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Abstract—In this article we exploit a combination of analyt-
ical and Machine Learning (ML) techniques in order to build
a performance model allowing to dynamically tune the level of
concurrency of applications based on Software Transactional
Memory (STM). Our mixed approach has the advantage of
reducing the training time of pure machine learning methods,
and avoiding approximation errors typically affecting pure
analytical approaches. Hence it allows very fast construction of
highly reliable performance models, which can be promptly and
effectively exploited for optimizing actual application runs. We
also present a real implementation of a concurrency regulation
architecture, based on the mixed modeling approach, which
has been integrated with the open source TinySTM package,
together with experimental data related to runs of applications
taken from the STAMP benchmark suite demonstrating the
effectiveness of our proposal.

I. INTRODUCTION

By relying on the notion of atomic transaction, Software

Transactional Memory (STM) [1] has recently emerged as

an attractive programming paradigm for parallel/concurrent

applications. It allows code blocks accessing shared-data to

be marked as transactions, for which it takes care of man-

aging coherency of data access/manipulation, thus avoiding

the need for any handcrafted synchronization scheme to

be provided by the application programmer. The relevance

of the STM paradigm has significantly grown given that

multicore systems have become mainstream platforms. Also,

STM is the representative technology for several in-memory

Cloud-suited data-platforms (such as VMware vFabric Gem-

Fire, Oracle Coherence and Apache Cassandra), where the

encapsulation of application code within transactions allows

concurrent manipulation of in-memory kept application data

according to specific isolation levels, which is done trans-

parently to the programmer.

Even though the STM potential for simplifying the soft-

ware development process is extremely high, another aspect

that is central for the success, and the further diffusion of,

the STM paradigm relates to the actual level of performance

it can deliver. Particularly, one core issue to cope with

is related to exploiting parallelism while also avoiding

thrashing phenomena due to excessive transaction rollbacks,

caused by excessive contention on logical resources, namely

concurrently accessed data portions. We note that this aspect

has reflections also on the side of resource provisioning in

the Cloud, and associated costs, since thrashing leads to

suboptimal usage of resources (including energy) by, e.g.,

PaaS providers offering STM based platforms to customers

(see, e.g., the Cloud-TM platform [2]).

Literature solutions dealing with STM run-time efficiency

can be framed within two different sets of orthogonal

approaches. On one side we find optimized schemes for

transaction conflict detection and management [3], [4], [5],

[6], [7]. These include proposals aimed at dynamically deter-

mining which threads need to execute specific transactions,

so to allow transactions that are expected to access the same

data to run along a same thread in order to sequentialize and

spare them from incurring the risk of being aborted with

high probability. Other proposals rely instead on pro-active

transaction scheduling [8], [9] where the reduction of per-

formance degradation due to transaction aborts is achieved

by avoiding to schedule (hence delaying the scheduling

of) the execution of transactions whose associated conflict

probability is estimated to be high.

On the other side we find solutions aimed at support-

ing performance optimization via the determination of the

best suited level of concurrency (number of threads) to be

exploited for running the application on top of the STM

layer (see, e.g., [10], [11], [12]). These solutions are clearly

orthogonal to the aforementioned ones, being potentially

usable in combination with them. On the other hand, we can

further distinguish these approaches depending on whether

they cope with dynamic or static application execution

profiles, and on the type of methodology that is used to

determine (predict) the well suited level of concurrency

for a specific (phase of the execution of the) application.

Approaches coping with static workload profiles are not able

to predict the optimal level of concurrency for applications

where classical parameters expressing proper dynamics of

the applications (such as the average number of data-objects

touched by a transactional code block) can vary over time.

On the other hand, prediction approaches that have been

proposed in literature either rely on analytical methods, or

on black-box Machine Learning (ML) methodologies. The

former ones have the advantage of generally requiring a

lightweight application profiling for gathering data to be

filled to the prediction model, but provide (slightly) less

accurate predictions and in some cases require stringent

assumptions to be met by the real STM system in order

for its dynamics to be reliably captured by the analytical

formulas. On the contrary, ML methods usually require

expensive profiling in order to build the knowledge base



that would suffice to instantiate the performance prediction

model, which may make the actuation of the optimized

concurrency configuration untimely. On the other hand,

they typically allow very accurate estimation of the real

performance trends of the STM system (see, e.g., [13], [14]).

In this paper we cope with the issue of determining the

optimal level of concurrency by presenting an Analytical/ML

(AML) mixed approach allowing to chase the best of the two

methodologies by tackling the shortcomings intrinsic in each

of them. On one side, we allow the training phase required

to define the “application specific” performance model to

be significantly reduced, compared to pure ML techniques,

while also allowing the final AML model to be significantly

more precise than pure analytical approaches. In fact, it can

ensure the same level of precision as the one provided by

pure ML techniques. Further, the AML model we provide is

able to cope with cases where the actual execution profile of

the application, namely the workload features, can change

over time, such as when the (average) size of the data-set

accessed by the transactional code in read or write mode

changes over time (e.g. according to a phase-behavior). This

is not always allowed by pure analytical approaches [10],

[12]. Overall, we provide a methodology for fast construc-

tion of a highly reliable performance model allowing the

determination of the optimal level of concurrency for the

specific STM-based application. This is relevant in generic

contexts including the Cloud, where the need for deploying

new applications (or applications with reshuffling in their

execution profile) and promptly determining the system

configurations allowing optimized resource usage, is very

common.

