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Analytical Model for Fietitions Crack Propagation in 
Concrete Beams 

By Jens Peder Ulfkjær1
, Steen Krenk2 and Rune Brincker3 

Abstract: An analytical model for load-dispiacement curves of unreinforced notehed and 
un-notched concrete beams is presented. The load displacement-curve is obtained by combining 
two simple models. The fracture is modelled by a fictitious crack in an elastic layer around 
the rnid-section of the beam. Outside the elastic layer the deformations are modelled by the 
Timoshenk o beam theory. The state o f stress in the elastic layer is assumed to depend 
bi-linearly on local elongation corresponding to a linear softening relation for the fictitious 
crack. For different beam size results from the analytical model are compared with results 
from a more accurate model based on numerical methods. The analytical model is shown to 
be in good agreement with the numerical results i f the thiclcness of the elastic layer is taken 
as half the beam depth. Several general results are obtained. It is shown that the point on the 
load-dispiacement curve where tbe fictitious crack starts to develop, and the point where the 
real crack starts to grow will always correspond to the same bending moment. Closed form 
solutions for the maximuro size of the fraelure zone and the minimum slope on the 
load-dispiacement curve is given. Tbe latter result is used for derivation o f a general snap-back 
eriterion depending only on beam geometry. 

Introduetion 

Since Kaplan (Kaplan 1961) performed his linear elastic fracture mechanical (LEPM) 
investigation of notehed concrete beams subjected to three and four point bending much 
attention has been paid to fracture of concrete and rock. In thi s pioneering work and in three 
subsequent discussions (Blakey and Beresford (1962), Gliicklich (1962), Irwin (1962)) the 
applicability of LEPM was discussed and the views given in these contributions are still 
popular (e.g. slow crack growth). Today it is realized that LEPM is only applicable to large 
scale structures and ultra brittie concrete, Pianas and Elices (1989), and that it is necessary 
to apply nonlinear fracture mechanics for description of fracture in ordinary concrete 
structures. 

Different models based on nonlinear fracture mechanical ideas describe the softening 
behaviour of concrete e. g. the Pictitious Crack Model (PC-model) by Hillerborg, Modeer and 
Peterson (1976), the Crack Band model by Bazant (1983) and the Two Parameter Model by 
Jenq and Shah (1985). In this paper the PC-model will be used to describe fracture in 
concrete. 

Few researchers have considered analytical methods based on non-linear elastic fracture 
mechanical models to describe fracture in concrete structures. A model has been developed 
by T. Chuang and Y. W. Mai (1989) basedon the Crack Band Model. Also, a model based 
on the fictitious crack model has been developed by Llorca and Elices (1990). 

The idea of modeiling the bending failure of concrete beams by development of a fictitious 
crack in an elastic layer with a thickness proportional to the beam height was introduced by 
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Ulfk:jær, Brincker and Krenk (1990). In the present paper this model is presented using a 
linear softening relation and the model is validated by comparing with results from a 
numerical model. 

Several general results are obtained. It is shown that the point on the load-dispiacement 
curve where the fictitious crack starts to develop, and the point where the real crack starts 
to grow always will correspond to the same bending moment, the points lying on each side 
of the peak point. Closed form solutions for the maximum size of the fracture zone and the 
minimum slope on the load-dispiacement curve are given. The last result is used for 
derivation of a general snap-back eriterion depending only on beam geometry. 

Basic Assumptions 

The failure of a simply supported beam loaded in three point bending is modelled by 
assuming development of a single fictitious crack in the midsection of the beam. 

In the FC-model material points on the crack extension path are assumed to be in one of 
three possible states: A) a linear elastic state, B) a fracture state where the material is 
softened, caused by cohesive forces in the fracture process zone and finall y, C) a state of no 
stress transmission. In the fracture state the cracking process is deseribed by a softening 
relation which relates stress normal to the cracked surface a to the crack opening 
displacement, w (distance between the cracked surfaces) 

a = f(w) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · . . (l) 

where f (·) is a material function determined by uniaxial tensile tests, see Fig. l. The area 
under the material function is termed the specific fracture energy, G p, which is assumed to 
be a material constant, Elfgren (1989). 

