estimates and the
corrections at each iteration. They are also needed to find
the best-fit Dalziel constants once Cf, Cl and C2 are
known. Considering the system XB = Y where X is an
m x n matrix of the independent variables, B is the n x 1
vector of the coefficients to be calculated, and Y is the
m x 1 vector of the dependent variables, multiple
regressions were carried out by forming XtXB = XtY
(Neter & Wasserman, 1974) and using Gaussian
elimination with scaled partial pivoting (King, 1984) to
solve for B. For calculations of the Dalziel constants, the
procedure was weighted according to the variance of
each Yi. Where required, variances were obtained
for each bi by inverting XtX and multiplying the
diagonal elements by the appropriately weighted
Y(y, -.9)2/(M- n).

Non-linear regression

For each progress curve, initial estimates of Cf, C1 and
C2 were obtained by running a 'backwards' regression of
t on AP for those data where AP/AO < 0.85. The initial
estimates were then refined by calculating three sets of
partial derivatives, (P/laCf)j, (aP/laC)i and (aP/aC2),
and running a multiple regression of AP -APi against
them. The coefficients of the multiple regression are the
corrections to Cf, C1 and C2. The derivatives were
calculated numerically; each coefficient C was changed
by + 1 % and -1 % of its most recent value, and the
corresponding value of APi was found. The size of AC
was not especially important; changes of up to + 5%
and - 5% appeared to work equally well. The pro-
cess was terminated when 1(APZ-Ap,)2 declined by
0.01% or less. A more stringent convergence criterion
did not change the final result significantly, and some-
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times led to oscillation around the minimum sum of
squares.

Variance of Cf, C1 and C2

The first two methods were Monte Carlo methods in
which the time courses were simulated repeatedly. In
each case 'perfect' values ofAP2 were calculated from the
actual values of t and the best-fit values of Cf, C1 and
C2. An error was then introduced according to either
an absolute (APi = AP. +ziVMS) or a proportional
[APi = APi(l +zi'MSE)] error model. zi was obtained
from a randon number generator and had a standard
normal distribution; MSE was the (actual, not simu-
lated) I(APi- P2)2/(number of points -3) for the time
course. Cf, C1 and C2 were then calculated for each
simulation just as they had been for the original time
course. The procedure was repeated 100 times for each
error model for each time course, and the mean and
variance of the simulated values of Cf, C1 and C2 were
calculated. The bias was estimated from the difference
between the original coefficients C and the mean of the
simulated coefficients: bias = C(l - C/C).
The jackknife and the bootstrap (Efron, 1982) are

non-parametric methods that depend on resampling the
available data. For the jackknife, resampled coefficients
C are calculated at each point on the progress curve. For
example, for the fifth point in a set of 23, Cf would first
be calculated from the full set and then from a reduced
set of 22 with the fifth point omitted. The resampled Cf
is then 23 x Cf (full set) minus 22 x Cf (reduced set). The
procedure is repeated at each point, and the mean and
variance of the resampled values of Cf are calculated. The
bias is the difference between the original value of Cf and
the resampled mean.
The bootstrap treats the original data set as the

maximum likelihood estimator of the set of all possible
data for that progress curve. For each repetition, the
points on a particular progress curve were randomly
sampled, with replacement, until there were as many as
in the original progress curve. The coefficients C were
then calculated and, after 100 repetitions, their means
and variances. The bias is again the difference between
the original coefficient and its resampled mean.

Analysis of variance

For C2, t was calculated from:

^/ MSEc

SSRc' is the regression sum of squares for the complete
fit (including Cf, C1 and C2), adjusted for the
non-additivity of the sums of squares. That is:

SSRc
SSRc' =SR+Ecx TSS

SSRc+ SSEc

where SSRc = X(Api - AP)2, SSEc = I(AP_- Ap,)2 and
TSS= I(AP, - AP)2. SSRr' is the corresponding adjusted
sum of squares for the reduced fit, including only Cf and
C1. MSEc is SSEc/(number of points -3).
The values of t used for comparison were C2 divided

by the standard deviation of C2 as calculated from the
jackknife.
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Dalziel constants