We also present a real implementation of a concurrency

regulation architecture, integrated with the TinySTM open

source package [4], which exploits the AML model to

dynamically tune the number of threads to be used for

running the application. Further, we report experimental

results, achieved by running the applications belonging to

the STAMP benchmark suite [15] on top of a 16-core

HP ProLiant machine, which show the effectiveness of the

proposed approach compared to pure analytical or pure ML

techniques.

The remainder of this paper is organized as follows. In

Section II, related work is discussed. The target system

architecture for our performance model is presented in

Section III. The AML modeling approach is presented in

Section IV. The concurrency-regulation architecture based

on the AML model and the experimental analysis of the

whole approach are presented in Section V.

II. RELATED WORK

1) Transaction Scheduling: Some literature approaches

are based on pro-active transaction scheduling, which relies

on the observation of data contention over the recent past of

the application. In the approach proposed in [9], incoming

transactions are enqueued and sequentialized for execution

along a same thread when an indicator, referred to as

contention intensity, exceeds a pre-established threshold. A

variant of such a scheme is provided in [16], where multiple

serialization queues (one per active thread) are used, so

to better afford partitioned accesses onto the data set. The

proposal in [17] sequentializes a transaction when a potential

conflict with other running transactions is predicted. Actu-

ally, the sequentializing mechanism is activated only when

the amount of aborted vs committed transactions exceeds

a given threshold. The work in [18] introduces operating

system scheduling supports for threads running transactions

within an STM environment in order to reduce the likelihood

of aborts. This is achieved by, e.g., stretching the time-slice

assigned to the thread entering a transactional code block,

thus reducing its vulnerability interval (namely, the time-

interval along which concurrent operations by other threads

may invalidate its work). Compared to our approach, all the

above proposals do not directly estimate the wasted time due

to aborted transactions (vs the level of concurrency), rather

they indirectly attempt to control the wasted time according

to heuristics schemes.
2) Concurrency Level Optimization: The (dynamic) iden-

tification of the well suited level of concurrency in STM

systems, leading to optimized throughput, has been dealt

with in literature via differentiated approaches. In [10] an

analytical model has been proposed to evaluate the perfor-

mance of STM applications as a function of the number

of concurrent threads and other workload configuration

parameters. This kind of approach is targeted at building

mathematical tools allowing the analysis of the effects of

the contention management scheme on performance. For

this reason a detailed knowledge of the specific conflict

detection and management scheme used by the target STM

is required, which is instead not required by the approach

we are proposing.

The work in [12] presents an analytical model taking in in-

put a workload characterization of the application expressed

in terms of transaction profiles, contention probability and

hardware resources consumption. The model predicts the

application execution time as function of the number of

concurrent threads sustaining the application. However the

prediction only accounts for the average system behavior

over the whole lifetime of the application. Hence, differently

from our proposal, no ability to capture run-time variations,

and the consequent need for dynamic adaptation of the level

of concurrency, is provided.

The proposal in [19] is targeted at evaluating scalability

aspects of STM systems. It relies on the usage of dif-

ferent types of functions (e.g. polynomial and logarithmic

functions) to approximate the application performance when

considering different amounts of concurrent threads. The

approximation process is based on measuring the speed-up

of the application over a set of runs, each one executed

with a different number of concurrent threads, and then on

calculating the proper function parameters by interpolating



the measurements, so as to generate the final function used

to predict the speed-up of the application vs the number

of threads. Differently from our proposal, a limitation of

this approach is that the workload profile of the applica-

tion is not taken into account, hence the prediction may

prove unreliable when the profile changes wrt the one used

during measurement and interpolation phases. In [20], an

analytical model is used to regulate the level of parallelism

of STM-based applications, which is developed through the

interpolation of real performance samples using predefined

mathematical functions. Differently from [19], this proposal

takes into account the profile of the application. We will use

this result as the basis for our innovative AML modeling

approach, and will also compare the concurrency regulation

architecture we provide with the one presented in [20].

In [14], we have provided a neural network based ap-

proach to regulate the level of concurrency of STM based ap-

plications. A weak point of this approach is that, to achieve

good performance prediction capabilities, it is necessary to

collect a consistent number of samples of real application

runs, hopefully distributed over the whole domain defining

the input parameters determining the shape of the perfor-

mance curve. Our AML model is exactly aimed at bypassing

this problem, thus achieving fast construction of a highly

reliable performance predictor.

Finally, there are proposals that dynamically adjust the

level of concurrency of the STM system on the basis of

heuristics. In [8] a control algorithm dynamically changes

the number of threads which can concurrently execute trans-

actions on the basis of the observed transaction conflict rate.

It is decreased when rate exceeds some threshold while it is

increased when the rate is lower than another threshold. In

[11] a concurrency regulation approach is provided, based on

the hill-climbing heuristic scheme. The approach determines

whether the trend of increasing/decresing the concurrency

level has positive effects on the STM throughput, in which

case the trend is maintained. A variant is also provided,

which exploits the performance model of distributed STM

systems in [21] in order to accelerate the exploration process

when also targeting the selection of the number of STM

nodes to be employed within the distributed platform. Dif-

ferently from our proposal, the heuristics in these works

do not directly attempt to capture the relation between the

actual transaction profile and the achievable performance

(depending on the level of parallelism). This leads them to

be mostly suited for static application profiles.

