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Abstract

In this work we analyze modal properties of dielectric optical bent slot waveguides by using the
multilayer formulation of the well known classical analytical model of bent waveguides based on
the Bessel/Hankel functions. Unlike the previously studied approximate model based on the Airy
functions, this model is valid for all values of bend radii. The present approach allows quick and
accuracy computations of propagation constants, mode profiles, and field/power densities for the 2D
bent slot waveguides with very small radii. Using this model we characterize the optimal slot position
inside the bent core to maximize the field enhancement in the slot. Such modal analysis is quite
useful for the design of devices involving bent slot waveguides. Moreover the results obtained by the
present 2D rigorous analytical model can be also used for benchmarking other numerical tools.

1 Introduction

Guiding and confining light in low index nanometric slots offers novel opportunities like highly sensitive
optical sensors, improved light-matter interaction for nonlinear optics applications, etc [1, 2, 3, 4].
Waveguiding in such structures provides high electric field density and high optical power density in the
narrow slots which is not possible in the conventional waveguides.

Slot waveguides with bends are one of the important realizations of this configuration. Often these
waveguides are simulated with finite difference methods [2, 3]. While using such methods, accurate
resolution of the nanometric slot and the waveguide bending can become cumbersome. In Ref. [5] the bent
slot waveguides are analyzed using analytical approximation with the Airy functions. This formulation
is based on representing the 2D bent slot waveguide fields in terms of the Airy functions under the
assumption that the bend radius of the waveguide is much larger than the waveguide width [6]. This
approximation is a severe constraint for integrated optics applications involving very small bends. As we
shall show later on, using the Airy functions approach in such cases will lead to erroneous estimations
of the bend losses.

One can overcome these limitations by employing the classical frequency domain analytical model of
the bent waveguides [7, 8]. While in the literature mostly its three layer configurations are analyzed, in
this work we use its multilayer version. Perturbation method based on continuation of wave functions
also has been used to analyze multilayer/multi-clad bent slab waveguides [9]; but it more applicable for a
special case of W-type (doubly clad) bent slab waveguides. Although the complete analytical arguments
as the classical model are possible only in 2D [10, 11], this approach has been successfully augmented and
adapted to full 3D bent waveguides by means of semi-vectorial method of lines [12], vectorial method of
lines [13], and field mode matching [14, 15]. These 3D bent waveguide models essentially differ in the
way they treat the vertical direction, but all the methods share the common feature that the lateral (i.e.
radial) direction is treated analytically with the Bessel/Hankel functions, as in case of the 2D classical
model. Therefore without loss of the generality in this paper we focus on the 2D model, and explore its
multilayer extension to analyze the modal properties of the bent slot waveguides.

One can get such 2D setting under appropriate conditions by using the effective index method (EIM)
for 3D bent slot waveguides [5, 6]. Note that the applicability of this simplification crucially depends
on the geometry of the 3D bent waveguide cross section, and the refractive index profile itself [12, 16].
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The EIM is not applicable when the outer interface of the rib waveguide is below cutoff. Also improper
application of the EIM artificially increases the refractive index contrast, resulting in incorrect estimation
of bend losses.

Considering the formulation along the radial direction, the present 2D approach is similar to the
3D film mode matching method [14, 15]. The latter method uses the Hertz potentials along with the
immittance matrix formulation, whereas the present method is directly formulated in terms of the electric
and magnetic fields, and solved for the amplitudes of these fields (here we did not experience any
numerical difficulties). As a special case with no field/permittivity variations in the vertical direction,
one can simulate the 2D setting with the 3D film mode matching model. Indeed, in case of the 2D
settings these two approaches are equivalent, but the present formulation is more intuitive, e.g. with this
model the mode orthogonality, normalization, modal power can be analytically formulated and computed
in terms of field amplitudes [11].

The solution method of the 2D analytical model is analogous to the Airy functions method in Refs. [5,
6], except that one does not make any assumption for validity of the solution, and does not make variable
transformation. But the consequence is that then one has to compute the Bessel/Hankel functions
with complex valued order (and possibly for large orders and arguments). Efficient routines for these
computations are not easily available. The former method avoids this numerical obstacle by using the
Airy functions method. We overcame this obstacle by using our in house implemented routines for
the required Bessel/Hankel functions [11] based on the uniform asymptotic expansions of the Bessel
functions [17] with the help of routines in Ref. [18]. This implementation is quite robust and fast. In
subsequent text we discuss the results obtained with this Bessel/Hankel functions based approach.

