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Metabolomics comprises the methods and techniques that are used to measure the small

molecule composition of biofluids and tissues, and is actually one of the most rapidly

evolving research fields.The determination of the metabolomic profile – the metabolome –

has multiple applications in many biological sciences, including the developing of new

diagnostic tools in medicine. Recent technological advances in nuclear magnetic reso-

nance and mass spectrometry are significantly improving our capacity to obtain more data

from each biological sample. Consequently, there is a need for fast and accurate statistical

and bioinformatic tools that can deal with the complexity and volume of the data gener-

ated in metabolomic studies. In this review, we provide an update of the most commonly

used analytical methods in metabolomics, starting from raw data processing and ending

with pathway analysis and biomarker identification. Finally, the integration of metabolomic

profiles with molecular data from other high-throughput biotechnologies is also reviewed.

Keywords: metabolomics, nuclear magnetic resonance, mass spectrometry, untargeted, spectral processing, data

analysis, pathway analysis, integration

INTRODUCTION

Metabolomics is the study of the metabolite composition of a cell

type, tissue, or biological fluid. The analysis of the complete set

of metabolites – the metabolome – has been present in biologi-

cal research for more than a decade (Patti et al., 2012). However,

major recent advances in the technologies used to extract and

analyze this type of molecular data have revolutionized its applica-

bility in the analysis of organisms and relevant biological processes

(Zhang et al., 2012). To date, metabolomics is envisaged as one of

the major “omics” tools that will most contribute into challeng-

ing research objectives like the personalization of treatments in

medical practice.

The metabolites are the intermediates or end products of

multiple enzymatic reactions and therefore are the most infor-

mative proxies of the biochemical activity of an organism. The

present technologies are allowing the study of tens to hundreds

of metabolites in complex biological samples (Patti et al., 2012).

One of the facts that is most contributing to the rapid growth

of metabolomics is its wide range of applications. These appli-

cations cover diverse research areas like plant biology (Qi and

Zhang,2014),nutrition (Orešič, 2009; Gibbons et al.,2015),animal

breeding (Kühn, 2012), drug discovery (Robertson and Frevert,

2013; Kell and Goodacre, 2014), and the study of human diseases

(Kaddurah-Daouk et al., 2008; Mamas et al., 2011). The biomed-

ical field is actually one of the most active areas of development in

metabolomics, and includes the search for diagnostic and prognos-

tic biomarkers as well as predictors of treatment response (Meyer

et al., 2013; Armitage and Barbas, 2014; Julià et al., 2014). Also in

this field, the use of metabolomics is helping to characterize the

impact of key environmental factors on human health. In this area,

one of the most promising applications is the characterization

of gut–microbiota interactions in humans (Wikoff et al., 2009;

Nicholson et al., 2012).

To date, the two main technical approaches for the generation

of metabolomic data are nuclear magnetic resonance (NMR) and

mass spectrometry (MS; Fuhrer and Zamboni, 2015). NMR is a

fast and highly reproducible spectroscopic technique that is based

on the energy absorption and re-emission of the atom nuclei due

to variations in an external magnetic field (Bothwell and Griffin,

2011). Depending on the atom nuclei being targeted by the applied

magnetic field, different types of metabolomic data are generated.

However, in the analysis of samples of biological origin, hydro-

gen is the most commonly targeted nucleus (1H-NMR), due to its

natural abundance in biological samples. Although less frequent,

other atoms like carbon (13C-NMR) and phosphorus (31P NMR)

are also targeted by NMR, providing additional information on

specific metabolite types (Reo, 2002).

The resulting spectral data in NMR not only allows the quan-

tification of the concentration of metabolites but also provides

information about its chemical structure. The spectral peak areas

generated by each molecule are used as an indirect measure of

the quantity of the metabolite in the sample, while the pattern of

spectral peaks informing on the physical properties of the mole-

cule is used to identify the type of metabolite. The spectral data

obtained with NMR techniques can be referenced to one or two fre-

quency axes. One dimensional NMR (1D-NMR) spectra are based

on a single frequency axis, where the peaks of each molecule are

placed within its resonant frequencies (Figure 1). 1D-NMR is the

most commonly used method in high-throughput metabolomics

studies. Conversely, two dimensional NMR (2D-NMR) spectra are

based on two frequency axis, and its use is often restricted to the

characterization of those compounds that cannot be identified
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Alonso et al. Analytical methods in untargeted metabolomics

FIGURE 1 | Examples of spectra obtained with 1H-NMR and

LC-MS technologies. (A) An example of three spectra obtained with

1D 1H-NMR. (B) A zoomed view of the spectra in (A) in the

2.66–2.74 ppm range. (C) An example of a LC-MS spectrum with

color-coded intensity and referred by the m/z and retention time axes.

(D) The sum of the LC-MS spectrum across the m/z axis. (E) The total

ion chromatogram (i.e., sum of the LC-MS spectrum across the

retention time axis). The colored regions in (E) correspond to the sum

of the LC-MS spectrum limited to the m/z ranges depicted with the

same color in (D).

with 1D-NMR spectra. The second dimension in 2D-NMR allows

to separate otherwise overlapping spectral peaks and, therefore,

gives additional and important information on the chemical prop-

erties of the metabolite (Ward et al., 2007). Although 2D-NMR

generates a large number of different spectra, these can be globally

classified into homonuclear (i.e., 1H–1H-NMR) and heteronuclear

(i.e., 1H–13C or 1H–15N) spectra (Marion, 2013). There are also

different pulse sequences used to generate the 2D-NMR spectra

such as correlation spectrometry (COSY), total correlation spec-

troscopy (TOCSY), and nuclear Overhauser effect spectroscopy

(NOESY). 1D- and 2D-NMR frequency axes are usually refer-

enced by the chemical shift expressed in parts per million (ppm).

The chemical shift is calculated as the difference between the res-

onance frequency and that of a reference substance, subsequently

divided by the operating frequency of the spectrometer (Blümich

and Callaghan, 1995).

Mass spectrometry is an analytical technique that acquires

spectral data in the form of a mass-to-charge ratio (m/z) and a rel-

ative intensity of the measured compounds. For the spectrometer

to generate the peaks signals for each metabolite, the biological

sample first needs to be ionized. The resulting ionized compounds

from each molecule will then generate different peak patterns

that define the fingerprint of the original molecule. A wide range

of instrumental and technical variants are currently available for

MS spectrometry. These variants are mainly characterized by dif-

ferent ionization and mass selection methods (El-Aneed et al.,

2009). In metabolomics, MS is generally preceded by a separa-

tion step. This step reduces the high complexity of the biological

sample and allows the MS analysis of different sets of molecules

at different times. Liquid and gas chromatography columns (LC

and GC, respectively) are the most commonly used separation

techniques (Theodoridis et al., 2011). This chromatographic sep-

aration technique is based on the interaction of the different

metabolites in the sample with the adsorbent materials inside

the chromatographic column. This way, metabolites with differ-

ent chemical properties will require different amounts of time to

pass through the column. The time that each metabolite requires,

called retention time, is used together with the m/z MS values

to generate the two axes of the LC-MS and GC-MS spectral data

(Figure 1).
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Alonso et al. Analytical methods in untargeted metabolomics

In the present review, we will describe the processing and

analysis workflows that are commonly used in high-throughput

untargeted metabolomic studies. Untargeted metabolomic stud-

ies are characterized by the simultaneous measurement of a large

number of metabolites from each sample. This strategy, known

as top-down strategy, avoids the need for a prior specific hypoth-

esis on a particular set of metabolites and, instead, analyses the

global metabolomic profile. Consequently, these studies are char-

acterized by the generation of large amounts of data. This data

is not only characterized by its volume but also by its complexity

and, therefore, there is a need for high performance bioinformatic

tools. Conversely, targeted metabolomic studies are hypothesis-

driven experiments and are characterized by the measurement of

predefined sets of metabolites with a high level of precision and

accuracy. This low level of metabolite analysis is not in the scope

of this review, and interested readers are referred to other excellent

specific reviews (Roberts et al., 2012; Putri et al., 2013).

In Figure 2, we show the typical methodological pipeline of

an untargeted metabolomic study. This methodological pipeline

starts with the processing of the spectral data to generate the sam-

ple metabolic information (i.e., metabolic features). The different

methods available to process spectral data are revised in Section

“Spectral Processing.” Together with metabolite-identification

methods, spectral processing methods are highly dependent on the

analytical technique used (e.g., NMR, LC-MS, or GC-MS). Once

the complete set of metabolomic features has been generated, uni-

variant and multivariant data analysis methods can be applied

to investigate: (a) the general structure of the metabolomics data

in the dataset and (b) how the different metabolic features are

related with the phenotypic data associated with the samples.