III. TARGET SYSTEM ARCHITECTURE AND

PERFORMANCE MODEL AIM

A. Description of the Target STM System

We consider an STM system where the execution flow

of each thread is characterized by the interleaving of

transactions and non-transactional code blocks. During the

execution of the transaction, the thread can perform read and

write operations on a set of shared data objects, and can run

code blocks where it does not access shared data objects (e.g.

it accesses variables within its own stack). Read (written)

data objects by a transaction are included in its read-set

(write-set). If a data conflict between concurrent transactions

occurs, one of the conflicting transactions is aborted and

is subsequently re-started. A non-transactional code block

starts right after the thread executes the commit operation

of a transaction, and ends right before the execution of the

begin operation of the subsequent transaction along the same

thread.

B. Aim of the AML Modeling Approach

Typical STM oriented concurrency control algorithms [3]

rely on approaches where the execution flow of a transaction

never traps into operating system blocking services. Rather,

spin-locks are exploited to support synchronization activities

across the threads. In such a scenario, the primary index

having an impact on the throughput achievable by the STM

system (and having a reflection on how energy is used for

productive work) is the so called transaction wasted time,

namely the amount of CPU time spent by a thread for

executing transaction instances that are eventually aborted.

The ability to predict the transaction wasted time, for a

given application profile (namely for a specific data access

profile) while varying the degree of parallelism in the

execution is the fulcrum of our AML based optimization

proposal. More in detail, our AML model is aimed at com-

puting pairs of values < wtime,i, i > where i indicates the

level of concurrency, namely the number of threads which

is supposed to support the execution of the application,

and wtime,i is the expected transaction wasted time (when

running with degree of concurrency equal to the value i),
namely the amount of time spent by any thread while

running aborted instances of a given transaction. Denoting

with t the average transaction execution time (namely the

expected CPU time required for running an instance of

transaction that is not eventually aborted) and with ntc
the average time required for running a non-transactional

code block (which is interleaved between two subsequent

transactional code blocks in our system model), we can

compute the system throughput when running with i threads

as

thri =
i

wtime,i + t + ntc
(1)

By exploiting Eq. 1, the objective of the concurrency regu-

lation architecture we present is to identify the value of i, in

the interval [1,max threads], such that thri is maximized.

We will proceed along the following path. We will ini-

tially exploit a combination of literature approaches, either

analytical or machine learning, for the construction of an

AML model evaluating wtime,i for the different values of i.
Essentially this will be based on introducing an algorithm for

the combined usage of the two approaches. As we will show,



wtime,i will be expressed as a function of t and ntc. How-

ever, these quantities may depend, in their turn, on the value

of i due to different thread contention dynamics on system

level resources when changing the number of threads. As an

example, per-thread cache efficiency may change depending

on the number of STM threads operating on a given shared-

cache level, thus impacting the CPU time required for a

specific code block, either transactional or non-transactional.

To cope with this issue, we will provide analytical correction

functions allowing, once known the value of t (or ntc)

when running with k threads, which we denote as tk and

ntck respectively, to predict the corresponding values when

supposing a different number of threads. This will lead the

final throughput prediction to be actuated via the formula

thri =
i

wtime,i(ti, ntci) + ti + ntci

(2)

where for wtime,i we only point out the dependence on ti

and ntci, while we intentionally delay to the next section

the presentation of the other parameters playing a role in its

expression. Overall, the finally achieved performance model

in Eq. 2 has the ability to determine the expected transaction

wasted time when also considering contention on system

level resources (not only logical resources, namely shared-

data) while varying the number of threads in the system.

As a final note, in our approach we will consider (and

experiment in) scenarios where max threads is set to the

number of available CPU-cores.

IV. THE ACTUAL AML MODEL

We aim at building a model for wtime,i that has the ability

to capture changes in the transaction wasted time not only

in relation to variations of the number of threads running the

application, but also in relation to changes in the run-time

behavior of transactional code blocks (such as variations of

the amount of shared-data accessed in read/write mode by

the transaction). In fact, the latter type of variation may

require changing the number of threads to be used in a given

phase of the application execution (exhibiting a specific

execution profile) in order to re-optimize performance. Our

recent results in the field of either analytical or machine

learning modeling [20], [14] have pointed out how capturing

the combined effects of concurrency degree and execution

profile on the transaction wasted time can be achieved in

case wtime,i is a expressed as a function f depending on a

proper set of input parameters, namely

wtime,i = f(rs, ws, rw,ww, t, ntc, i) (3)

where t, ntc and i have the meaning explained above, while

the other input parameters are explained in what follows:

• rs is the average read-set size of transactions;

• ws is the average write-set size of transactions;

• rw (read-write conflict affinity) is an index providing an

estimation of the likelihood for an object read by some

transaction to be also written by some other transaction;

• ww (write-write conflict affinity) is an index providing

an estimation of the likelihood for an object written

by some transaction to be also written by another

transaction.