Of the two products of arginine decarboxylase, only
agmatine was used for product-inhibition studies in the
accompanying paper (Cox & Boeker, 1987). For
notation purposes, agmatine is arbitrarily designated Q
without implying a particular reaction order. In the
absence of the second product, eqns. (2) and (3) now
simplify somewhat. From eqn. (2), a regression of Cf
against Ai, Ai + Qi and Aj(Ai+ Qi) gives four of the seven
Dalziel constants. From eqn. (3), regression of C1
against Qi and Ai+ Qi gives two more. C2 should be
constant and should give the final Dalziel term; all that
is required is the average of the observations. Regressions
and averages were in all cases weighted by the
appropriate variances. JpQ/JAkcat. is calculated from
both Cf and C1; the final value was taken to be the
weighted average.

RESULTS

The Gauss-Newton method for non-linear regression
converges only when the initial estimates of the
unknown parameters are reasonably good. I have used
a 'backwards' multiple regression of t on AP, making use
only of values of AP/AO between 0 and 0.85. Because the
progress curves flatten out between 0.85 and 1.0, and
because this regression minimizes the error along the eot
(horizontal) axis, including data late in the progress
curve introduces large errors.
A comparison between the initial estimates and the

final values of Cf, C1 and C2 is shown in Table 1. For Cf
and C1, the estimates are good to within an order of
magnitude of the final result, and are generally within a
factor of 3-fold. The estimates for C2 appear to be worse.
However, C2 has a very small absolute value and is very

Table 1. Data weighting and approximations

Initial concen- Estimated value
tration (mM) Correlation - final value

between
Arginine Agmatine et and Pi* Cf C1 C2

0.05
0.2
0.5
1.0
2.0
5.0
10
20
30
0.5
0.5
0.5
0.5
5.0
10
20
30
30
30
30
30

- 0.14
- 0.16
- 0.06
- 0.30
- 0.05
_ 0

_ 0

- 0.09
0

10 0.10
20 0.23
40 0.18
80 0.15
40 0.08
40 0.04
40 0.14
40 0.27
10 0.11
20 0.07
60 0
80 0.13

0.78
0.43
1.47
1.44
1.58
0.64
1.30
2.31
2.09
0.48
0.89
0.67
0.33
0.67
0.91
0.71
t

0.41
1.00
0.69
0.70

4.67
3.93
0.61
0.72
0.83
1.08
0.94
0.79
0.59
1.55
1.05
5.03
6.48
1.69
1.03
1.30
3.75
1.33
1.02
1.56
1.53

2.37
1.29

-5.38
8.64

-7.16
0.79
5.42
1.74
5.41
4.02
2.62

-1.09
-9.46

0.05
-0.04
0.52

-2.47
-1.77

1.04
0.06

-0.04

* Pearson correlation coefficient.
t The estimate was negative; see the text.
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Fig. 1. Distribution of residuals

Data are for the first nine rows of Tables 3-5.

uncertain; the estimates are better than they appear. For
the last entry in Table 1, for example, the estimated and
final values were 0.004 and -0.092 respectively.

Occasionally, the estimated value of Cf was less than
zero; the non-linear regression then invariably diverged.
This occurred for the 17th progress curve in Table 1, as
well as in several of the simulated curves. All of the terms
in eqn. (2) have positive signs and, since the negative
logarithm of a fraction is also positive, Cf itself should
under all conditions be positive. (This is not true for
either C1 or C2.) The simple expedient of replacing the
negative estimate with a very small positive one (0.001)
led to convergence in all of these cases.
With the use of these 'backwards-regression' estimates

and the computational procedure described in the
Computational methods section, the non-linear regres-
sion converges very quickly; three or four iterations
were generally all that were required, and never more
than six.
The regression was initially carried out without

weighting the data. It is frequently true that the error in

kinetic data is proportional to AP, rather than
independent of it (Storer et al., 1975). The data should
then be weighted as 1/(AP)2. It is not possible, from the
experimental procedures in the accompanying paper
(Cox & Boeker, 1987), to make a statement a priori
about the error structure of these data. One approach to
this problem is to calculate the residuals, ei = APi-APi,
and ask whether they are correlated with AP. The results
are shown in Table 1. The average value of the correla-
tion coefficient is only 0.11 +0.09. And, as shown in
Fig. 1, these residuals appear to be normally distributed.
When a second, weighted, fit was carried out for all of the
time courses, the values of Cf, C1 and C2 were essentially
unchanged from the first fit. Evidently the independent
error model is at least as good as the proportional one.
A potential problem with this non-linear regression is