These analysis methods are reviewed in Section “Data Analysis.”

The analysis of metabolomic data can often be used to build mod-

els that attempt to describe the observed data. Section “Biomarker

Discovery in Metabolomics” of the present review describes the

different strategies for assessing the performance of these models.

In Section “Metabolite Identification and Spectral Databases,” we

address the important technical issue that is the identification of

the metabolites underlying the observed metabolic features (i.e.,

peak areas and spectral bins). The bioinformatic methods that are

actually available for the integration of metabolomic data accord-

ing with biological knowledge are reviewed in Section “Pathway

and Network Analysis of Metabolomic Data.” Finally, the differ-

ent methodologies that allow the integration of metabolomics

data with other omics data (e.g., genomics or transcriptomics) are

reviewed in Section “Integration of Omics Data.” Table 1 shows

a list of the freely available tools that are most commonly used

in metabolomic analysis. These tools provide different method-

ological options for spectral processing, data analysis, or pathway

analysis.

SPECTRAL PROCESSING

Spectral processing is a methodological approach aimed at accu-

rately identifying and quantifying the features in the sample spec-

tra of a metabolomics study (Figure 3). Metabolomic spectra

are sequentially or jointly processed until a final set of feature

quantifications is obtained. Spectral processing is also necessary

to guarantee that each final measurement will refer to the same

metabolomic feature in all samples. The data resulting from spec-

tral processing is generally arranged in a feature quantification

matrix (FQM) that contains the quantification of the metabolic

features of all the analyzed samples and that will be used as input

for subsequent statistical analysis.

SPECTRAL PRE-PROCESSING

In order to improve the signal quality and reduce possible biases

present in the raw data, several pre-processing steps are usually

applied. In NMR- and MS-based spectra, baseline correction is

used to remove low frequency artifacts and differences between

FIGURE 2 | Analysis workflow in untargeted metabolomic studies. This figure shows the different steps of the metabolomic analysis pipeline.
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Alonso et al. Analytical methods in untargeted metabolomics

Table 1 | List of tools available for metabolomics spectral processing and data analysis.

Tool Type Target Featuresa Website Reference

MetaboAnalyst2 Web MS and NMR 1–7 http://www.metaboanalyst.ca/ Xia et al. (2012)

XCMS R MS 1–3 http://metlin.scripps.edu/xcms/ Smith et al. (2006)

MetSign MatLab MS 1–3 http://metaopen.sourceforge.net/ Lommen and Kools (2012)

XCMS online Web LC-MS 1–4 https://xcmsonline.scripps.edu/ Tautenhahn et al. (2012b)

MAVEN Application LC-MS 1–7 http://genomics-pubs.princeton.edu/mzroll Melamud et al. (2010)

mzMine2 Application LC-MS 1–5 http://mzmine.sourceforge.net/ Pluskal et al. (2010)

MAIT R LC-MS 1–5 http://b2slab.upc.edu/software-and-downloads Fernández-Albert et al. (2014)

OpenMS Application LC-MS 1–3 http://open-ms.sourceforge.net/ Sturm et al. (2008)

Metabolome express Web GC-MS 1–5 https://www.metabolome-express.org/ Carroll et al. (2010)

Metabolite detector Application GC-MS 1–4 http://md.tu-bs.de/ Hiller et al. (2009)

MetDAT Web MS 1–5 http://smbl.nus.edu.sg/METDAT2/ Biswas et al. (2010)

FOCUS MatLab NMR 1–4 http://www.urr.cat/FOCUS/ Alonso et al. (2013)

Automics Application NMR 1–2, 5 https://code.google.com/p/automics/ Wang et al. (2009)

Bayesil Web NMR 1–4 http://bayesil.ca/ Ravanbakhsh et al. (2014)

Speaq Application NMR 1–2, 5 https://code.google.com/p/speaq/ Vu et al. (2011)

MetaboLab Application NMR 1–2, 5 http://www.nmrlab.org.uk/ Ludwig and Gunther (2011)

rNMR R NMR 8 http://rnmr.nmrfam.wisc.edu/ Lewis et al. (2009)

MetaboMiner Application NMR 8 http://wishart.biology.ualberta.ca/metabominer/ Xia et al. (2008)

Muma R – 5 http://cran.r-project.org/web/packages/muma Gaude et al. (2013)

MetaXCMS R MS and NMR 5 http://metlin.scripps.edu/metaxcms/ Tautenhahn et al. (2010)

BATMAN R NMR 3–4 http://batman.r-forge.r-project.org/ Hao et al. (2012)

AStream R LC-MS 4 http://www.urr.cat/AStream/AStream.html Alonso et al. (2011)

Camera R LC-MS 4 http://metlin.scripps.edu/xcms/ Kuhl et al. (2011)

MetaboHunter Web NMR 4 http://www.nrcbioinformatics.ca/metabohunter/ Tulpan et al. (2011)

MetScape Application – 6–7 http://metscape.ncibi.org/ Gao et al. (2010)

IMPaLA Web – 6–7 http://impala.molgen.mpg.de/ Kamburov et al. (2011)

MetExplore Web – 6–7 http://metexplore.toulouse.inra.fr/ Cottret et al. (2010)

MetPA Web – 6–7 http://metpa.metabolomics.ca/ Xia and Wishart (2010a)

Cytoscape Application – 7 http://www.cytoscape.org/ Smoot et al. (2011)

Vanted Application – 7 http://vanted.ipk-gatersleben.de/ Rohn et al. (2012)

Paintomics Web – 7 http://www.paintomics.org/ García-Alcalde et al. (2011)

This table provides a complete and updated list of the open-source software that is commonly used in the untargeted analysis of metabolomic data.

aThis column refers to the features included in the tool: spectral pre-processing (1), spectral/peak alignment (2), peak detection (3), metabolite identification (4), data

analysis (5), pathway analysis (6), pathway visualization (7), and 2D-NMR analysis (8).

samples that are generated by experimental and instrumental vari-

ation (Dietrich et al., 1991; Smith et al., 2006; Xi and Rocke, 2008;

Zhang et al., 2010). After this, the application of high-frequency

filters may be necessary to remove the electronic noise present in

the data that is generated by the measurement equipment.

FEATURE-DETECTION

The objective of the feature-detection step is to identify and quan-

tify the features present in the spectra. Peak-based methods are

the most common algorithmic choice for feature-detection in MS-

based studies (Gika et al., 2014; Niu et al., 2014; Rafiei and Sleno,

2015). These methods detect the peaks across the spectrum and

integrate their areas to provide a quantification of the underlying

metabolite. In this approach, spectral alignment is also generally

applied either before or after peak detection. In NMR studies,

binning-based approaches have been commonly used to detect fea-

ture peaks in complex biological samples. However, these methods

perform poorly compared to peak-based methods, particularly in

those cases where there is significant spectral unalignment, or in

those cases where multiple peaks from different metabolites are

captured by the same spectral bin (Vu and Laukens, 2013). For

these reasons, peak-based methods are increasingly being used in

NMR-based studies (Wishart, 2008). Nonetheless, there have been

recent developments in binning algorithms, particularly in the

detection of the optimal binning boundaries that have improved

the performance of this feature-detection approach (Sousa et al.,

2013).

Peak overlap is also a common problem in NMR-based stud-

ies. Overlapping peaks are treated as one same feature both in

binning and peak-based approaches. Consequently, the results

obtained from the analysis of these variables can be often hard

to interpret. To attempt to solve this problem, spectral decon-

volution methods have been developed (Hao et al., 2014). These

methods, which are based on the fitting to metabolite spectral tem-

plates, are able to extract independent metabolite quantifications

from a set of overlapping peaks. The main disadvantage of this
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Alonso et al. Analytical methods in untargeted metabolomics

FIGURE 3 | Features of spectral data. This figure shows the different

types of features that can be extracted from spectral data and used for data

analysis.

type of algorithms, however, is that they depend on the existence

of spectral libraries of each metabolite and, therefore, they are

unable to quantify peaks arising from previously uncharacterized

metabolites.

Peak detection

The most commonly used peak detection algorithms analyze each

sample spectrum independently (Tautenhahn et al., 2008, 2012b;

Pluskal et al., 2010). These methods are based on two analytical

steps (Yang et al., 2009). In the first step, the spectra are smoothed.