The objective of the AML model is to provide an ap-

proximation fAML of the function f . To this purpose, we

combine two different existing estimators, providing two

different approximations of f . The first estimator, which we

refer to as fA, is based on an analytical approach, while

the second one, which we refer to as fML, relies on a

pure machine learning approach. We briefly recall these

two base performance models, and then enter the details

of the algorithmic steps used for combining them, namely

the algorithm that determines the construction of fAML.

A. Base Analytical Model: fA

Our base analytical model is built on top of the results in

[20]. This work presents a parametric analytical expression

of the probability for a transaction to be aborted, namely pa,

which is a function of the parameters appearing in input to

Eq. 3. Particularly, the abort probability is expressed as

pa = β(rs, ws, rw,ww, t, ntc, i) (4)

More precisely

pa = 1 − e−ρ·ω·φ (5)

where the function ρ is assumed to depend on the input

parameters rs, ws, rw and ww, the function ω is assumed

to depend on the parameter i (number of concurrent threads),

and the function φ is assumed to depend on the parameters

t and ntc. For the reader’s convenience, we report below the

final shape of each of these functions as determined in [20]

ρ =[c · (ln(b · ws + 1)) · ln(a · ww + 1)]d

+[e · (ln(f · rw + 1)) · ln(g · rs + 1) · ws]z
(6)

ω = h · (ln(l · (k − 1) + 1) (7)

φ = m · ln(n ·
t

t + ntc
+ 1) (8)

where m, n, h, l, e, f , g, z, c, b, a, d are all fitting parameters

to be instantiated via regression.

We can finally use the abort probability expression, as

provided in [20] (see Eq.s 4-8), in order to analytically

express the expected transaction wasted time (when running

with i threads), namely to instantiate the function fA, as

wtime,i = fA =
pa

1 − pa

· tr (9)

where tr is the average CPU time for a single aborted run

of the transaction, and pa/(1 − pa) is the expected number

of aborted runs of the transaction.



B. Base Machine Learning Model: fML

As for the machine learning predictor of wtime,i, we rely

on the approach we provided in [14], where the function f
in Eq. 3 is approximated by relying on a neural network

aimed at estimating the shape of the approximating function

fML. We recall that a neural network based model can

be trained to approximate an unknown function f via the

exploitation of a data set {(input,output)} (training set),

which is assumed to be a statistical representation of the

function f such that, for each element (input,output),
ouput = f(input) + δ, where δ is a random variable

(also said noise). In the approach in [14], the training set

is formed by samples (input,output), with input =
{rs, ws, rw,ww, t, ntc, i} and output = wtime,i, which

are collected during real executions of the STM application.

C. Combining the Two Base Models: fAML

Both the two base models, namely fA and fML, require

a training phase to be actuated in order for them to be

instantiated. Specifically, fA requires collecting samples

related to the application execution in order to compute the

fitting parameters appearing in Eq.s 6-8, and to estimate

tr. On the other hand, fML is constructed by collecting

a set of (input,output) training samples related to the

real execution of the STM application. For both the ap-

proaches, each sample used to instantiate the model will

refer to aggregate statistics (on the values of the param-

eters {rs, ws, rw,ww, t, ntc, i}) over multiple committed

transactions, typically on the order of several thousands.

However, there is a fundamental difference in the training

phases to be operated for instantiating the two models.

As discussed and experimentally shown in [20], the fA

model (particularly the expression for pa) can be instantiated

by relying on a (very) limited amount of run-time samples

taken during real executions of the application. This implies

that, upon deploying the application, a reduced number of

configurations, in terms of the concurrency level (expressed

by the value of the parameter i), require to be observed (and

for a relatively reduce amount of time) in order to build a

model having the ability to provide performance predictions

in relation to very different levels of concurrency (potentially

unexplored in the training phase). In other words, the fA

model offers excellent extrapolation capabilities.

This is not true for the case of fML, which typically

requires to be trained via good coverage of the whole input

domain, also in terms of the degree of concurrency i. This

leads to the need for observing the application for longer

time, and in differently parameterized operating modes. On

the other hand, fML is expected to be an highly reliable

estimator for f (even more reliable than fA) in case such

a good coverage of the input domain is guaranteed to be

achieved during the training phase [14].

We decided to combine the usage of the two modeling

approaches by exploiting fA in order to definitely shorten

the length of the training phase required to instantiate

fML. Overall, in our mixed modeling methodology the

analytical component is used as a support to improve some

aspect (namely the learning latency) of the machine learning

component.

A core aspect in our combination of analytical and ma-

chine learning models is the introduction of a new type

of training set for the machine learning component, which

we refer to as Virtual Training Set (denoted as VTS).

Particularly, VTS is a set of virtual (inputv,outputv)
training samples where:

• inputv is the set {rsv, rsv, rwv, wwv, tv, ntcv, iv}
formed by stochastically selecting the value of each

individual parameter belonging to the set;

• outputv is the output value computed as fA(inputv),
namely the estimation of wtime,iv actuated by fA on

the basis of the stochastically selected input values.