Dsually the FC-model is combined with numerical methods like the finite element method 
Hillerborg et al. (1976) or a boundary element method like the substructure method 
introduced by Petersson (1981), and therefore no simple method of analysis is directly 
available. 

Therefore, in thispaper the model is further simplified by two additional assumptions: l) 

the camplex stress field around the crack is modelled by simple spring-action in an elastic 
layer around the crack, and outside the layer the deformations are modelled by beam theory 
3) the softening relation is assumed to be linear. 

The first assumption is characteristic of the model concept and eannot be changed without 
changing the whole idea of the model. The second assumption however is not inherent with 
the model and the linear softening relation might be changed to a Dugdale relation or another 
softening relation. Using the assumption of a linear softening relation however, the fracture 
en erg y is given by G p= ~a u w c where a u the ultimate tensile stress and w c is the critical 
crack opening displacement, see Fig. l . In the elastic layer only bending stresses are assumed 
to be present and the stress is assumed to depend linear ly on the local elongation o f the layer. 
Assuming a linear softening relation, the constitutive relation of the layer becomes a bi-linear 
relation between the axial stress a and the elongation v, Fig. 2. On the ascending branch the 
elongation is linear elastic v=ve and no crack opening is present. The linearresponseis given 
by ve =ah/E where h is the thickness of the layer, and E is Young's modulus. On the 
descending branch, however, the total deformation v consists of two contributions v = ve + 
w, where w is the crack opening dispiacement The peak point corresponds to the deformation 
v = vu, and total fracture corresponds to v=vc. Therefore, the critical crack opening 



3 

dispiacement wc correspond to wc=vc. 
To have a meaningful model it is necessary that the elastic layer is stable in dispiacement 

controlled loading corresponding to 

Vu < Ve· ..••...•.•.••. • ••.•......••.......•••...••• • •• (2) 

In concrete fracture it is common to describe the materlal parameters and the beam size l in 
one parameter, the brittleness number, usually defined as a}l!GFE, Elfgren (1989). In the 
present case it is convenient to define the brittleness number as 

~ B= _a_ ......... . .. . ..................... . ..... . . .. . (3) 
2GFE 

whereby the stability condition (2) can be written 

B < l· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4) 

Thus, in this model the brittleness, B, number varles between zero corresponding to ideal 
duetile behaviour and one corresponding to ideal brittie behaviour. The thickness h of the 
elastic layer, is assumed to be proportional to the beam depth h=kb. 

Solutions for Load-Dispiacement Curve 

As a first approximation only rigid body dispiacement of the beam parts is assumed, Fig. 
2. 

The calculations are divided into three phases. Phase 1): Before the tensile strength is 
reached in the tensile side of the beam, phase In: Development of a fictitious crack in the 
layer, and phase III): Crack propagation. The stress distribution in each phase of the fracture 
process is illustrated in Fig. 4. 

In phase I a linear elastic constitutive relation is used for all parts of the layer ve = (Jh/E. 

By simple geometric considerations it is seen that ve = ep (b-2y) where ep is the rotation, b 

is the beam depth and y is the vertical coordinate, Fig. 2. The neutral axis is at themid-point 
of the beam corresponding to y = b/2. Instead of the bending moment M and the rotation ep 
it is convenient to introduce the dimensionless bending moment 

=M 6 
J.L --2 ...... . .. . ................................. . (5) 

aub t 

and the corresponding dimensionless dispiacement 

bE E e = ep- = cp-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6) 
hau kau 

giving the simple load-dispiacement relation 

J.L(e) = e· · · · · · · · · · · · · · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 

In the limit situation of phase I the stress for y=O equals the tensile strength, and the 
dimensionless bending moment equals one. Thus, in phase I the load-dispiacement curve is 
a straight line between origo and (e,,u) = (1,1), see Fig. 5. 