For this objective, multiple different filters are available (i.e., mov-

ing average, Gaussian, Savitzky-Golay. . .; Yang et al., 2009). From

these, however, the Wavelet transform-based filters have demon-

strated a superior performance, although at the expense of a higher

computation time (Du et al., 2006; Tautenhahn et al., 2008). This

performance improvement is mainly due to the ability of the

Wavelet transform to work with the unequal peak widths that

characterize metabolomic spectra. In the second step, the differ-

ent metabolite peaks are identified using one or multiple detection

thresholds. These thresholds are applied to different parameters

such as the signal-to-noise ratio, the intensity, or the area of

each peak from the resulting filtered spectra (Yang et al., 2009).

In metabolomics studies involving large numbers of samples, a

frequency filter (i.e., consensus peak signal), can be also applied so

that only those peaks that are present in a minimum percentage of

samples are selected for downstream analysis.

Spectral alignment

Spectral alignment is one of the main processing steps in

metabolomic studies involving multiple samples. When analyz-

ing multiple spectra, the position of the peaks corresponding to

the same metabolic feature may be affected by non-linear shifts. In

NMR-based studies, these shifts are observed in the ppm axis and

are usually introduced by differences in the chemical environment

of the sample like ionic strength, pH, or protein content (Weljie

et al., 2006; Xiao et al., 2009). In MS-based studies, peak shifts are

mainly observed across the retention time axis, and are generally

associated with changes in the stationary phase of the chromato-

graphic column (Burton et al., 2008). Spectral alignment methods

must be therefore applied to correct this undesired variability in

the samples that can profoundly affect the quality of the study.

Spectral alignment algorithms can be divided in two main groups:

(i) spectral alignment methods, where the spectral data is aligned

before peak detection and (ii) peak-based alignment methods,

where spectral peaks are aligned across samples once they have

been detected using their coordinates (ppm in NMR, and m/z and

retention time in LC/GC-MS).

Spectral alignment methods are classified into warping and seg-

menting methods. Warping methods are based on the application

of a non-linear transformation to the ppm (in NMR spectra) or the

retention time (in LC/GC-MS) axis in order to maximize the cor-

relation between the spectra. The alignment is then performed by

either stretching or shrinking spectral segments to reach this cor-

relation maximization. Among these methods, correlation opti-

mized warping (COW) and dynamic time warping (DTW) are the

most commonly used. COW is a segmental alignment method that

aligns one sample spectrum toward a reference spectrum (Tomasi

et al., 2004). This is done by splitting the original sample and refer-

ence spectra into small segments, and by separately aligning each

pair of segments. Alignment is performed through dynamic pro-

graming in such a way that limited changes in segment lengths are

allowed. This way, the overall correlation between both spectra is

effectively maximized. In the particular case of crowded spectral

regions with large peak shifts, COW has demonstrated to per-

form particularly well compared to other methods. An alternative

to COW method, DTW is a spectral alignment method (Tomasi

et al., 2004) that is also based on dynamic programing, and where

a warping path is computed to which the connected data points

of each spectrum are equivalent. During this last decade, other

warping approaches have been developed (Eilers, 2003; Forshed

et al., 2003; Lee and Woodruff, 2004; Clifford et al., 2009).

Spectral segmenting methods differ from spectral warping

methods in that alignment is performed by applying a constant

shift to all the spectral points. These methods either align the

overall spectra or split the spectra into smaller segments and

independently align each resulting segment. The Icoshift algo-

rithm (Savorani et al., 2010) is one of the most commonly used

segmentation methods, and is based on the convergence toward

a reference signal. This convergence is performed by applying

shifts that maximize the segment spectral correlation, which is

normally computed using the fast Fourier transform (FFT) to
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Alonso et al. Analytical methods in untargeted metabolomics

speed up the required calculations (Wong et al., 2005). Icoshift

and other correlation-based methods can also be combined with

automatic segmentation methods (Veselkov et al., 2008), which

are able to optimally split the spectra in order to improve the

alignment of the resulting spectral segments. However, the use

of a reference spectrum has several disadvantages. Very recently,

the RUNAS algorithm implemented in the FOCUS processing

workflow (Alonso et al., 2013) has provided a spectral segmenting

method that avoids the use of a reference spectrum. Instead, the

FOCUS method uses the information from the different sample

spectra to iteratively maximize the inter-sample weighted-mean

correlation. This approach has shown that avoiding the use of a

reference spectrum is a powerful strategy to avoid many of the

analytical biases derived from its use. These biases are mainly due

to the fact that the reference spectrum may not be representative

of the spectral diversity present in the samples. FOCUS alignment

algorithm has also shown that an appropriate spectral transfor-

mation prior to alignment avoids the biases due to the presence of

multiple peaks in the same alignment window. Under these con-

ditions, the methods based in correlation maximization without

prior transformation are more prone to align the most relevant

peak of each sample regardless of whether they correspond to the

same metabolic feature or not.

Fast Fourier transform-based segmenting methods such as

RAFFT, Icoshift, and FOCUS not only are able to process large

metabolomics datasets in a reduced amount of time, but also

have shown to perform better than spectral warping methods

(Giskeødegård et al., 2010; Savorani et al., 2010; Alonso et al.,

2013; Jiang et al., 2013). Within the different segmenting meth-

ods, reference-free methods avoid the biases introduced by using

reference spectra, but at a cost of being more computationally

intensive.

Of relevance, the results reported by several performance com-

parison studies using either NMR or MS have demonstrated that

spectral alignment algorithms have a good performance irrespec-

tive of the analytical technique that has been used (MS or NMR;

Van Nederkassel et al., 2006; Giskeødegård et al., 2010). Con-

sequently, methods that were initially developed to align NMR

spectra are also applied to align MS spectra and vice versa.

Compared to the warping and segmentation alignment meth-

ods, peak-based methods are applied after peak detection. In these

methods, peak coordinates are used to perform the alignment.

This type of method is implemented in the XCMS software (Taut-

enhahn et al., 2012b), one of the most commonly used methods

to process data from LC-MS studies. Given that the shifts along

the m/z axis are minimal and the m/z axis has a high resolution,

the data can be safely binned in m/z intervals, and peak align-

ment performed on each bin along the chromatographic time.

The XCMS algorithm computes the retention time boundaries

within which the observed peaks are expected to represent the

same metabolomic feature across the different samples. The com-

putation of these retention time boundaries is performed by using

a kernel density estimator. Another common alignment method

used in MS is the RANSAC algorithm (Pluskal et al., 2010). In this

approach, the corresponding peaks across samples are identified

by using a LOESS regression on different retention times and m/z

windows.

FEATURE NORMALIZATION

In order to perform an accurate quantification of the features

in a metabolomic analysis, a data normalization step is generally

required. The objective of normalization is to remove undesired

systematic biases, so that only biologically relevant differences

are present in the data. This procedure is crucial when analyzing

complex biofluids like blood, where the differences in metabolite

concentration between samples can be high, and the introduction

of internal standards is complicated. Although multiple statistical

models have been developed for this objective (Craig et al., 2006;

Kohl et al., 2012), the two perhaps most commonly used methods

are the use of endogenous stable metabolites (like creatinine in

urine) and the use of the total spectral area [i.e., area under the

curve (AUC); Weljie et al., 2006; Rasmussen et al., 2011].

DECONVOLUTION METHODS IN TARGETED ANALYSIS

One of the main limitations for the quantification of metabolomic

features is the overlap between peaks from different metabolites.

NMR and GC-MS spectra are particularly prone to this type of

bias. In order to deal with this technical issue, several method-

ological approaches have been developed. These approaches are

based on spectral deconvolution (Chylla et al., 2011; Astle et al.,

2012; Du and Zeisel, 2013; Hao et al., 2014), a signal processing

technique that estimates the relative area corresponding to each

individual peak when multiple peaks overlap within the same

spectral region (Figure 4). However, an important limitation of

deconvolution methods is that prior knowledge of the compounds

FIGURE 4 | Spectral deconvolution. This figure shows how spectra (gray

shaded area) can be decomposed (i.e., deconvoluted) in multiple

components corresponding to different metabolite compounds.
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Alonso et al. Analytical methods in untargeted metabolomics

present in the mixture is required. Additionally, the use of these

methods in untargeted metabolite studies is yet not possible due

to computational intractability (Hao et al., 2014).