that, although the results are minimum variance
estimators of Cf, C1 and C2, they are not necessarily
unbiased. Four of the methods used in the next section
to estimate variance also estimate the bias in the
calculated values of Cf, C1 and C2. These results are
summarized in Table 2. In general, the methods give bias
estimates that do not all have the same sign, suggesting
that the true bias may be close to 0. Further, the bias
values for Cf and C1 are quite small. The values for C2
are both large and scattered; this is presumably caused
by the fact that C2 is both small and uncertain. It does
not seem likely that bias of the magnitude suggested by
these results will affect the subsequent calculations. The
standard deviations of Cf, C1 and C2 (next section) are
generally larger than the bias values in Table 2.
The results of five possible techniques for obtaining the

standard deviations of Cf, C1 and C2 are shown in Tables
3-5. The values shown in columns 1 and 2 are based on
repeated simulations, introducing a normally distributed
random error. The results will be valid only if the
measurement errors in the progress curves are normally
distributed. The distribution of residuals for the first nine
time courses in Tables 3-5 is shown in Fig. 1; the
distributions for the remaining progress curves are
similar.

Results from two non-parametric techniques are
shown in columns 4 and 5. These values are similar to
those in columns 1 and 2. The results in column 3 are
from the 'backwards' regression of t on AP used to make
the initial estimates of Cf, C1 and C2. This procedure is
not theoretically sound; the variance-co-variance matrix
depends on t rather than AP. I have nevertheless tried it,

Table 2. Estimates of bias in the coefficients

The methods are described in detail in the text; method 1, data simulation with the use of an independent error model; method
2, simulation with the use of a proportional error model; method 3, the jackknife; method 4, the bootstrap. Mean bias is
averaged over the time courses and expressed as a percentage of the mean of the appropriate coefficient. Standard deviation
is of the sample. The distributions did not appear to be normal.

Cf C1 C2

Standard Standard Standard
Method Mean bias deviation Mean bias deviation Mean bias deviation

1
2
3
4

1.7
2.2
0.4

-0.8

2.5
3.5
4.3
3.5

-6.1
-1.4
-7.0

6.3

11.4
14.1
22.0
18.8

95
- 121

67
-116

198
659
167
300

1987

70



Analytical methods for integrated rate equations

Table 3. Values and standard deviation for Cf

The methods, which are described in detail in the text, are: method 1, data simulation with the use of an independent error
model; method 2, simulation with the use of a proportional error model; method 3, 'backwards' regression; method 4, the
jackknife; method 5, the bootstrap. The units of Cf and the standard deviations are ,ug ml-' min.

Initial concentration Standard deviation from
(mM)

Value of Method Method Method Method Method
Arginine Agmatine Cf 1 2 3 4 5

0.05 -
0.2 -
0.5 -
1.0 -
2.0 -
5.0 -
10 -
20 -
30 -
0.5 10
0.5 20
0.5 40
0.5 80
5.0 40
10 40
20 40
30 40
30 10
30 20
30 60
30 80

Correlation with column 1*
Correlation with column 2*

* Pearson correlation coefficient.

1.99
0.42
1.24
1.57
1.78
2.41
5.74

10.4
25.4
2.02
2.77
7.19

12.5
14.4
13.4
37.5
62.2
30.8
37.9
59.3
98.3

0.46
0.29
0.37
0.29
0.28
1.42
1.16
5.3
8.2
0.89
0.37
2.23
4.0
0.9
1.0
3.3

12.7
4.1
5.6

14.0
13.2

0.71
0.35
0.50
0.41
0.39
1.67
1.62
7.8

10.6
1.03
0.45
2.71
4.6
1.6
1.9
4.0
14.3
5.5
7.6

15.9
25.3

0.95

0.36
0.57
0.60
0.36
0.75
4.10
2.98
9.6

23.6
1.85
0.57
3.47
7.9
1.8
2.0
6.4

22.6
6.9
8.2

25.8
11.4

0.91
0.77

0.62
0.36
0.55
0.47
0.33
1.14
0.90
7.0
8.6
0.93
0.51
1.96
3.4
1.2
1.9
3.8

13.8
4.9
7.0

11.7
15.4

0.98
0.97

0.78
0.29
0.50
0.38
0.35
1.22
1.72
5.6
8.2
0.86
0.49
2.40
3.5
1.1
1.6
4.1
13.2
4.9
7.0