2 Analytical model of bent slot waveguides

A typical 2D bent slot waveguide investigated here is shown in Fig. 1. As mentioned earlier, under ap-
propriate conditions one can get such 2D setting by using the EIM for 3D bent slot waveguides. The
quasi transverse electric (TE) mode in 3D slot waveguides has the principal magnetic field component in
the y direction, which is equivalent to the (pure) transverse magnetic mode (TM) in the present setting.
Similar relationship holds for the quasi TM mode and the (pure) TE mode. We model the 2D bent slot
waveguide as a multilayer planar bent waveguide. This is an extension of the well studied 3 layer planar
bent waveguides, for which we have pure analytical model [7, 8] with reliable numerical implementa-
tion [11]. As mentioned earlier, this 2D multilayer formulation is similar to the radial representation in
the 3D film mode matching method [14] or the method of lines [16].
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Figure 1: Bent slot waveguide: A slot of low refractive index nl and width g is formed in between two
regions of high refractive index nh and widths ηw and (1 − η)w resp., where w is the total width of the
regions with the high refractive index, and 0 ≤ η ≤ 1 is the asymmetry parameter (η = 0.5 corresponds
to the symmetrical waveguide setting). The total width of the waveguide core is wtot = w + g. The bend
radius R is defined as the outermost material interface of the core.

Consider a bent slot slab waveguide with the y-axis as the axis of symmetry as shown in Fig. 1.
Assume that the material properties and the fields do not vary in the y-direction. Being specified by
radial dependent piecewise constant refractive index n(r), the waveguide can be seen as a homogeneous
structure along the angular coordinate θ. Hence we choose an ansatz for the bent modes with pure
exponential dependence on the azimuthal angle θ, where the angular mode number is written as a
product γR with a reasonably defined bend radius R, such that γ can be interpreted as the propagation
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constant. Here we define the bend radius R as in Fig. 1. For different choices of R, and their consequences,
see Sec. 3.

In the cylindrical coordinate system (r, y, θ), the propagating electric field ~E and the magnetic field
~H (in the usual complex notation) are given by

(

~E
~H

)

(r, θ, t) =

(

(Ẽr, Ẽy, Ẽθ)

(H̃r, H̃y, H̃θ)

)

(r) exp (i(ωt − γRθ)), (1)

where the ∼ symbol indicates the mode profile, γ is the propagation constant of the bend mode, and
ω = 2πc/λ is the angular frequency corresponding to the given vacuum wavelength λ, c is the speed of
light in vacuum. Since the optical field propagating in the bent waveguide losses energy due to bending
of the waveguide, γ is complex valued, expressed as γ = β − iα, where β and α are real valued the phase
propagation constant and the attenuation constant resp..

Inserting the ansatz (1) into the Maxwell curl equations, one obtains two decoupled sets of equa-
tions [11]: One set for the TE waves for which the nonzero components are Ẽy, H̃r and H̃θ, which are

expressed in terms of Ẽy; and the second set for the TM waves with the nonzero components are H̃y,

Ẽr and Ẽθ, which are given in terms of H̃y.

Within the radial intervals with the constant refractive index n, the principal component φ = Ẽy

(TE) or φ = H̃y (TM) satisfies the Bessel equation d2φ
dr2 + 1

r
dφ
dr

+ (n2k2 − γ2R2

r2 )φ = 0 with complex order
γR, where k = 2π/λ is the given, real valued vacuum wavenumber. In the core regions the solution is
represented as a linear combination of the Bessel function of the first kind J, and the second kind Y. For
bounded solution at the origin, the solution in the interior is expressed in terms of the Bessel function
of the first kind J, whereas for the outgoing wave solution as r → ∞, we expressed the solution in the
exterior in terms of the Hankel function of the second kind H(2) [11]. Thus for the present single slot
structure, the general solution for φ(r) in the various regions is given by

φ(r) =























A0JγR(nlkr), if 0 ≤ r ≤ R − w − g,
A1JγR(nhkr) + B1YγR(nhkr), if R − w − g ≤ r ≤ R − (1 − η)w − g,
A2JγR(nlkr) + B2YγR(nlkr), if R − (1 − η)w − g ≤ r ≤ R − (1 − η)w,
A3JγR(nhkr) + B3YγR(nhkr), if R − (1 − η)w ≤ r ≤ R,

A4H
(2)
γR(nlkr), for r ≥ R,

(2)

where Ai, Bi for i = 0 to 4 are a priori unknown constants. This procedure can be easily generalized to
multi-slot setting by taking into account corresponding linear combinations of the Bessel functions J and
Y for the fields in the inner layers.