The usual input data for these methods is the spectral data from

the study and at template library containing the reference peak

patterns of each metabolite. Currently, there are multiple methods

available for spectral deconvolution of NMR data (Chylla et al.,

2011; Zheng et al., 2011; Astle et al., 2012; Hao et al., 2014) and

they are mostly based on Bayesian model selection. Among them,

BATMAN (Hao et al., 2012) is one of the most frequently used,

providing a rich and user-friendly interface and a complete pro-

tocol to perform this type of analysis (Hao et al., 2014). BATMAN

is an open-source software and its performance has been demon-

strated to be very similar to that of the NMR Suite software package

(Chenomx Inc., Edmonton, AB, Canada; Weljie et al., 2006), a

proprietary software that is considered a gold standard for NMR

metabolomics (Chenomx Inc., Edmonton, AB, Canada; Weljie

et al., 2006). The NMR Suite itself provides a semi-automated tool

for spectral deconvolution which allows interactive fitting of the

metabolite peaks to the reference metabolite spectra. The major

disadvantage of this tool is the large amount of time required to

process large sample datasets and the need of highly skilled data

analysis specialists.

GC-MS methods for spectral deconvolution are mostly based

on unsupervised approaches that do not require the prior knowl-

edge of the compounds presents in the sample (Stein, 1999; Hiller

et al., 2009; Ni et al., 2012). These approaches are mainly based

on three steps, namely: (a) noise analysis for selecting the spectral

segments to be deconvoluted, (b) component perception for iden-

tification of the individual components present in each segment,

and (c) deconvolution for fitting the individual components to

the overall spectral shape. Du et al. provide an extensive review of

these methods (Du and Zeisel, 2013).

DATA ANALYSIS

Once the metabolite features are robustly quantified, there are

multiple univariate and multivariate statistical methods that can

be used to perform the desired study analysis. These groups of

techniques are commonly known as chemometric methods (Mad-

sen et al., 2010) and usually require some degree of expertise to

be conveniently applied. In the following sections, we define the

most commonly used metabolomic features, and we describe the

most commonly used chemometric methods.

METABOLOMIC FEATURES

After applying the adequate pre-processing methods,metabolomics

data is usually reduced to a FQM. In this data representation, rows

correspond to the samples and columns correspond to the different

metabolomic features. Each metabolomic feature is intrinsically

related to the concentration of a particular metabolite. Depending

on the analytical technique and the spectral processing workflow

that have been used, different metabolomic features are used as

input for data analysis (Figure 3):

• Spectral peak areas: one of the most commonly used features

in high-throughput metabolomics data (NMR-based or MS-

based). They are computed through the integration of the peaks

identified and aligned using the methods described in the pre-

vious section (see Spectral Pre-Processing to Deconvolution

Methods in Targeted Analysis). Once this data has been analyzed,

the identification of the metabolites representing the relevant

peaks is required in order to provide biological meaning to

the results. Metabolite-identification methods are reviewed in

Section “Metabolite Identification and Spectral Databases.”

• Metabolite concentrations: in contrast to the previous features,

metabolite identification can be performed prior to data analysis

in order to obtain absolute or relative metabolite concentra-

tions to be used as input for data analysis (Wishart, 2008; Zhou

et al., 2012). This type of features allow both to reduce the

high redundancy of peak areas (i.e., one metabolite is often

represented by multiple spectral peaks), and to provide biolog-

ical significance to all the analyzed features. The most com-

mon metabolite-identification methods are reviewed in Section

“Metabolite Identification and Spectral Databases.”

• Spectral bin areas: in addition to peak areas and metabolite con-

centrations, spectral bins (or also buckets) are also commonly

used features in NMR-based studies. This technique consists of

dividing the spectra into evenly spaced regions that are later inte-

grated to obtain the corresponding spectral bin areas. In order

to mitigate problems such as peaks lying in two consecutive

integration regions, some methods have implemented uneven

binning algorithms like dynamic adaptative binning (Ander-

son et al., 2011), Gaussian binning (Anderson et al., 2008),

and adaptative intelligent binning (De Meyer et al., 2008). This

feature estimation approach has, however, some inherent disad-

vantages produced by the presence of uninformative features in

the spectra (i.e., spectral areas without spectral peaks) and the

lack of inter-sample feature correspondence when spectra are

heavily affected by unalignment (e.g., urine samples with large

pH variability).

UNIVARIATE ANALYSIS METHODS

Univariate methods analyze metabolomic features independently.

They are common statistical analysis approaches and, therefore,

their main advantage is their ease of use and interpretation. How-

ever, their main disadvantage is that they do not take into account

the presence of interactions between the different metabolic fea-

tures. The metabolomic data obtained from biological samples is

often very complex with the presence of correlations between fea-

tures from the same metabolite and correlations between metabo-

lites from the same pathway. Also, the effect of potential confound-

ing variables like gender, diet, or body mass index is not taken into

account by these analysis methods, increasing the probability of

obtaining false positive or false negative results (Winnike et al.,

2009; Rasmussen et al., 2011; Townsend et al., 2013).

Several univariate analysis methods are available for

metabolomic data analysis. The selection of the method will

depend on the statistical properties of the feature distribution

(Broadhurst and Kell, 2006; Vinaixa et al., 2012). For example,

when assessing differences between two or more groups, para-

metric tests such as Student’s t -test and ANOVA are commonly

applied, provided that normality assumptions are conveniently

verified. The latter can be confirmed using the Kolmogorov–

Smirnov normality test or Bartlett’s homogeneity of variances
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test. In those cases where normality of the data cannot be

assumed, non-parametric tests such as Mann–Whitney U test or

Kruskal–Wallis one-way analysis of variance are preferable.

In addition to choose the most appropriate statistical analysis

test, another important consideration in metabolomic data analy-

sis is the multiple testing problem. In most metabolomic studies,

a large number of metabolomic features are analyzed simulta-

neously and, therefore, the probability of finding a statistically

significant result by chance (i.e., false positive) is high. In order to

control for this multiple testing issue, several correction methods

are available. Each method is characterized by a particular balance

between avoiding false metabolite associations (i.e., false positives)

and prevents discarding true associations (i.e., false negatives).

Depending on the study design, researchers might decide to use a

more or less conservative approach. The Bonferroni correction is

perhaps the most conservative multiple test correction approach,

where the number of type I errors (false positives) regarding to

the total number of hypotheses tested [i.e., defined as familywise

error rate (FWER)] is minimized at the expense of increasing type

II errors (false negatives). In the Bonferroni correction, the signif-

icance level for one hypothesis (i.e., alpha value), is divided by the

number of hypotheses tested simultaneously. Although a very con-

servative approach, especially when the hypotheses tested are not

independent, many researchers advocate its use in metabolomic

studies (Broadhurst and Kell, 2006). Recently, Chadeau-Hyam

et al. assessed the metabolome-wide significance level (MWSL)

for biomarker identification in urine using a permutation-based

method to estimate the correct FWER (Chadeau-Hyam et al.,

2010). Their method took into account metabolite collinearity and

reported that a conservative estimate of the independent number

of tests is 35% of the performed tests. This result indicates that

the Bonferroni multiple test correction method might be over

conservative.

Other less conservative multiple test correction methods are

however available and are mostly based on the minimization of

the false-discovery rate (FDR; Benjamini and Hochberg, 1995).

While Bonferroni and other FWER-based methods minimize the

probability of at least one false positive in the overall set of tests,

FDR-based methods minimize the expected proportion of false

positives on the total number of positives (Van Den Oord, 2008).

Most of these methods have been extensively used for the analy-

sis of gene-expression microarray data, where thousands of genes

are tested in parallel (Reiner et al., 2003; Jung, 2005; Xie et al.,

2005). In untargeted metabolomic studies, where large numbers

of metabolites are simultaneously analyzed, and where it is also

expected that more than one or two of these biomarkers will be

associated, the use of less strict multiple correction methods like

FDR methods might be more useful.

MULTIVARIATE ANALYSIS METHODS

In contrast to univariate methods, multivariate analysis methods

take into account all the metabolomic features simultaneously

and, consequently, they can identify relationship patterns between

them. These pattern-recognition methods can be classified into

two groups: supervised and unsupervised methods. In unsuper-

vised analysis methods, the similarity patterns within the data are

identified without taking into account the type or class of the

study samples. In supervised methods, the sample labels are used

in order to identify those features or features combinations that are

more associated with a phenotype of interest. Supervised methods

are also the basis for building prediction models.