11.7
16.3

0.98
0.98

simply because it is computationally economical. Al-
though the values in column 3 are noticeably different
from those in columns 1, 2, 4 and 5, they are remarkably
well correlated. If regressions are run of the columns
against each other, it becomes clear that the values in
column 3 are, relative to those in the other columns,
consistently lower for Cf (factor of 0.54-0.69-fold) and
higher for C2 (factor of 1.8-2.9-fold). The remaining
columns do not show any strong patterns when
compared with each other.
Shown in Table 6 are the Dalziel constants and their

standard deviations, calculated from the values and
variances of Cf, C1 and C2 in Tables 2-5 by using the
relationships shown in eqns. (28(4). Again, methods 1,
2, 4 and 5 produce the same result; method 3 is close. The
distributions of the residuals for Cf and C1 are shown in
Fig. 2.

In the accompanying paper (Cox & Boeker, 1987) we
conclude, on the basis of a t test, that C2 is not
significantly different from 0 for 19 of the 21 progress
curves. Depending on the final calculation desired, this
result can mean that the minimum procedure required is
to estimate Cf, C1 and C2 by non-linear regression, obtain
the jackknife variance estimate by resampling the data
according to the number of points, calculate t for C2, and
then repeat the fitting procedure and variance calculation
with C2 held at 0.
A possible way to reduce this cumbersome calculation

is to calculate t for C2 using analysis of variance, thereby
avoiding the need for the first resampling procedure. The
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problem with analysis of variance in this system is that
the sums of squares are not additive, i.e.:

-('pi- Ap).2 +I (APA - AP)2 * I (AP) - AP)2

However, the sums of squares are close to being additive,
suggesting that a properly adjusted analysis of variance
might still be of value. For example, for the first
time course in Tables 3-5, X(APi- AP,)2 = 0.0043,
(AP-Ai- )2 = 1.4253, sum = 1.4296, and

i(APi-AP)2= 1.4336.
An analysis-of-variance calculation that adjusts for

non-additivity in the sums of squares is described in the
Computational methods section. Values of t calculated
in this way are compared with values calculated by using
the jackknife estimate of variance in Fig. 3. The two
estimates fail to correspond in only three cases, all with
t values less than 1.1. For 23 points, the minimum
number in these progress curves, the critical value of t for
a 95% confidence limit is 2.07: for 90% it is 1.71. The
analysis-of-variance test makes no wrong decisions, and
it in general corresponds very well with t values
calculated from the standard deviation of C2.

DISCUSSION

The multiple-regression method used throughout the
calculations is straightforward and computationally
efficient, but can be numerically unstable if the columns
of the input matrix are close to being linearly dependent.
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Table 4. Values and standard deviations for C1

The methods, which are described in detail in the text, are: method 1, data simulation with the use of an independent error
model; method 2, simulation with the use of a proportional error model; method 3, 'backwards' regression; method 4, the
jackknife; method 5, the bootstrap. The units of C1 and the standard deviations are ,sg ml-' min * mm-'.

Initial concentration Standard deviations from
(mM)

Value of Method Method Method Method Method
Arginine Agmatine C1 1 2 3 4 5

0.05
0.2
0.5
1.0
2.0
5.0

10
20
30
0.5
0.5
0.5
0.5
5.0

10
20
30
30
30
30
30

10
20
40
80
40
40
40
40
10
20
60
80

1.82
6.99
2.22
2.13
2.10
2.60
1.92
2.91
1.39
3.54
4.20
1.18
2.19
1.05
2.24
1.30
0.56
1.24
1.29
1.01
1.33

7.58
1.02
0.54
0.21
0.10
0.18
0.09
0.24
0.20
1.24
0.48
3.18
5.68
0.15
0.08
0.13
0.31
0.10
0.14
0.38
0.34

Correlation with column 1*
Correlation with column 2*

* Pearson correlation coefficient.