For the TM fields the material interface conditions require (i) continuity of the tangential component
of the magnetic field H̃y, (ii) continuity the tangential component of the electric field Ẽθ, which is

equivalent to continuity of 1
n2

∂H̃y

∂r
, and (iii) continuity the normal component of the electric displacement

field n2Ẽr, which is equivalent to continuity H̃y. As a direct consequence of the third condition, the

normal component of the electric field Ẽr is discontinuous at the material interfaces, and it is high in
the low index slot (see Fig. 2 for illustrations.). Thus for nanometric slot widths, this TM configuration
allows subwavelength confinement of light in the slot [1]. In the subsequent discussions, we restrict
ourselves for the TM setting.

The first two interface conditions are used to determine the unknowns Ai and Bi (Note that enforcing
the condition (i) is equivalent to enforcing the condition (iii)). This leads to a homogenous system of
linear equations for Ai and Bi. Due to sparsity of the matrix involved, evaluation of the determinant
by the row expansion is feasible. For a given frequency ω, for a nontrivial solution the determinant of
this system must be singular, which leads to the dispersion equation in terms of γR for the bent slot
waveguides. This equation is solved for the propagation constants γ.

It involves searching for complex valued roots, and need to compute the Bessel/Hankel functions with
complex valued order. The former is done with the secant method, while the latter one is accomplished
by using the uniform asymptotic expansions of the Bessel functions [17]. The modes are labeled by the
number of minima for the absolute value of the principal component in the high index core regions. As
in Ref. [11], it can be also shown that the bend modes satisfy relevant orthogonality condition, and can
be power normalized.
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3 Comparison

Having discussed the theoretical aspects of the modeling, now we present simulation results. For com-
parison, we take the test case in Ref. [5]: A bent slot waveguide with nh = 2.914406, nl = 1, w = 0.4 µm,
g = 50 nm, η = 0.5, λ = 1.55 µm. For various bent radii R, the TM modes of this structure are computed.
The results are compared with those of obtained with the Airy functions approach [5, 6]. The accuracy
of the implementation of the Airy functions approach used here is validated against the reference data
in [6], and an excellent agreement has been found.

Observe the notation differences between the setting in Ref. [5] and the current setting: (i) In the
reference setting, the harmonic time dependence for the field ansatz is exp (−iωt), and the real and
imaginary part of the propagation constant are positive. By the time reversal and space reversal prop-
erties of the Maxwell equations [19], this is equivalent to the present setting with the time dependence
exp (iωt) and negative imaginary part of the propagation constant. (ii) In the reference setting, the
bend radius Rref is defined as the distance between the origin and the center of the waveguide core. The
resultant values of the propagation constants γref differ from the corresponding values γ in the present
work. Nevertheless, one must expect γrefRref = γR [11]. Here we follow the definition of the bend radius
R as depicted in Fig. 1.

Table 1 shows the comparison for the effective index Neff =γ/k. While the current analytical model
is valid for all values of the bend radius R, as mentioned earlier the Airy functions model is applicable
when R is much larger than the width of the waveguide core wtot [6]. In the present setting, for larger
bent radii like R = 25 µm, 20 µm the results are reasonably agreeing with each other (due to large R,
the attenuation constant is practically zero). But as R decreases, the discrepancy starts to appear. It is
found that for the smaller bent radii the Airy functions approach overestimates the values of real and
imaginary part of Neff (or of the propagation constants). Thus the present model is better suited to
analyze the functioning of slot devices involving bent waveguides with small radius.