Unsupervised methods

Unsupervised methods are often applied to summarize the com-

plex metabolomic data. They provide an effective way to detect

data patterns that are correlated with experimental and/or biolog-

ical variables. Principal component analysis (PCA) is the most

commonly used unsupervised method in metabolomic studies

(Wold et al., 1987; Bro and Smilde, 2014). PCA is based on the

linear transformation of the metabolic features into a set of lin-

early uncorrelated (i.e., orthogonal) variables known as principal

components. This decomposition method maximizes the variance

explained by the first component while the subsequent compo-

nents explain increasingly reduced amounts of variance. At the

same time, PCA minimizes the covariance between these compo-

nents (i.e., they are independent of each other). After applying

the PCA method, a set of loading vectors and score vectors are

obtained. The loading vectors represent the principal components,

and each vector coefficient corresponds to the individual contribu-

tion of each variable to the principal component. The score vectors

represent the projection of each sample onto the new orthogonal

basis. Plotting these sample scores over the first principal com-

ponents is a convenient way of summarizing the global dataset,

since normally these first principal components capture most of

the variability in the dataset. PCA is also used in metabolomics

studies to assess data quality, since it can identify sample outliers

or reveal hidden biases in the study. For example, PCA has been

used in several studies to determine the impact of technical varia-

tion in the analysis of metabolic profiles (Gika et al., 2008; Winnike

et al., 2009; Rasmussen et al., 2011; Yin et al., 2013).

Other unsupervised methods like hierarchical clustering analy-

sis (HCA) and self-organizing maps (SOMs) have also been

applied to metabolomic data. These methods can be particularly

suitable to detect non-linear trends in the data that are not conve-

niently covered by PCA. SOMs have been used in metabolomics

studies to visualize metabolic phenotypes and feature patterns as

well as to prioritize the metabolites of interest based on their sim-

ilarity (Kohonen et al., 2000; Meinicke et al., 2008; Mäkinen et al.,

2008; Goodwin et al., 2014). HCA is also a powerful clustering and

visualization tool that provides a clustering procedure at the fea-

ture and sample levels according to a predefined distance measure

(Brauer et al., 2006; Sreekumar et al., 2009).

Supervised methods

Supervised methods are used to identify metabolic patterns that

are correlated with the phenotypic variable of interest while down-

weighting the other sources of variance. These methods are also

the basis for building classifiers based on metabolomic features

(Xia et al., 2013). Partial least squares (PLS; Fonville et al., 2010) is

one of the most widely used supervised method in metabolomics.

It can be used either as a regression analysis (i.e., quantitative

variable of interest) or as a binary classifier (PLS-DA; i.e., binary

variable of interest). Unlike PCA, PLS components do not maxi-

mize the explained dataset variance but the covariance between
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the variable of interest and the metabolomic data. Therefore,

the feature coefficients (loadings) of PLS components represent

a measure of how much a feature contributes to the discrimi-

nation of the different sample groups. However, one weakness

of PLS is that some metabolic features that are not correlated

with the variable of interest can influence the results. In order to

deal with this problem, orthogonal PLS (O-PLS; Trygg and Wold,

2002) were developed. O-PLS models evolved from PLS mod-

els and factorize the data variance into two components: a first

component which is correlated with the variable of interest and

a second uncorrelated component (i.e., orthogonal). Classifica-

tion of metabolomics samples is commonly performed by fitting

the discriminant analysis versions of PLS and O-PLS models (i.e.,

PLS-DA, O-PLS-DA; Kemsley, 1996; Bylesjö et al., 2006).

The performance of PLS and O-PLS models has been exten-

sively compared but, to date, there is no agreement as to which

of the two methods is superior (Tapp and Kemsley, 2009). In the

last years, however, a progressive move from the use of PLS mod-

els to O-PLS models has been observed in the metabolomics field

(Fonville et al., 2010).

Support vector machines (SVMs) are another class of super-

vised analysis methods to build classifiers based on metabolomic

data (Mahadevan et al., 2008; Kim et al., 2010; Luts et al., 2010).

Although classifiers based on SVM are harder to interpret, they are

able to manage the presence of non-linear relations between the

metabolomic data and the variable of interest.

Multiway methods for longitudinal metabolomic data

There is also a wide range of methods that are designed to provide

a comprehensive interpretation of the metabolic changes accord-

ing to the organization of the analyzed samples (i.e., samples from

different tissues or corresponding to time series in a longitudi-

nal study). These methods decompose the original multiway (i.e.,

multi-dimensional) data matrix into a set of easily interpretable

factors. In NMR studies, two of the most commonly used meth-

ods are parallel factor analysis (PARAFAC) and multivariate curve

resolution (MCR). The input data for these methods is commonly

a three dimensional (3D) matrix with coefficients cijk (where i

represents a metabolic feature, j the analyzed individual, and k

the tissue from which the sample was extracted or the sample

extraction time-point). The PARAFAC analysis of a 3D matrix

generates three loading matrices that capture the contributions

of each metabolic feature, of each individual, and of each tissue

type or time-point. Alternatively, MCR analysis decomposes the

3D matrix into a set of two factors which contain the contribu-

tions of each metabolic feature and each analyzed sample. To do

this, the 3D matrix must be fitted in a 2D matrix, where the differ-

ent metabolic features are arranged on the first dimension while

the each individual and tissue/time-point are arranged on the sec-

ond dimension (Peré-Trepat et al., 2007; Karakach et al., 2009;

Montoliu et al., 2009; Martin et al., 2010).

BIOMARKER DISCOVERY IN METABOLOMICS

One of the most promising applications of metabolomics in

the medical sciences is the identification of biomarkers. New

metabolomic biomarkers are usually determined using supervised

analysis models since they are capable to aggregate the evidence of

multiple metabolites. The usefulness of the resulting classification

models must be then evaluated in order to consider their use in

real clinical settings. Performance assessment and model valida-

tion are crucial analytical steps for the evaluation of metabolomic

classification models.

PERFORMANCE ASSESSMENT

Performance assessment measures how well the outcome predicted

by our model matches the real outcome. Several complemen-

tary measures are available to assess the classifier performance:

predictive accuracy (percentage of correctly classified subjects),

sensitivity (percentage of true positives that are correctly classi-

fied), and specificity (percentage of true negatives that are correctly

classified). These three measures allow the assessment of the classi-

fier performance given a fixed decision boundary. However, these

performance measures tend to be dependent on the outcome

prevalence and on the decision boundary chosen (Xia et al., 2013).

The receiver operating characteristic (ROC) curve avoids this type

of bias and is the most used performance assessment method.

ROC curve estimation is a non-parametric procedure consisting

of the comparison of specificity against sensitivity according to

a specific decision boundary. ROC curves are often summarized

by the AUC metric. The AUC metric gives the probability that a

classifier will rank a randomly chosen positive sample higher than

a randomly chosen negative one. Therefore, a perfect classifier will

obtain AUC = 1 while a random classifier will obtain AUC close to

0.5. An AUC >0.7 is often considered the minimal performance

for a biomarker test to be considered clinically useful (Xia et al.,

2013). In addition to the overall performance assessment using

the AUC metric, the ROC curves can also be used to determine

the optimal decision boundary for the classifier (Xia et al., 2013).

ROC curve estimation is a common analysis and therefore, multi-

ple tools are available for ROC-based performance evaluation like

the R packages ROCR (Sing et al., 2005) and pROC (Robin et al.,

2011), as well as the ROCCET (Xia et al., 2013) web application.

MODEL VALIDATION

When designing classification models, a validation step is required

to estimate how well the classification model will perform when

applied to new samples. This step is particularly important when

using small sample sizes in order to discard model overfitting.

Two main approaches are available for performing this task:

permutation testing and cross-validation (Westerhuis et al., 2008).

The aim of the permutation-based validation is to measure the

performance of the predictor model by determining the probabil-

ity of observing an equal or better performance by pure chance.

This analysis is performed by estimating the null distribution of

the performance measures (i.e., AUC) under the assumption that

no differences exist between sample groups. This is done by ran-

domly permuting multiple times the sample group classes (e.g.,

case-control) and calculating the statistic under each permuted

dataset. Once computed, the performance measures of the true

model (i.e., based on the real sample status) should lie outside

the chosen confidence intervals (e.g., 95 or 99%) of the estimated

null distributions in order to be considered significant. In contrast

with the permutation approach, cross-validation approaches esti-

mate the predictive performance of a classifier using an iterative
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approach. At each round of cross-validation, the total sample is

split into a training group and a testing group. In the former

group, the predictor model is built using a specific set of para-

meters. The performance of this model is then evaluated using

the remaining group of samples. This procedure is repeated sev-

eral times so that all the samples have been used once as a testing

group. Averaging these results we will obtain an unbiased esti-

mate of the performance of the predictor. The size of the testing

sample can be composed by several samples (i.e., n-fold cross-

validation) or can be as small as a single individual (i.e., leave-one

out cross-validation). This approach provides a good measure of

how data overfitting affects to the computed model. When the

used models require optimization (i.e., optimal number of PLS/O-

PLS components to be used) a double cross-validation schema is

usually required: a first cross-validation step is applied to opti-

mize the model and a second step for assessing the model quality

(Westerhuis et al., 2008; Szymanska et al., 2012). The double cross-

validation schema requires the dataset to be iteratively split in two

sets S1 and S2. In the first step, the S1 set is randomly divided into

two subsets S11 and S12, where S11 is used to compute models

with different number of components and the S12 set is used to

evaluate the prediction power of each model. This procedure is

repeated until all the samples in S1 have been once in the S12

set, and the model with the lowest prediction error is selected. In

the second step, the S2 set is used to assess the performance of the

optimal model as computed in step one. This global analysis is per-

formed recursively by randomly splitting the global dataset in sets

S1 and S2 until all the samples have been once in S1. Further details

on the different types of cross-validations are described in more

detail elsewhere (Westerhuis et al., 2008; Szymanska et al., 2012).