12.4
1.30
0.76
0.29
0.14
0.24
0.11
0.26
0.27
1.44
0.66
4.44
7.28
0.24
0.14
0.16
0.38
0.14
0.20
0.39
0.71

0.91

4.80
1.75
0.78
0.22
0.25
0.56
0.20
0.32
0.52
2.42
0.72
4.00
9.30
0.23
0.13
0.19
0.64
0.14
0.17
0.53
0.25

0.90
0.76

10.9
1.28
0.80
0.34
0.10
0.19
0.09
0.33
0.21
1.41
0.77
3.06
5.74
0.18
0.13
0.15
0.35
0.13
0.17
0.31
0.40

0.90
1.00

13.6
1.05
0.72
0.25
0.12
0.17
0.13
0.29
0.20
1.35
0.68
3.76
5.53
0.18
0.10
0.15
0.31
0.12
0.17
0.28
0.41

0.87
0.99

This is not likely to be a problem in calculating the
Dalziel constants for this stoichiometry, but could be a
problem for the non-linear regressions, where the
product terms corresponding to Cf, C1 and C2 are in fact
highly correlated. Instability of this sort shows up as bad
corrections in the non-linear regression, leading to
divergence rather than convergence. For the 2100
calculations performed for the bootstrap estimation of
variance, for example, only six failed to converge. The
regression technique used is evidently adequate for these
data. More stable, but also more complex, regression
techniques are available if they are required in the future
(Lawson & Hanson, 1974; Rice, 1981).

In Table 6, JAp/JAkeat is a negative number,
regardless of the computational method. This is ofcourse
physically impossible; JAp/JAkcat is the uncompetitive
inhibition constant for CO2. For the experiments
analysed here, where CO2 was never addded initially,
JAP/JAkcat. can only be calculated from C2; see eqn. (4).
In the accompanying paper (Cox & Boeker, 1987) we
conclude that C2 has a significant value in at most two
of the progress curves; use of C2 values in further
calculations is not justified. I have considered them in the
present paper only in order to make the fullest possible
analysis of the various computational methods.
The calculations required to extract kinetic constants

from integrated rate equations are complex. This is due
to the need for non-linear regression in the first part of
the program, and especially to the demand for variances
along with values of Cf, C1 and C2. The multiple

regression in the second part of the calculation can be
performed with any standard statistical package.
The complex nature of the calculations need not pose

a barrier to the use of complete progress curves. The
most suitable of the techniques examined in the present
paper have been incorporated into two computer
programs, one for extracting Cf, C1 and C2 and their
variances from a progress curve, and a second for
calculating Dalziel constants and variances from a set of
curves. The programs were originally written in FOR-
TRAN and implemented on a VAX 11/780 computer,
but have been rewritten in BASIC and can be run on an
IBM-PC or similar small computer. They apply
specifically to the stoichiometry A -.P+Q with a
discontinuous assay, but could presumably be adapted
for use with a continuous assay. They are available from
the author on request.
The first of these programs carries out a non-linear

regression to obtain Cf, C1 and C2, tests C2 for
significance by using analysis of variance, repeats the fit
with C2 = 0 if necessary, and performs a jackknife
calculation ofvariance. The jackknife was chosen for two
reasons. It is non-parametric, and therefore avoids any
assumptions due to normality or problems due to
outlying data points. And it is more conservative of
computer time than any of the remaining three successful
methods. Each of these requires that the data be simu-
lated or resampled some large number of times, whereas
the jackknife requires only as many resamplings as there
are points, and even this could possibly be reduced by
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Table 5. Values and standard deviations for C2

The methods, which are described in detail in the text, are: method 1, data simulation with the use of an independent error
model; method 2, simulation with the use of a proportional error model; method 3, 'backwards' regression; method 4, the
jackknife; method 5, the bootstrap. The units of C2 and the standard deviations are jug *mhl-' min * mM-2.