In other word, VTS becomes a representation of how

the STM system behaves, in terms of the relation between

the expected transaction wasted time and the value of

configuration or behavioral parameters (such as the degree

of concurrency), which is built without the need for actually

sampling the real system behavior. Rather, the representation

provided by VTS is built by sampling Eq. 9, namely fA. We

note that the latency of such sampling process is independent

of the actual speed of execution of the STM application,

which determines in its turn the speed according to which

individual (input,output) samples, referring to real exe-

cutions of the application, would be taken. Particularly, the

sampling process of fA is expected to be much faster, espe-

cially because the stochastic computation (e.g. the random

computation) of any of its input parameters, which needs to

be actuated at each sampling-step of fA, is a trivial operation

with negligible CPU requirements. On the other hand, the

possibility to build the VTS is conditioned to the previous

instantiation of the fA model. However, as said before, this

can be achieved via a very short profiling phase, requiring

the collection of a few samples of the actual behavior of

the STM application. Overall, we list below the algorithmic

steps required for building the application specific VTS, to

be used for finalizing the construction of the fAML model:

Step-A. We randomly select Z different values of i in the

domain [1,max threads], and for each selected value of

i we observe the application run-time behavior by taking

δ real-samples, each one including the set of parameters

{rs, ws, rw,ww, t, ntc, i, tr}.

Step-B. Via regression we instantiate all the fitting parame-

ters requested by Eq.s 6-8. Hence, at this stage we have an

instantiation of Eq. 5, namely the model instance for pa.

Step-C. We fill the instantiated model for pa in Eq.

9, together with the average value of tr sampled in

Step-A, and then we generate the VTS. This is done

by generating δ′ virtual samples (inputv,outputv)



where inputv = {rsv, wsv, rwv, wwv, tv, ntcv, iv} and

outputv = wtime,iv as computed by the model in Eq.

9. Each inputv sample is instantiated by randomly se-

lecting the values of the parameters that compose it (1).

For the parameter i the random selection is in the interval

[1,max threads], while for the other parameters the ran-

domization needs to take into account a plausible domain,

as determined by observing the actual application behav-

ior in Step-A. Particularly, for each of these parameters,

its randomization domain is defined by setting the lower

extreme of the domain to the minimum value that was

observed while sampling that same parameter in Step-A.

On the other hand, the upper extreme for the randomization

domain is calculated as the value guaranteeing the 90-

percentile coverage of the whole set of values sampled for

that parameter in Step-A, which is done in order to reduce

the effects due to spikes.

After having generated the VTS in Step-C, we use it in

order to train the machine learning component fML of the

modelling approach. However, training fML by only relying

on VTS would give rise to a final fML estimator identical

to fA given that the curve learned by fML would exactly

correspond to the one modelled by fA. Hence, in order to

improve the quality of the machine learning based estimator,

our combination of analytical and machine learning methods

relies on additional algorithmic steps where we use VTS

as the base for the construction of an additional training

set called Virtual-Real Mixed Training Set (denoted as

VRMTS). This set represents a variation of VTS where

some virtual samples are replaced with real samples taken

by observing the real behavior of the STM application, still

for a relatively limited amount of time. More in detail,

the following two additional algorithmic steps are used for

constructing the VRMTS:

Step-D. We select Z ′ different values for i (in the interval

[1,max threads]), and for each selected value we observe

the application run-time behavior by taking δ′′ real training

samples (inputr,outputr).

Step-E. We initially set VRMTS equal to VTS. Then we

generate the final VRMTS image via an iterative procedure

that substitutes at each iteration one element in VRMTS

with one (inputr,outputr) sample from the sequence of

samples taken in Step-D, until this sequence ends.

The rationale behind the construction of VRMTS is to

improve the quality of the final training set to be used to

build the machine learning model by complementing the

virtual samples originally appearing in VTS with real data

related to the execution of the application. Two things need

to be considered in this process: (1) the actual length of

Step-D could be further reduced by reusing (all or part of

the) real samples of the application execution taken in Step-

1Generally speaking, this step could take advantage from a selection
algorithm providing minimal chances of collision.

A, which were exploited in Step-B for computing the fitting

parameters for the fA model; (2) the substitution in Step-E

could be actuated according to differentiated policies.

As for the latter aspect, we have decided to use a policy

based on Euclidean distance, in order to avoid clustering

phenomena leading the final VRMTS image to contain

training samples whose distribution within the whole domain

significantly differs from the original distribution determined

by the random selection process used in Step-C for the

construction of VTS. More in detail, the victim selection

policy we have adopted to replace iteratively any sample

while generating the final VRMTS works as follows:

• given a collected real sample of the application execu-

tion sr = (rsr, wsr, rwr, wwr, tr, ntcr, ir), the subset

Sir = {(rs, ws, rw,ww, t, ntc, i)|i = ir} of VRMTS

is computed. Actually, Sir is the subset of samples for

which the level of parallelism i they refer to is the same

as the level of parallelism characterizing the real sample

to be used for replacement in the current iterative step;

• the actual sample in VRMTS to be replaced with sr

is identified inside the subset Sir using the Euclidean

distance as computed on all the parameters characteriz-

ing the sample except i (namely rs,ws, rw, ww, t and

ntc). Particularly, the victim is the sample s∗ belonging

to Sir which is closest to sr.