METABOLITE IDENTIFICATION AND SPECTRAL DATABASES

Metabolite identification is one of the major challenges of high-

throughput metabolomic analysis. This step is indispensable

to confer a biological meaning to the associated features in a

metabolomic study. In MS-based studies, the common metabolite-

identification approach is based on querying metabolomic data-

bases for the neutral molecular mass values of the identified peaks

using a tolerance window. The neutral molecular mass is inferred

from the peak m/z value, and depends on the chemical nature of

the identified peak (i.e., ionization mode and ionization adduct).

Assuming no prior knowledge, each peak m/z value can lead to

multiple plausible neutral molecular masses that can represent

different ionization adducts (H+, Na+, K+, . . .). This multiplicity

often results in a high number of false positive identifications. In

order to reduce false positives, several methods have been devel-

oped. AStream and Camera are methods designed to identify

isotopic and adduct patterns in order to reduce data complexity

in MS experiments (Alonso et al., 2011; Kuhl et al., 2011). Using

these approaches, the chemical nature of each selected ion peak is

estimated, and only one neutral mass is inferred from each iden-

tified pattern. Using these methods has the added advantage of

improving the ascertainment of true biological compounds.

In NMR-based studies, automatic metabolite identification is

commonly performed by matching the measured NMR peaks

against a set of reference metabolite patterns. Each metabolite

reference spectrum is defined by one or multiple peaks, which are

characterized by their ppm positions and their relative intensities.

MetaboHunter is an online tool for identifying compounds by

matching the reference peak positions against the list of detected

peak positions (Tulpan et al., 2011). However, this approach can

lead to high false positive rates, since it only uses one peak para-

meter to match reference peaks. The MetaboHunter approach has

been superseded by more recent methods based on the valid clus-

ter concept (Mercier et al., 2011; Jacob et al., 2013). In addition

to using the ppm position, these methods include peak intensities

and inter-sample intensity correlation as parameters for matching

data peaks to reference peaks. The NMR analysis workflow imple-

mented in FOCUS follows this same metabolite-identification

approach, with the added advantage that it also accounts for

the presence of missing peaks generated by spectral overlapping

(Alonso et al., 2013).

Metabolite spectral databases are essential for metabolite iden-

tification. The quality of the stored data as well as the number of

metabolite spectra available in these databases is critical for the

performance of identification algorithms. During the last years,

multiple databases have been developed (Table 2) and the number

of available metabolite reference spectra is continuously growing

(Ellinger et al., 2013; Fukushima and Kusano, 2013). The Human

Metabolome Database (HMDB) is perhaps the most extensive

public metabolomic spectral database to date (Wishart et al.,

2013). The HMDB stores >40,000 different metabolite entries,

with exhaustive biological metadata and MS/NMR spectral ref-

erences. In addition to spectral databases, several studies have

also contributed to characterize the metabolome of multiple types

of samples. Many of these reference studies are also exceptional

resources of high quality data associated with the biofluid, tissue,

or cell type of interest (Wishart et al., 2008; Psychogios et al., 2011;

Bouatra et al., 2013).

PATHWAY AND NETWORK ANALYSIS OF METABOLOMIC

DATA

Pathway and network analysis approaches increase the informa-

tion generated by metabolomic studies. Both approaches exploit

the relational properties present in metabolomic data. Pathway

analysis uses prior biological knowledge to analyze metabolite

patterns from an integrative point of view. Alternatively, net-

work analysis uses the high degree of correlation existing in

metabolomics data to build metabolic networks that character-

ize the complex relationships existing in the set of measured

metabolites.

PATHWAY ANALYSIS

Until very recently, when analyzing metabolomic data no prior

knowledge regarding metabolite relationships could be assumed.

During the last years, however, the biological knowledge avail-

able for metabolomics studies has been constantly increasing.

Metabolic pathways are groups of metabolites that are related

to the same biological process, and that are directly or indirectly

connected by one or multiple enzymatic reactions. Biological data-

bases such as Kyoto Encyclopedia of Genes and Genomes (KEGG;

Kanehisa et al., 2012), small molecule pathway database (SMPDB;

Jewison et al., 2014), EHMN (Ma et al., 2007), WikiPathways

(Kelder et al., 2012), and MetaCyc (Caspi et al., 2008) provide
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Table 2 | Spectral databases available for metabolite identification.

Database Spectral

data

Website Statistics Reference

HMDB MS/NMR http://www.hmdb.ca 41,806 metabolite entries and 1,579 metabolites

with spectra (1H-NMR, LC-MS, GC-MS . . .)

Wishart et al. (2013)

LMSD MS http://www.lipidmaps.org 37,500 lipid structures with MS/MS spectra Sud et al. (2007)

METLIN MS http://metlin.scripps.edu 240,516 metabolite entries and 12,057 metabolites

with MS/MS spectra

Tautenhahn et al. (2012a)

TOCCATA

COLMAR

NMR http://spin.ccic.ohio-state.edu Multiple spectral NMR datasets: 1H- and 13C-NMR,

2D 13C–13C TOCSY (n = 463), 2D 1H–1H TOCSY

and 13C–1H HSQC-TOCSY (n = 475), and 2D
13C–1H HSQC (n = 555)

Robinette et al. (2008),

Bingol et al. (2012, 2014,

2015)

MassBank MS http://www.massbank.jp 2,337 metabolites and 40,889 spectra (LC-MS,

GC-MS . . .)

Horai et al. (2010)

Golm metabolome GC-MS http://gmd.mpimp-golm.mpg.de 2,019 metabolites with GC-MS spectra Hummel et al. (2007)

BMRB NMR http://www.bmrb.wisc.edu 9,841 biomolecules with 1H, 13C, or 15N spectra Ulrich et al. (2008)

Madison NMR http://mmcd.nmrfam.wisc.edu 794 compounds with spectra including 1H, 13C,
1H–1H, 1H–13C . . .

Cui et al. (2008)

NMRShiftDB NMR http://nmrshiftdb.nmr.uni-koeln.de 42,840 structures and 50,897 measured spectra Steinbeck et al. (2003)

RIKEN MS/NMR http://prime.psc.riken.jp 1,589 metabolites (Arabidopsis) Akiyama et al. (2008),

Sakurai et al. (2013)

Birmingham

Metabolite Library

NMR http://www.bml-nmr.org 208 metabolites and 3,328 1D- and 2D-NMR

spectra

Ludwig et al. (2012)

This table shows a list of the spectral databases that are most commonly used in current metabolomics studies to characterize the associated metabolite features.

exhaustive information of a large number of metabolic pathways

(Table 3). The availability of this data is therefore enabling the

use of pathway-based approaches in metabolomics. These meth-

ods are currently referred as metabolite set enrichment analysis

(MSEA), and are methodologically based on the gene set enrich-

ment analysis (GSEA) approach, designed for pathway analysis of

gene-expression data (Khatri et al., 2012).

To date, three different approaches have been developed to

perform MSEA (Xia and Wishart, 2010b):

• Overrepresentation analysis (ORA): Given a list of metabolite

pathways or groups of metabolites of interest, a hypergeomet-

ric test or a Fisher’s Exact test is used to evaluate whether the

metabolites of these groups are represented more than expected

by chance. When the input metabolite list is defined as the set

of metabolites which are differentially expressed in the analyzed

phenotypes, the ORA results may identify metabolic pathways

that are globally associated to these phenotypes.

• Quantitative enrichment analysis (QEA): Unlike ORA, the input

data for this method is a set of metabolite concentrations

from multiple samples. Enriched pathways can be identified

using different approaches like globaltest (Goeman et al., 2004),

globalAncova (Hummel et al., 2008), or the Wilcoxon-based

test (Adjaye et al., 2005). Enriched pathways include pathways

where a few number of compounds are significantly changed or

pathways where a large number of metabolites are slightly but

consistently changed (Xia and Wishart, 2010b).