Initial concentration Standard deviation from
(mM)

Value of Method Method Method Method Method
Arginine Agmatine C2 1 2 3 4 5

0.05
0.2
0.5
1.0
2.0
5.0

10
20
30
0.5
0.5
0.5
0.5
5.0
10
20
30
30
30
30
30

- 339
- 35.7
- 0.99
- -0.21
- 0.095
- 0.029
- -0.012
- -0.098
- -0.022
10 3.01
20 3.50
40 -8.81
80 -9.50
40 -0.53
40 -0.035
40 -0.16
40 -0.062
10 -0.022
20 -0.024
60 -0.049
80 -0.092

484
32.5
5.32
1.13
0.29
0.27
0.051
0.066
0.038
14.2
6.16

32.8
58.0
0.14
0.041
0.033
0.054
0.020
0.026
0.053
0.045

Correlation with column 1*
Correlation with column 2*

* Pearson correlation coefficient.

651
32.5
6.55
1.36
0.35
0.26
0.061
0.080
0.040

14.1
6.09

30.7
54.2
0.18
0.058
0.030
0.046
0.020
0.027
0.055
0.071

1.00

260
26.5
4.24
0.69
0.32
0.27
0.052
0.047
0.045
12.7
4.60

27.5
62.0
0.14
0.034
0.030
0.051
0.014
0.017
0.054
0.023

0.99
0.98

583
35.1
7.27
1.49
0.34
0.23
0.038
0.080
0.043

13.1
6.92

27.6
44.6
0.16
0.066
0.035
0.050
0.019
0.028
0.053
0.050

1.00
1.00

696
29.7
6.63
1.27
0.33
0.24
0.063
0.076
0.040
11.9
6.74

33.7
47.6
0.14
0.054
0.036
0.051
0.020
0.028
0.053
0.052

1.00
1.00

using the grouped jackknife (Cornish-Bowden & Wong, a serious problem, variances obtained by this method
1978). would be preferable to no variances at all.
Computationally, the most conservative method for The second program calculates Dalziel constants by

obtaining variances is the 'backwards' regression of t on weighted multiple regressions (eqns. 2-4), taking into
AP. Although not theoretically sound, this method account the possibility that the initial conditions may be
produced surprisingly good results. If computer speed is such that only AO is varied, or only AO and PO, or etc.;

Table 6. Dalziel values

The methods, which are described in detail in the text, are: method 1, data simulation with the use of an independent error
model; method 2, simulation with the use of a proportional model; method 3, 'backwards' regression; method 4, the jackknife;
method 5, the bootstrap.

Mean value+ standard deviation of mean,
obtained by the use of variances from

Dalziel Method Method Method Method Method
parameter Units 1 2 3 4 5

1 /k8at. (mol/min per #ug)-
JO/JAkcat. mm - (umol/min per ,sg)-
JP/JAkcat. (,tmol/min per psg)-
JQ/JAkcat. (umol/min per ,sg)-
JPQ/JAkcat. nm-r1 (,umol/min per ug)-l
JAP/JAkcat. rnm-1 (tmol/min per #sg)-
JAQ/JAkeat. mM-' (4mol/min per ug)-
Correlation with column 1 *
Correlation with column 2*

* Pearson correlation coefficient.

2.59+0.23 2.67+0.25
1.01 +0.31 0.91 +0.26

0.103 + 0.026 0.099 + 0.022
0.16+0.18 0.20+0.16

0.021 +0.004 0.020+0.004
0.028+0.011 0.025+0.013

-0.055+0.016 -0.055+0.018

1.00

2.19+0.23
1.49+0.25

0.077+0.025
-0.09+0.20
0.026+0.004
0.026+0.012

-0.052+0.015

0.96
0.94

2.56+0.20
0.93 +0.27

0.116+0.023
0.17+0.12

0.020+ 0.003
0.023+0.012

-0.047+0.017
1.00
1.00

2.70+0.26
0.81 +0.28

0.118+0.024
0.20+0.17

0.020+0.004
0.028 +0.012

-0.054+0.017

1.00
1.00
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Weighted residual
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Fig. 2. Distribution of weighted residuals when the Dalziel
constants are obtained by fitting eqns. (2) and (3)

The quantities plotted on the ordinate are (Ci- '/si

it extracts whatever information is possible for the
conditions used. The advantage of these programs is that
standard deviations are automatically calculated for the
final Dalziel constants; an effort has been made to reduce
the subjectivity of decisions made about terms in the
empirical rate equation.

This work was supported by Grant GM34065 from the
National Institutes of Health. I thank Dr. Ronald Canfield for
statistical help.
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