We note that the above Euclidean distance based policy

may lead in intermediate steps to evict from VRMTS some

previously inserted real sample. This may happen in case

the closest sample to the one currently being inserted in

VRMTS is a real sample (which was inserted in a previous

iteration). This is not a drawback of our victim selection

policy, rather it is the reflection of the fact that we prevent

clustering effects of the elements included in the final image

of VRMTS, which may lead some portions of the domain not

to be sufficiently represented within the set. As a final note,

the current proposal does not account for substituting virtual

training samples by explicitly having the real ones (taken in

Step-D) evenly distributed across different execution phases

of the applications, if any (possibly leading to different

actual profiles). This aspect will be the objective of future

investigations.

Once achieved the final VRMTS image, we use it to train

fML in order to determine the final AML model. Overall,

fAML is defined as the instance of fML trained via VRMTS.

D. Correcting Factors

As pointed out, the instantiation of the fAML model for

the prediction of wtime,i needs to be complemented with

a predictor of how t and ntc are expected to vary vs the

degree of parallelism i. In fact, wtime,i, as expressed by the

instance of machine learning predictor trained via VRMTS

depends on t and ntc. Also, the final equation establishing

the system throughput, namely Eq. 2, which is used for

evaluating the optimal concurrency level, also relies on the



ability to determine how t and ntc change when changing

the level of parallelism (due to contention on hardware

resources). To cope with this issue, we rely on correcting

functions aimed at determining (predicting) the values ti and

ntci once known the values of these same parameters when

running with parallelism level k 6= i. To achieve this goal,

the samples taken in Step-A are used to build, via regression,

the function expressing the variation of the number of clock-

cycles the CPU-core spends waiting for data or instructions

to come-in from the RAM storage system. We recall that

the collection of training samples in Step-A should be made

very short, hence referring to a limited number of values of

the concurrency level i. However, the expectation is that the

number of clock-cycles spent in waiting phases should scale

(almost) linearly vs the number of concurrent threads used

for running the application. Hence, regression on a limited

number of samples should suffice for reliable instantiation

of the correction functions. To support our claim, we report

in Figure 1 and in Figure 2 the variation of the clock-cycles

spent while waiting data to come from the RAM storage

system for two different STM applications of the STAMP

benchmark suite [15], namely Intruder and Vacation, while

varying the number of threads running the benchmarks

between 1 and 16. These data have been gathered on top

of a 16-core HP ProLiant machine, equipped with 2 AMD

OpteronTM6128 Series Processor, each one having eight

hardware cores, and 32 GB RAM, running a Linux Debian

distribution with kernel version 2.6.32-5-amd64. This is the

same machine we exploited for the experimental assessment

of the whole AML methodology presented in Section V.

The reported statistics have been collected via the perf

tool, which marks the stall cycles while gathering data from

RAM storage as Stalled-Cycles-Backend. By the

curves, the close-to-linear scaling is fairly evident, hence,

once determined the scaling curve via regression, which we

denote as sc,

ti = tk ×
sc(i)

sc(k)
ntci = ntck ×

sc(i)

sc(k)
(10)

where:

• ti is the estimated expected CPU time (once

known/estimated tk) for a committed transaction in case

the application runs with level of concurrency i;
• ntci is the estimated expected CPU time (once

known/estimated ntck) for a non-transactional code

block in case the application runs with level of con-

currency i;
• sc(i) (resp. sc(k)) is the value of the correction function

for level of concurrency i (resp. k).

V. EXPERIMENTAL EVALUATION

A. The AML Based Concurrency Regulation Architecture

We have implemented a fully featured STM concurrency

regulation architecture based on AML, which we refer to as

AML-STM (2), whose organization is presented in Figure

3. The core STM layer exploited in our implementation is

the open source TinySTM [4]. AML-STM is made up by

three building blocks, namely: A Statistics Collector (SC); A

Model Instantiation Component (MIC); and A Concurrency

Regulator (CR). The MIC module initially interacts with

CR in order to induce variations of the number of running-

threads i so that the SC module is allowed to perform the

sampling process requested to support Step-A of the instan-

tiation of the AML model (3). After the initial sampling

phase, the MIC module instantiates fA (and the correction

function sc) and computes VTS. It then interacts again with

CR in order to induce variations of the concurrency level

i that are requested to support the sampling process (still

actuated via SC) used for building VRMTS (see Step-D

and Step-E). It then instantiates fAML by relying on a

neural network implementation of the fML predictor, which

is trained via VRMTS. Once the fAML model is built, MIC

continues to gather statistical data from SC, and depending

on the values of wtime,i that are predicted by fAML (as a

function of the average values of the sampled parameters

rs, ws, rw, ww, ti, and ntci), it determines the value of i
providing the optimal throughput by relying on Eq. 2. This

value is filled in input to CR (via queries by CR to MIC),

which in its turn switches off or activates threads depending

on whether the level of concurrency needs to be decreased

or increased for the next observation period.