In phase II the size of the elastic tensile zone is determined by simple geometrical 
considerations. When the fictitious crack develops, it is necessary to determine the crack 
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opening dispiacement By assuming that the stress in the fictitious crack is equal to the stress 
in the elastic layer, the crack opening dispiacement becomes 

w = 12-~ (ar y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8) 

where af is the length of the fictitious crack. Thus, this cerrespond s to a linear crack profil e. 
If the linear softening relation is expressed as 

a = au(l-~) . .......................................... (9) 
wfc 

then the length of the fictitious crack can be determined by combining (9) with the 
equilibrium condition (the resultant axial force equal to zero). The result reduces to 

af(e) = r(e) = 1-B- ~(1-B)(~-B) · · · · · · · · · · · ... . ·. ·. ·..... (10) 

The equivalent moment is determined by integrating the axial stresses 

JL(6) = a[ 2 Y-~) 3 
-6a

1
(6) •4)-3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (Il) 

In order to stay in phase II the crack opening dispiacement at the bottom of the beam must 
be smaller than the critical crack opening w(O) < wc, which by use of (8), (lO) and (11) can 
be reformulated as 

J..L(e) > l or e < ec . .. ...... . ............ . ............. (12) 

where 

e = 1+/ii ... .......... . ..... ....... . ... .. ... .... . ... . (13) 
c 2B 

Thus, during the development of the fictitious crack the moment increases from l to its 
ultimate value and then decreases again. When the moment reaches the value l at the 
descending branch corresponding to e=ec the real crack starts to grow, see Fig. 5. The real 
crack will therefore only propagate on the descending branch of the load dispiacement curve 
as found by Harder (1991). 

In phase III the real crack starts to grow. The real crack length is termed a, see figure 4. 
The size of the elastic tensile zone is determined by the condition that w(a+aJ = w u. The 
size o f the fictitious crack, af' is obtained by the condition w(a) = w c giving 

af = 2~ 1-: ... ...... .. .. . . .................... . . ...... (14) 

The crack length a is determined through the equilibrium condition that the resultant axial 
force is equal to zero 

a = a = 1- e c . ................ .. ........... ........... (15) 
b e 

As in phase II the dimensionless bending moment is determined by integrating the axial 
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stresses. The result is 

!L(Ø) = (:c r ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16) 

When 8 c is suitably modified this result is general in the sen se that i t is valid for all softening 
relations. The results for themoment-rotation curve including only rigid bod y dispiacements 
of the beam parts are shown in Fig. 5. 

Elastic deformations in the beam parts outside the elastic layer are taken into account by 
subtracting the elastic deformation ~-t(8) from the elastic layer leaving only deformations due 
to crack growth and adding the elastic deformations of the whole beam using a solution for 
a Timoshenko beam, Timoshenko S. (1955). The Timoshenko dispiacements are 

6 = M/2 /3(Å)· ...................... .. . .... . . ...... . .. (17) 
e 12EI 

where El is the bending stiffness of the beam, f3 is a factor describing the influence of shear 
f3 =J +2.85!Å2 - 0.84!Å3, and Å is the slendemess ratio Å=bll. Introducing the elastic 
rotation similar to equation (6) 

0e bE 8 = 2---· ........... . . . 
e l ha u 

. . . . . . . . . . . . . . . (18) 

the relation (17) can be written in dimensionless form 

e e = YIL .•.•..•. • •. .......... .....• • •.• .. . . ........... (19) 

where 

y = /3(Å) ................. .. .... ...... .... ........ .... (20) 
3kÅ 

and the total deformation is then given by subtracting the elastic deformation in the layer and 
the adding the deformations of the Timishenko beam 

et = 8-~-t(8)+8e = 8 + (y-1)~-t(8) . ........... .. ........ .. ... .... (21) 

Renee, the complete moment rotation curve is fully determined by the brittleness number B, 

and the slendemess .Æ.. 

Model Validation 

In this section results from the analytical model are compared with results from a more 
detailed numerical model. The numerical model is based on the fictitious crack model and a 
linear softening relation. 

The numerical results are obtained by the direct substructure method (DSS), Dahl and 
Brincker (1989). In the direct substructure method four-node elements and an element mesh 
with 21 nodes in the midsection were used. 

Results for one beam geometry (slendemess ratio Å = 8) are compared at different 
brittleness levels in order to see how well the model predicts the load-dispiacement curve. It 
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is assumed that the size of the elastic layer is proportional to the beam depth h = kb where 
the factor k is assumed to be 0.5. A beam geometry similar totheRILEM beamand material 
parameters corresponding to a normal strength concrete is chosen as standard beam, see table 
l. With the chosen material parameters the maximum beam depth is according to (4) 888 mm 
corresponding to a scale factor of 8.88. 