• Single-sample profiling (SSP): While the two previous methods

are suited for studies involving large numbers of samples, this

approach can be used at the sample level. The input data for SSP

analysis is an input list of normalized metabolite concentrations

in a common biofluid, tissue, or cell type and a database with the

normal concentration ranges of these metabolites in the sample.

From this input data, SSP identifies the set of metabolites show-

ing levels significantly different from the normal concentration

ranges.

In order to improve the interpretability of pathway analysis

results, MSEA results can be combined with pathway topologi-

cal measures. These measures allow the assessment of impact of

the unbalanced metabolites within the overrepresented pathway.

First, single impacts are evaluated using the degree and between-

ness network centrality measures of each metabolite (Aittokallio

and Schwikowski, 2006). Subsequently, the overall impact (i.e.,

pathway impact; Xia and Wishart, 2010a) is calculated as the sum

of the single impact measures of the unbalanced metabolites nor-

malized by the sum of the impact measures of all the metabolites

within the pathway.

Metabolomics researchers currently have a wide variety of soft-

ware tools to analyze metabolomic data at the pathway level.

Applications such as Paintomics (García-Alcalde et al., 2011),

Vanted (Rohn et al., 2012), and Cytoscape (Smoot et al., 2011)

provide different pathway visualization tools. In these tools, the

metabolites are mapped on predefined metabolic pathways, and
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Table 3 | Biological databases for pathway analysis.

Database Description Website Reference

Kyoto Encyclopedia of Genes and

Genomes (KEGG)

466 pathways, 17,333 metabolites, and 9,764

biochemical reactions

http://www.genome.jp/kegg/ Kanehisa et al. (2012)

MetaCyc 2260 pathways from 2600 different organisms http://metacyc.org/ Caspi et al. (2008)

The small molecule pathway database

(SMPDB)

1,594 metabolites mapping 727 small molecule

pathways found in humans

http://www.smpdb.ca/ Jewison et al. (2014)

WikiPathways 1,910 pathways http://wikipathways.org/ Kelder et al. (2012)

Plant metabolic network

(PMN/PlantCyc)

Multi-species pathway database for plant

metabolomics

http://www.plantcyc.org/ Chae et al. (2014)

This table describes the main databases that provide biological information on metabolites and metabolic pathways.

allow a high level of interaction with the data. In addition to

visualization tools, Impala (Kamburov et al., 2011) and MetScape2

(Karnovsky et al., 2012) are software tools that also implement spe-

cific MSEA methods. Finally, Metaboanalyst is a highly versatile

pathway analysis tool, providing a wide range of MSEA methods

as well as topological and visualization tools (Xia et al., 2012).

CORRELATION-BASED NETWORK ANALYSIS

One of the main features of biologic data is the high level of correla-

tion existing between the different elements (i.e., mRNAs, proteins,

metabolites). Part of these relational patterns is due to metabolites

that belong to common metabolic pathways. In other cases, how-

ever, the observed correlations may be due to other causes like

global perturbations (i.e., metabolic compounds showing diur-

nal variation in time series analysis), specific perturbations (i.e.,

changes in enzyme concentrations spread through their related

metabolic pathways), or the intrinsic variability of metabolomic

data (Steuer et al., 2003; Camacho et al., 2005; Steuer, 2006). Con-

sequently, metabolites that do not show significant differences

across the studied phenotypes may still show different correlation

patterns with other metabolites in each phenotype. These patterns

can provide valuable information about the underlying metabolic

network associated to a specific biological process (Steuer, 2006).

Unlike pathway analysis, correlation-based methods build

metabolite networks according to the relationship patterns

observed in the experiment data. In the resulting network, each

metabolite is represented by a network node but, in contrast

to pathway analysis, the links between nodes represent the level

of mathematical correlation between each pair of metabolites.

In metabolomics data, high correlation coefficients are frequent

due to the presence of systemic and indirect associations (Krum-

siek et al., 2011). Using classical correlation coefficients leads

to highly crowded networks where direct and indirect associa-

tions are not distinguished (Langfelder and Horvath, 2008). This

problem can be successfully overcome using partial correlation

(Krumsiek et al., 2011; Valcárcel et al., 2011). In this approach, the

correlation between two metabolites is conditioned against the

correlation with the remaining metabolites. Consequently, par-

tial correlation allows to discriminate between direct and indirect

(i.e., mediated by other metabolites) metabolite correlations. Val-

cárcel et al. used this approach to build two different networks

corresponding to individuals with normal fasting glucose and

individuals with prediabetes (Valcárcel et al., 2011). Although

few differences were found between individual metabolite con-

centrations, the network analysis performed in this study revealed

significant changes in lipoprotein metabolism, which is known to

be associated with diabetes pathophysiology. Netzer et al. used

a similar approach to identify highly discriminant metabolites

between healthy controls and individuals with obesity (Netzer

et al., 2012). In this case, the metabolic network was built using

Pearson’s correlation coefficient, and the differential metabolites

were evaluated by using different network descriptors. In the same

study, Netzer et al. used the metabolic differences between two

sample groups to build a metabolite ratio network (Netzer et al.,

2011). In this approach, the link between two metabolites is scored

according to the differences in the ratios between the correspond-

ing metabolites in the two sample groups. The resulting network

topology is then based on the metabolic differences between the

two studied phenotypes. Recently, Kotze et al. have extended the

correlation-based network approach to include prior biological

knowledge (Kotze et al., 2013). In this approach, the resulting

network is mapped onto known metabolic pathways in order to

identify novel links within the metabolic network that may play a

key role in the phenotypic trait being studied.

INTEGRATION OF OMICS DATA

Systems biology is the computational modeling of complex bio-

logical systems at different molecular levels through the analysis

of high-throughput data. Systems biology methods can therefore

improve our understanding of the biological processes that are

associated with a certain phenotype. These approaches also allow

studying how the dysregulation of specific biological pathways is

propagated across the biological system. The characterization of

the complex and often noisy biological systems has become a major

challenge in bioinformatics.

METABOLOMICS INTEGRATION WITH WHOLE GENOME VARIATION

The association between genome-wide genetic variation and high-

throughput metabolomic data is one of the current main objec-

tives of omics data integration. The joint analysis of both types

of biological data, known as metabolite genome-wide association

studies (mGWAS), has allowed the identification of a large num-

ber of genomic regions associated with metabolite levels (Gieger

et al., 2008; Illig et al., 2010; Suhre et al., 2011a,b; Table 4). These
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Table 4 | List of studies integrating genomics and metabolomics data.

Cohort sizea Metabolites Biofluid Metabolomics platform Objectives Reference

284 363/40401 Serum ESI-MS/MS Study of GIMs Gieger et al. (2008)

4400 33 Plasma ESI-MS/MS Study of GIMs Hicks et al. (2009)

1809/422 163 Serum ESI-MS/MS Study of GIMs Illig et al. (2010)

1814 163 Serum ESI-MS/MS Study of GIMs Kolz et al. (2009)

862/2031 59 Urine NMR Study of GIMs Suhre et al. (2011b)

1768/1052 276 Serum UHPLC/MS/MS2, GC/MS Study of GIMs and overlap with loci of

biomedical and pharmaceutical interest

Suhre et al. (2011a)

211 526 Urine and

plasma

Multi-platform Study of GIMs and decomposition of

biological population variation in metabolic

traits

Nicholson et al. (2011)

4034 153 Plasma ESI-MS/MS Study of GIMs and pathway analysis Demirkan et al. (2012)

8330 216 Serum NMR Study of GIMs and heritability of metabolic

traits

Kettunen et al. (2012)

6600 130 Serum NMR Study of metabolic associations with

atherosclerosis using metabolic networks

Inouye et al. (2012)

2076 217 Plasma HPLC/MS Study of GIMs and heritability of metabolic

traits

Rhee et al. (2013)

7824 486 Plasma UHPLC/MS/MS2, GC/MS Study of GIMs, heritability of metabolic

traits, and network analysis

Shin et al. (2014)

This table provides an updated list of studies that have integrated metabolomics data with genomics data.

aStudies with discovery and validation cohorts are given as Ndiscovery/Nvalidation.

associations are commonly called genetically influenced metabo-

types (GIMs), and could play an important role in the heritability

of phenotypic traits. The association between genetic variants and

phenotypic traits that often show small association effect sizes can

be significantly increased when using intermediate phenotypes

like metabolite concentrations (Gieger et al., 2008). These inter-

mediate phenotypes (or endophenotypes) may be characterized by

larger effect size associations since they are continuous variables

that reflect the actual state of the biological system.