We note that the length of the phases requested for

eventually instantiating fAML depend on the amount of

samples that are planned to be taken in Step-A and in Step-

D of the model construction (see the parameters Z, δ, Z ′

and δ′′ in the detailed description of these steps). We will

evaluate the effectiveness of our AML modeling approach,

and compare this approach with pure analytical or machine

learning based methods, while varying the length of these

sampling phases. We note that the shorter such a length,

the more promptly the final performance model to be used

for concurrency regulation is available. Hence, reduction of

the length of these phases, while still guaranteing accuracy

of the finally built performance model, will allow more

prompt optimization of the run-time behavior of the STM

based application. As hinted, this is relevant in scenarios

where applications are dynamically deployed, and need to

be promptly optimized in terms of their run-time behavior

in order to improve the fruitful usage of resources and to

also improve the system energy efficiency (via reduction of

wasted CPU time), such as when applications are hosted by

PaaS providers on top of STM-based platforms.

2The source code is freely available at the URL
http://www.dis.uniroma1.it/∼ hpdcs/AML-STM.zip

3As for the parameters to be monitored via SC, rw can be calculated as
the dot product between the distribution of read operations and the distri-
bution of write operations (both expressed in terms of relative frequency of
accesses to shared data objects). Similarly, ww can be calculated as the dot
product between the distribution of write operations and itself. This can be
achieved by relying on histograms of relative read/write access frequencies.
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Figure 1. Stalled cycles back-end for the
Intruder benchmark
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Figure 2. Stalled cycles back-end for the
Vacation benchmark Figure 3. System architecture

B. Experimental Data

The data we report in this section refer to the execution of

applications belonging to the STAMP benchmark suite [15].

These applications have been run on top of the aforemen-

tioned 16-core HP ProLiant machine. This section is divided

in two parts. In the first one we provide an experimental

support of the feasibility of our AML approach. Specifically,

we provide data related to how the prediction error of wtime,i

changes over time (namely vs the length of the sampling

phase used to gather data to instantiate the performance

model) when comparatively considering our AML model

and the two base models, pure analytical and pure machine

learning, exploited for building AML.

Successively, we provide experimental data related to

how the concurrency regulation architecture based on AML,

namely AML-STM, allows more prompt achievement of op-

timized run-time performance and optimized energy usage,

when compared to the concurrency regulation architectures

we have presented in [14], [20], where concurrency reg-

ulation takes place by exclusively relying on an analytical

performance model or on a pure machine learning approach.

We will refer to these two architectures as A-STM and ML-

STM, respectively. We note that both these architectures

have been implemented by relying on TinySTM as the core

STM layer, hence our study provides a fair comparison of

the different performance modeling and optimization ap-

proaches, when considering the same STM technology and

implementation. Also, we feel that comparing our AML ap-

proach with literature approaches addressing the very same

problem (namely the dynamic selection of the optimal value

of the number of threads in scenarios where the application

execution profile can change over time) is the more reliable

way of assessing the present proposal (4). In fact, comparing

AML with approaches based on different rationales (like the

ones based on transaction scheduling, see [16]) would lead to

compare solutions that can be integrated and make synergy,

thus not representing alternatives excluding each other.

4The proposals in, e.g. [11], [10], [12], are suited for selecting and/or
regulating concurrency with static execution profiles, where, e.g., read and
write set size does not change over time. We exclude therefore these
solutions in our comparative study.

1) Part A - Model Accuracy: To determine how the esti-

mation accuracy of wtime,i provided by the AML approach

varies vs the length of the sampling phase used to gather

profiling data on top of which the performance model is

built, and to compare such accuracy with the one provided by

pure analytical (fA) or pure machine learning (fML trained

on real samples) methods, we have performed the follow-

ing experiments. We have profiled STAMP applications by

running them with different levels of concurrency, which

have been varied between 1 and the maximum amount of

available CPU-cores, namely 16. All the samples collected

up to a point in time have been used either to instantiate

fA via regression, or to train fML in the pure machine

learning approach. On the other hand, for the case of fAML

they are used according to the following rule. The 10% of

the initially taken samples in the observation interval are

used to instantiate fA (see Step-A and Step-B in Section

IV), which is then used to build VTS, while the remaining

90% are used to derive VRMTS (see Step-D and Step-

E in Section IV). In this scheme the cardinality of the

VTS, from which VRMTS is build, has been fixed at 1500

elements. Also, each real sample taken during the execution

of the application aggregates the statistics related to 4000

committed transactions, and the samples are taken in all the

scenarios along a single thread, thus leading to similar rate of

production of profiling data independently of the actual level

of concurrency while running the application. Hence, the

knowledge base on top of which the models are instantiated

is populated with similar rates in all the scenarios.

Then for different lengths of the initial sampling phase

(namely for different amounts of samples coming from

the real execution of the application), we instantiated the

three different models and compared the errors they provide

in predicting wtime,i. These error values are reported in

Figures 4-7, and refer to the average error while comparing

predicted values with real execution values achieved while

varying the number of threads running STAMP applications

between 1 and the maximum value 16. Hence, they are

average values over the different possible configurations of

the concurrency degree for which predictions are carried out.

Also, we have normalized the number of real samples used



in each approach in such a way that the x-axis expresses

the actual latency for model instantiation (not only for real

samples collection), hence including the latency (namely

the overhead) for VTS and VRMTS generation and actual

training of fML over VRMTS in case of the AML approach.

This allowed us to compare the accuracy of the different

models when considering the same identical amount of

time for instantiating them (since for models requiring more

processing activities in order for them to be instantiated, we

recover that time by reducing the actual observation interval,

and hence the number of real samples provided for model

construction).