Radius Present method Airy functions method [5]
R µm Re(Neff ) |Im(Neff )| Re(Neff ) Im(Neff )
25.0 1.65668 (≈ 0) 1.65690 (≈ 0)
20.0 1.65295 (≈ 0) 1.65329 (≈ 0)
10.0 1.63440 (≈ 0) 1.63572 5.18310× 10−11

9.0 1.63030 (≈ 0) 1.63193 5.30060× 10−10

7.0 1.61864 6.35039× 10−13 1.62132 5.54679× 10−8

5.0 1.59784 2.18401× 10−9 1.60310 5.81667× 10−6

2.5 1.52746 5.68646× 10−5 1.54939 2.01261× 10−3

Table 1: Comparison of simulation results for the effective index Neff = γ/k of TM0 mode of the slot
waveguide in Section 3. ‘≈ 0’ means that the corresponding value is numerically equivalent to zero. Also
see the remarks in Sec. 3 about the notation differences in the two methods.

4 Effect of inclusion of slot

Recently microresonators with the cavity made up of slot waveguide have been demonstrated for novel
sensing applications [20]. Such configurations complement the usual resonance properties (e.g. reso-
nance field enhancement, high interaction length with small device footprint) with the unique feature of
waveguiding in the low index cavity slot. When modeling these resonators in frame work of the coupled
mode theory [21], the bent slot waveguides come into the picture. As the slot in the cavity waveguide
influences the bending/cavity loss, which in turn influences the Q of the resonator, from device design
point of view one is interested in effect of the slot inclusion. As a step towards such understanding, we
begin further analysis by investigating the effect of introducing a slot in the conventional three layer bent
waveguide (slot width g = 0).

The slot is introduced in the center of the waveguide core i.e. the asymmetry parameter η = 0.5.
As shown in Fig. 2(first column), the waveguide without slot is monomodal; supporting a moderately
lossy TM0 mode, which is reasonably well confined to the core. These modal fields show typical field
displacement (towards outer material interface r = R = 0) associated with the bent waveguides. Presence
of the slot markedly changes the nature of the modal solutions. A single hump of the principal component
H̃y of the three layer waveguide gets split into two parts each confined to the associated high index region
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(see first row). It is accompanied by the high field strength of the electric field component Ẽr in the
low index slot region (see second row). Further increasing the slot width decreases the electric field
enhancement in the slot.
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Figure 2: Effect of inclusion of the slot on modal solutions H̃y (first row) and Ẽr (second row). A slot
of width 25 nm (second column), 50 nm (third column), and 100 nm (forth column) was introduced
in a 3 layer bent waveguide (first column) made up of a core of refractive index nh = 2.914406 and
width wtot = 0.475 µm, embedded in the surrounding medium of refractive index nl = 1, R = 2 µm,
λ = 1.55 µm, and the slot position given by η = 0.5. Neff of the modes are given in Table 2. The field
profiles are power normalized.

The influence of the slot width on the effective index of TM0 is as shown in Table 2. The perturbation
by the low index slot disturbs the confinement in the waveguide core causing decrease in the real part of
the effective index, and increase in the imaginary part of the effective index. This effect is stronger for
small bend radius, and large slot width.

g nm Neff for R = 2 µm Neff for R = 3 µm
0 2.18110− i 2.77771× 10−10 2.27597− i 1.07239× 10−15

25 1.74970− i 3.94677× 10−6 1.82393− i 3.40851× 10−9

40 1.61391− i 5.33288× 10−5 1.68078− i 2.26709× 10−7

50 1.54201− i 1.91639× 10−4 1.60449− i 1.81824× 10−6

75 1.40191− i 1.84535× 10−3 1.45373− i 7.72307× 10−5

100 1.29990− i 7.75907× 10−3 1.34169− i 8.68818× 10−4

Table 2: Effect of the slot width g on the effective index. The bent slot waveguide configuration is same
as that of for Fig. 2.

For a fixed slot width g, the effect of bend radius on the symmetric bent slot waveguide is shown in
Fig. 3. As the bend radius increases, the real part of Neff of the bent mode tends to that of equivalent
straight slot waveguide (with Neff = 1.8213945, 1.7378974, 1.665327 for g = 40, 50, 60 nm resp.). The
attenuation constant (in terms of imaginary part of Neff ) shows the characteristic exponential dependence
on R. This behavior ensures the reliability of the numerical results even for small bent radii.