Table l. Geometry and materiais parameters for standard beam. 

Beam Depth, b [mm] 100.0 

Beam Width, t [mm] 100.0 

Beam Length, L [mm] 800.0 

Notch depth, ai [mm] 0.0 

Specitic Fracture Energy, Gp [Nmm/mm2] 0.100 

Tensile Strength, a u [N/mm2] 3.0 

Modulus of Elasticity, E [N/mm2] 20,000 

Brittleness number, B 0.1125 

In Fig. 6. a comparison is shown between the analytical model and the numerical results 
for the standardbeamon 4 different size scales (0.25, 0.5, 1.0 and 3.0). lt is observed that 
the shape of the moment-rotation curves is almost identical and that the model predicts the 
ultimate load quite well. However, in the analytical model the snap-back effect is more 
pronounced which implies that the analytical model is a littie too brittle. 

In Fig. 7 results for the size of the fictitious crack are compared. It is seen that the the size 
of the fictitious crack calculated by the analytical model is slightly smaller than that calculated 
by the numerical method before the real crack starts to grow (the ascending branch of the 
curves) andlargerat the descending branch. The small kinks on the numerical curve aredue 
to the discretization made in the numerical model. With a larger number of nodes in the 
midsection these kinks would disappear. In Fig. 8 the real crack lengths for the two models 
are compared. It is seen that the real crack grows faster in the numerical model. 

The peak loads, llmax' predicted by the analytical and the numerical models are shown in 
log-log scale in figure 9. Since there is no stress singularity included in the two models there 
is no size effect beyond the critical size of the models. In the numerical model this limit will 
depend upon the material parameters and the number of nodes there are in the midsection 
(here the critical size scale is approximately 20). 

The model is extended to notehed beams as indicated in Fig. 11. The idea is to keep the 
width/depth ratio of the elastic layer by setting the width of the layer equal to k times the 
effective beam depth of the notehed beam section h = k(b-ai), k = 0.5 where ai is the depth 
of the notch. The modifications thus introduced imply that the brittleness number B for the 
layer is multiplied by a factor (1-a/b). The total beam depth is stillusedin the formulas (5), 
(6) and (17) whereas the effective beam depth b e = b-ai is used in all other formulas. Results 
for different notch depth's are shown in Fig. 12. 

Comparing numerical results with results for the analytical modelit can be concluded, that 
deviations are relatively small. The errors introduced by the elastic layer and the assumption 
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o f wedge-like crack-opening is typically smaller than errors due to the simple linear softening 
relation, Brincker and Dahl (1989). 

Size Effects Predicted by the Model 

When the size of the beam changes, the stress distribution in the partially fractured 
mid-section changes and so does the shape of the load-dispiacement curve. In the foliowing 
a few closed form solutionsaregiven for these size effects predicted by the analytical model. 

An important parameter describing the stress distribution in the partially fractured 
mid-section, is the maximum size a[,max of the fictitious crack. 

Since aa;æ > O in phase II and aarfæ < O in phase III, a1 is !argest at the end of phase 
II. Thus, the maximum size of the fictitious crack is found by combining eqs. (10) and (12) 

a = b(l- 'B)· .... .. ..................... ..... . ...... (22) 
'f,max VD 

Thus, for small duetile beams the relative size of the fictitious crack is large and for large 
brittie beams the relative size of the fictitious crack approaches zero. 

The way the load-dispiacement curve changes with size is more difficult to describe. One 
important parameter of the load-dispiacement curve is the peak load, Jl.max· The peak load 
might be obtained from the condition aJ.L/æt =0. However, no simple expressions have been 
derived for this case. 

Anether key-parameter for the load-dispiacement curve is the maximum slope S on the 
descending branch. The slope is found by taking the derivative of eq. (21) 

æ aJ.L aJ.L l = ---+(y-1)-... 
aJ.L æt æt 

.. .. (23) 

from which 

:t = (y -l + : ) -l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (24) 

The steepest point on the descending branch of the load-dispiacement curve is at the transition 
from phase II tophase III, i.e. for 8 = 8cr Thus, the minimum value of æ/aJ.L is found from 
eq. (16) and (13) which together with eq. (24) yield the results 

48 s=------........ . ....................... . 
1 +VB -4(y-l)B 

. . . . . (25) 

The quantity S is a kind of brittleness number for the structure. The larger maximum slope 
on the descending branch, the more brittie the behaviour of the beam will be. The brittleness 
number varies between zero corresponding to ideal duetile behavior and infmity correspond
ing to the case where the maximum slope becomes infinite. If the point of infinity slope is 
exceeded, snap-back occurs, and the brittleness number S becomes meaningless. Thus, the 
brittleness number S only describes the brittleness of structures without snap-back on the 
load-dispiacement curve. 