One of the main statistical problems when analyzing the asso-

ciation between genetic variants and metabolite concentrations

at a genome-wide level is the large number of tests that must be

performed. The number of genetic variants analyzed for each indi-

vidual by the current high-throughput genotyping technologies

usually ranges between 500,000 and 2e6. This number of genomic

variants can be further increased up to 5–10e6 variants with the

help of imputation techniques (Howie et al., 2009; Delaneau et al.,

2013). Compared to gene-expression data, metabolomic profiles

have a much lower number of variables, ranging from 100 s to

few 1,000 s. Nevertheless, performing all gene to metabolite asso-

ciation analyses in mGWAS can result in up to 1 · 107–1 · 1011

statistical tests. To date, there are multiple tools that can effi-

ciently perform this large number of quantitative trait analysis

like Matrix eQTL (Shabalin, 2012). However, the main limitation

of this type of studies is the number of tests that are performed

in parallel, and the associated increase in the false positive rate at

the nominal (α = 0.05) level of significance. Applying a conserva-

tive multiple test correction methods like the Bonferroni method

leads to extremely high significance thresholds (i.e., corrected α

levels = 1 · 10−9–1 · 10−13, depending on the total number of per-

formed tests; Gieger et al., 2008; Illig et al., 2010). In order to

set a less stringent correction threshold for this type of studies,

Demirkan et al. computed the effective number of independent

tests by using the number of significant principal components

of variation of the metabolomic data (Demirkan et al., 2012).

Other studies instead have chosen the genome-wide level of signif-

icance commonly used in single-trait GWAS (α = 5e−8; McCarthy

et al., 2008; Kolz et al., 2009; Tanaka et al., 2009; Rhee et al.,

2013).

While most published mGWAS have relied on univariate associ-

ation tests, there is an increasing effort to develop new multivariate

approaches. These approaches have been designed to simultane-

ously analyze sets of metabolites instead of individual metabolite

levels (Klei et al., 2008; Ferreira and Purcell, 2009; O’reilly et al.,

2012; Ried et al., 2012; Stephens, 2013). These new approaches

have several advantages (Galesloot et al., 2014):

• They take into account the pleiotropic nature of metabolomic

data. Subsequently, a genetic variant can be simultaneously

associated with multiple metabolites.

• When a genetic variant is associated with multiple metabo-

lites, the aggregated information of the entire set of metabolites

increases the statistical power of the analysis (Allison et al., 1998;

Zhu and Zhang, 2009).

• By performing a single test for each set of metabolites, the

multiple test burden is reduced.

However, one of the main disadvantages of this type of analy-

sis methods is the reduced number of metabolites that can be

tested simultaneously. This implies that current metabolite pan-

els (>100 metabolites) cannot be tested together. Inouye et al.

overcame this problem by using a two-step design (Inouye et al.,
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2012). First, using the metabolite correlation matrix they identified

the most relevant metabolic networks using hierarchical cluster-

ing. The second step consisted of a multivariate GWAS of each

selected network. Each genomic variant was therefore tested a

much reduced amount of times and, for each test, the loading

of each network metabolite was computed.

Pathway-based approaches are also an important approach for

the analysis of genetic variation associated with metabolite levels.

As described in Section “Correlation-Based Network Analysis,” the

methods based on partial correlation coefficients are optimal for

the analysis of metabolomic data (Krumsiek et al., 2011). One of

these methods, Gaussian Graphical Modeling (GGM), has been

recently used to identify unknown metabolites through the inte-

gration of metabolomics, GWAS, and pathway data (Krumsiek

et al., 2012). Recently, Shin et al. also used GGM to build a com-

plete network of genetic variation associated with human blood

metabolite levels (Shin et al., 2014).

METABOLOMICS INTEGRATION WITH OTHER OMICS SCIENCES

Recently, the first study analyzing the association of the genome

methylation patterns methylation with metabolic traits has been

performed (Petersen et al., 2014). In this study, Petersen et al.

used multivariate regression analyses to identify two types of

methylome–metabotype associations: (a) associations due to

underlying genetic variants and (b) independent associations

potentially driven by environmental factors influencing the methy-

lome.

In addition to mGWAS studies, several studies have also

explored the association between whole genome gene-expression

(i.e., transcriptomics) and metabolomics. The data provided by

these two omics sciences have been used, for example, to improve

the classification of breast cancers and to explore the correlation

between the transcriptional and metabolic levels (Borgan et al.,

2010). Borgan et al. used the transcriptional data to classify the

breast tumor samples according to previously published tumor

types. In a second step, they applied hierarchical clustering on each

type of samples using the metabolic data. Using this combined

approach, new molecular subtypes of tumors were found. Impor-

tantly, these new molecular subtypes were better classified than

subtypes based only on gene-expression patterns. Additionally,

new biological pathways associated with each molecular subtype

could be identified. Using GOrilla software (Eden et al., 2009), they

were able to identify potential gene groups regulating each ana-

lyzed metabolite. Bjerrum et al. recently combined transcriptomics

and metabolomics data from colon biopsies of ulcerative colitis

patients. They used O-PLS-DA and multivariate logistic regres-

sion models to improve the diagnosis of this autoimmune disease

(Bjerrum et al., 2014). Zhang et al. also integrated transcriptomics

and metabolomics data to study human pancreatic cancer samples

(Zhang et al., 2013). Using a correlation-based network analysis,

they identified a set of highly co-regulated and decreased metabo-

lites in these samples and subsequently identified the transcripts

correlated with these metabolites.

TOWARD A COMPLETE OMICS INTEGRATION

During the last years, high-throughput technologies have enabled

the analysis of the biologic variability at multiple molecular levels.

The data obtained from the genome, epigenome, transcriptome,

proteome, metabolome, or the microbiome can be now combined

using systems biology approaches. However, this group of ana-

lytical tools is still in its infancy and major improvements in this

field will come in the next years (Chen et al., 2012). 3Omics is

one good example of this new type of metabolomic analysis tools.

3Omics is one of the first systems biology tools to provide a full

integrative analysis including correlation analysis, co-expression

profiling, phenotype mapping, pathway enrichment analysis, and

GO enrichment analysis at three molecular levels (transcriptome,

proteome, and metabolome; Kuo et al., 2013).

CONCLUSION

Metabolomics is a research field rapidly evolving to allow the fast

and accurate analysis of high-throughput data from diverse biolog-

ical sources. Although the recent methodologies have been able to

overcome several challenges of metabolomics data analysis, there

is still much room for improvement. In untargeted metabolomic

studies, for example, major improvements are still required in

automatic metabolite identification and spectral deconvolution.

Although a big effort is being done to improve spectral databases,

the development of accurate automatic identification algorithms

is still subject to the availability of an exhaustive set of reference

metabolite spectra.

In addition to the necessary improvements in the analysis work-

flow, intense efforts are also being done in the standardization

of metabolomics data (Salek et al., 2013a). The Metabolomics

Standard Initiative (MSI; Fiehn et al., 2007), currently represents

the major community effort to define normalization standards

in metabolomics. These developments are based on previous

high-throughput data standardization initiatives like MIAME in

microarray studies (Brazma et al., 2001), and include the use

of minimal reported information, common syntax, data format

exchange, and common semantics (Field and Sansone, 2006). To

date, general guidelines have been proposed (Sumner et al., 2007)

that cover relevant areas in metabolomics studies like biologi-

cal sample processing, analytical technique details (i.e., instru-

ment description, technique-specific acquisition parameters, and

sample preparation), instrumental calibration, validation of the

quantification method, data pre-processing, metabolite identifica-

tion, and nomenclature. Very recently, the MetaboLights database

(www.ebi.ac.uk/metabolights) has been launched as a reposi-

tory to archive and distribute data on metabolomics experiments

(Steinbeck et al., 2012; Haug et al., 2013; Salek et al., 2013b).

Similar to the established public repositories of transcriptomics

data (Barrett et al., 2011), the availability of public repositories

for metabolomics data will clearly accelerate the progress in this

rapidly evolving field.

Omics sciences like metabolomics are increasing our ability to

generate knowledge from multiple aspects of biology. In order to

achieve these goals, however, the scientific community will require

tools and methods that are able to efficiently integrate all the dif-

ferent sources of molecular and phenotypic information. In the

near future, increasingly powerful analysis tools will be developed.

The access to these methods in an open-source environment will

guarantee its dissemination to the largest scientific community

possible.
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