By the data we can see how the AML modeling approach

always provides the minimal error independently of the

length of the application profiling phase. Also, with the

exception of Vacation and Intruder, AML allows achieving

minimal errors (on the order of 2-3%) in about half of the

time requested by the best of the other two models for

achieving the same level of precision. On the other hand,

for Intruder, AML significantly outperforms the other two

prediction models for different lengths of the application

sampling period. As for Vacation, AML provides close-to

asymptotically minimal prediction error even with a very

reduced amount of available profiling samples. These data

support the claim of high accuracy of the predictions by

AML, guaranteed via very reduced time for instantiating the

application specific performance model.
2) Part B - Performance and Energy Efficiency: To

demonstrate the effectiveness of AML in allowing prompt

deliver of optimized performance (and prompt improvement

of energy usage), once instantiated the performance models

at some point in time according to the settings presented

in Section V-B1, we evaluated both: (A) the transaction

throughput, given that the concurrency level is dynamically

regulated according to the predictions by the instantiated

model and (B) the average energy consumption (joule)

per committed transaction. For both the parameters, we

also report the values achieved by running the application

sequentially on top of a single thread and fixing the number

of threads to the maximum value of 16 (we refer to this

configuration as TinySTM in the plots), which allows us to

establish baseline values for the assessment of both speedups

and energy usage variations by the runs where the degree

of concurrency is dynamically changed on the basis of the

performance model predictions.

By the throughput data in Figures 8-11, we see how

dynamic concurrency regulation based on AML allows

the achievement of improved or even the peak observable

throughput values much earlier in time, when compared to

what happens with the pure analytical and the pure machine

learning approaches. Also, the pure analytical approach is

typically not able to provide the peak observed throughput,

independently of the length of the sampling period during

which the knowledge base for instantiating the model is be-

ing constructed. Also, for some benchmark, such as Kmeans,

the time requested by the pure machine learning based

approach in order to instantiate a model guaranteeing the

peak observed performance is one order of magnitude longer

than what required for the instantiation of the AML model.

For other benchmarks, such as Yada, the AML approach

requires on the order of 40% less model-instantiation time

to achieve a model providing the peak performance. We

also note that for most of the benchmarks, the TinySTM

configuration where all the available 16 CPU-cores are used

to run a fixed number of 16 concurrent threads, typically

leads to a speed-down wrt the sequential run. This indicates

how the execution profiles of STAMP applications are not

prone to exploitation of uncontrolled parallelism, which

leads the observed speedup values, promptly achievable via

AML, to be representative of a significant performance

boost.

As for data related to energy efficiency, reported in

Figures 12-15, we see how both the pure analytical and the

AML approaches allow prompt achievement of reduction of

the energy requested per transaction commit. This is not

guaranteed by the pure machine learning approach. Also,

the AML approach allows the achievement of optimized

tradeoffs between execution speed and energy consumption.

In fact, even though the pure analytical approach allows

reducing the energy consumption for the Yada benchmark

when considering longer time for model instantiation, this

is achieved by clearly penalizing the system throughput.

To provide more insights into the relation between speed

and usage of energy, we report in Figure 16 the curves

showing the variation of the ratio between the speedup

provided by any specific configuration (again while varying

the performance model instantiation time) and the energy

scaling per committed transaction (namely the ratio between

the energy used in a given configuration and the one used in

the sequential run of the application). For space constraints

we report these curves limited to the Kmeans benchmark,

however the corresponding curves for the other benchmark

applications could be derived by combining the previously

presented curves. Essentially, the curves in Figure 16 express

the speedup per unit of energy, when considering that the

unit of energy for committing a transaction is the one

employed by the sequential run. Hence they express a kind

of iso-energy speedup. Clearly, for the sequential run this

curve has constant value equal to 1. By the data we see how

the AML approach achieves the peak observed iso-energy

speedup for a significant reduction of the performance model

instantiation time. On the other hand, the pure analytical

approach does not achieve such a peak value even in case

of significantly stretched application sampling phases, used

to build the model knowledge-base. Also, the configuration

with concurrency degree set to 16, namely TinySTM, further

shows how not relying on smart and promptly optimized

concurrency regulation, as the one provided by AML, de-

grades both performance and energy efficiency.
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VI. CONCLUSIONS

We have presented an innovative approach for dynam-

ically controlling the level of concurrency of STM appli-

cations, which is based on a performance model built by

combining analytical and machine learning methodologies.

The core advantage by this mixed method lies in its ability to

definitely shorten the learning phase needed to instantiate the

performance model (as compared to pure machine learning)

and to improve the level of accuracy of pure analytical

methods. We have also quantified these advantages exper-

imentally, by studying the above tradeoffs for the case of

the STAMP benchmark suite run on top of a 16-core HP

ProLiant machine. The presented method well fits scenarios

where fast construction of application specific performance

models needs to be actuated in order to promptly optimize

performance and also resource usage (including energy),

given that unsuited concurrency levels in STM might lead on

one side not to exploit parallelism, and on the other side to

thrashing phenomena, due to excessive transaction rollbacks.

Deployment of STM based applications on top of Cloud

platforms is an example of this kind of scenarios.
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