The maximum slope on the descending branch becomes infinite when the denaminator in 
eq. (25) vanishes, i.e. when 
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l +.fii -4(y -l)B = O· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (26) 

The solution to this equation defines a critical brittleness number for the elastic layer 

Bcr • [ H~~~~\rl) r ............................. ..... (27) 

If the brittleness number B of the layer is larger than the critical brittleness number Berthen 
there is snap-back on the load-dispiacement curve. Otherwise there is no snap-back. For the 
standard beam the critical brittleness number is found as Bcr=0.069 corresponding to a scale 
factor of 0.615. The case is illustrated in Fig. 10 where the results for the analytical model 
a re shown for B = B er· 

Condusions 

A simple model for calculation of load-dispiacement curves of notehed and un-notched 
concrete beams in three point bending is presented. The results from the analytical model are 
compared to results from a numerical modelbasedon the direct substructure method. Using 
the simple relation h = kb where b is the depth of the notehed or un-notched mid-section, 
the analytical model appears to give fine results. 

The analytical model is deseribed by a set o f simple equations and, therefore, the calculation 
time is considerably less than the calculation time using a numerical model. Therefore, if a 
linear softening relation is acceptable, the model is well suited for estimation of material 
parameters from test results by regression. 

Since themodel takes both elastic and fracture energies into consideration, themodel isable 
to predict both size effects and snap-back. However, the model has a limit depending o n the 
brittleness modulus and is therefore not applicable to large brittie beams. 
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Appendix ll. Notation 

The following symbols are used in this paper: 

a 

a~ 

b 

E 

/(·) 

G p 

h 

I 

k 

l 

M 

w 
wc 
v 

ve 
v u 
t 

a 

= 
= 
= 

= 
= 
= 
= 
= 

= 
= 

= 

= 
= 

= 
= 

= 
= 

crack length; 
fictitious crack length; 
brittleness modulus; 
beam depth; 
modulus of elasticity; 
material function; 
specific fracture energy; 
thickness of elastic layer; 
moment of inertia; 
elasticity coefficient which determines the thickness of the elastic Iayer; 
beam length; 
cross-sectional moment; 
crack opening displacement; 
critical crack opening displacement; 
elongation of layer; 
critical elongation of layer; 
elongation of layer corresponding to the tensile strength; 
beam thickness; 
normalized crack length; 
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af 
{3 

= 

y 
q> = 
6 = 
e c = 
). = 
JJ. = 
a = 

au 

normalized fictitious crack length; 
shear coefficient; 
flexibility coefficient; 
rotation of beam; 
normalized rotation; 
normalized rotation that separates phase II and III; 
slendemess of the beam; 
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Fig. l a) Concrete rod subjected to uniaxial dispiacement controlled loadin g. b) In the 
fictitious crack model the dispiacement is divided into a stress-strain relation and a stress 
crack opening dispiacement relation. 
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Fig. 2 a) The considered beam where the hatched areais the elastic layer. b) Deformed beam 
where only rigid body dispiacements are considered. 
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Fig. 3. Constitutive relation for the midsection of the layer a) When the layer is stable, 
B< l .. b) When the layer is unstable B=l. 
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Fig. 4. The stress distributions of each phase a) Phase I where the stress distribution is 
elastic. b) Phase II where the fictitious crack is developed. c) Phase III where the real crack 
starts to gro w. d) The load-dispiacement curve. 
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Fig. 5 The moment rotation curve of the beam when only rigid body dispiacements are 
considered . 
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Fig. 6. Comparison between the analytical model and DSS using the standard beam at 4 

different size scales. 
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Fig. 12. Moment dispiacement curves for notehed beams with three different notch depths. 
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