5 Effect of position of the slot

So far we considered the settings where the slot is symmetrically positioned in the center of the total
waveguide core (i.e. η = 0.5). The position of the slot also affects the modal solutions of the slot
waveguides. Variation of the effective index for different values of η is systematically shown in Fig. 4. It
is found that the real part and the imaginary part of Neff do not attain their extremum at the symmetric
position η = 0.5. This observation is consistent with the Ref. [2].

This asymmetry is the consequence the field displacement in the bent waveguides. As shown in Fig. 5
(first column), in the “unperturbed” (i.e. without slot) bent waveguide the field is localized slightly closer
to outer interface r − R = 0. Due to the bending, the peak for H̃y (which is at r − R = −0.2367) is
shifted away from the center of the core (which is r − R = −0.2375) towards the outer radial interface.
When the slot is positioned in the vicinity of the field peak, the resultant perturbation is significant,
which is reflected in smaller values of Re(Neff ) and higher Im(Neff ) in Fig.4.
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Figure 3: Effect of the bend radius on the effective index of bent slot waveguide. The bent slot waveguide
configuration is same as that of for Fig. 2.
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effective index of the bent slot waveguide with R = 2.725 µm. nh = 2.914406, nl = 1, w=0.4 µm,
λ = 1.55 µm. For a fixed slot width g = 50 nm, the right most plot shows influence of the bend radius
of the symmetry of the curves of real part of Neff . R = ∞ corresponds to the straight waveguide.
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Figure 5: Effect of position of the slot. From left to right, the plots show the modal solution for H̃y

(first row) and for Ẽr (second row) with no slot, with slot positioned with η = 0.3, 0.5, 0.7 resp.. The
effective index for these modal solutions are 2.25671 − i 2.81308 × 10−14, 1.74200 − i 2.64315 × 10−7,
1.53877−i 2.28484×10−5, 1.69136−i 1.90260×10−7 resp.. The waveguide configuration is nh = 2.914406,
nl = 1, wtot = 0.45 µm, g = 50 nm, R = 2.725, λ = 1.55 µm.

The above bent field displacement is smaller for larger bend radii. Therefore for bent slot waveguides
with large radii, minimum of the real part of Neff attains closer to η = 0.5 as shown in Fig. 4. For
comparison, when R = ∞, i.e. for a straight slot waveguide, the minimum is exactly at η = 0.5.

Plots in Fig. 5 show this effect on the field distribution of the principal component H̃y and the

dominant component Ẽr. It is found that when the perturbation as a function of η is maximum, the
field concentration of the dominant component in the slot is also maximum. This insight is used in the
next section to optimize the slot position for maximum field enhancement in the slot.
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6 Optimizing the slot position

From applications point of view, one is interested in high power concentration in the slot. Fig. 6(left)
shows variation of the normalized power in the slot for various slot positions. As seen in this plot, there
is a certain range of η for which there is more power in the low index slot (dash line) compared to high
index core layers on the left and right side of the slot. For the setting under consideration, for η = 0.52
the power in the slot attains maximum (=46.23%). One is also interested in the slot power density,
which is defined as the power in the slot divided by the slot width. Fig. 6(right) shows the variation of
the slot power density for different slot positions. The power density in the slot is maximum when the
slot is positioned in the region of field maximum for the corresponding unperturbed bent waveguide.
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Figure 6: Effect of the slot position on the power in the slot (left) and the slot power density (right).
Bent slot waveguide is as in Fig. 5.

7 Conclusions

In this paper we investigated the bent slot waveguides using the multilayer formulation of the analytical
model of bent waveguides. We simulated effect of the slot width and the slot position on the TM modal
solutions of the slot waveguides of various bend radii. It is shown that the influence of the slot is
maximum when it is positioned in the region of field maximum of the TM mode principal component
H̃y of the corresponding unperturbed (i.e. without slot) bent waveguide. In this case the electric field
enhancement and the power density in the slot region are maximum. Unlike the approximate model
based on the Airy functions, the present 2D analytical model is robust and reliable even for small bent
radii and subwavelength slot widths. Using the effective index method –where it is applicable– along
with the present analytical model, one can analyze 3D bent slot waveguides. The results derived from
the analytical model discussed in this paper can be used for benchmarking other numerical tools.
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