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Compressive arch action (CAA) is a favourable structural mechanism to mitigate progressive collapse of reinforced

concrete (RC) frames. To quickly and accurately predict the CAA capacity of RC sub-assemblages under a column-

missing scenario, an engineering analytical model is proposed. The model considers all the design parameters in

beams and the imperfect boundary conditions of sub-assemblages, including partial axial and rotational restraints,

and connection gaps at beam ends if any. The proposed model is then validated with experimental results and

extended to calculate progressive collapse resistance due to CAA with dynamic increase factors. Finally, the model is

employed in parametric studies. It is found that CAA capacity increases with restraint stiffness only in the regime of

weak restraints; in the regime of strong restraints, CAA capacity is not sensitive to variation in restraint stiffness.

Furthermore, CAA enhances structural resistance more evidently for sub-assemblages with small span-to-depth ratios

and low mechanical reinforcement ratios, and RC slabs help to increase the CAA capacities of RC frames.

Notation
A cross-sectional area of beam sections

As, A9s area of tensile and compression reinforcement

as1, as distance from the utmost tension fibre of concrete to

the centroid of tension reinforcement at the beam

ends and the middle joint interfaces respectively

a9s1, a9s distance from the extreme compression fibre of

concrete to the centroid of compression

reinforcement at the beam ends and at the joint

interfaces respectively

b width of beam section

bj middle joint width

C9c, Cc concrete compressive forces acting at the beam ends

and the joint interfaces respectively

C9s, Cs steel compressive forces acting at the beam ends and

the joint interfaces respectively

c, c1 neutral-axis depth at joint interfaces and beam ends

respectively

Ec elastic modulus of concrete

Es elastic modulus of steel reinforcement

f c9 compressive strength of concrete

f y yield strength of reinforcement

h depth of beam section

Ka, Kr stiffness of axial and rotational restraints

respectively

keq equivalent axial restraint stiffness at beam ends

k1, k2 actual axial restraint stiffness at beam ends

l total net span length of the two-bay beam

ln net span length of a one-bay beam

l1 distance from the top fibre at the beam end to the

original support

M bending moment acting at a beam section

Mn, Mn1 nominal moments of resistance of the joint interface

and the beam end respectively

Mu, Mu1 bending moments acting at the joint interface and

the beam end respectively

N axial force acting at a beam section

Nmax maximum axial compression used for comparison

reference

Nu, Nu1 axial force acting at the joint interfaces and the

beam ends respectively

P vertical resistance of sub-assemblages (or beams)

subjected to a concentrated load

Pa compressive arch action capacity of sub-assemblages

Pf flexural capacity of sub-assemblages

Ptot vertical resistance of sub-assemblages (or beams)

subjected to a uniformly distributed load

q uniformly distributed load

T 9, T steel tensile forces acting at beam ends and joint

interfaces respectively

t lateral deformation of the axial restraint

t0 gap between axial restraints and beam ends

V shear force acting at the middle joint interface

� ratio of ln to l
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�1 ratio of the equivalent rectangular stress block depth

to the neutral-axis depth

ªa, ªr relative axial and rotational restraint stiffness at

beam ends respectively

˜ displacement of the equivalent axial restraint at

beam ends

˜1, ˜2 displacements of actual axial restraint at beam ends

� beam deflection or displacement at the middle joint

� uniform axial strain throughout the two-bay beam

�cu ultimate compressive strain of concrete, assumed to

be 0.003

�s, �9s strain of tension and compression reinforcement

�y yield strain of steel reinforcement

Ł rotation of the lateral support at the beam end

r flexural reinforcement ratio

� beam end rotation with respect to the rotated support

ø mechanical reinforcement ratio

Introduction
The alternate load path (ALP) method is one of the direct design

approaches to evaluate structural resistance against progressive

collapse of buildings by introducing column-removal scenarios

(US DoD, 2010; GSA, 2003). Accordingly, several research

groups (FarhangVesali et al., 2013; Sasani and Kropelnicki, 2008;

Su et al., 2009; Yu and Tan, 2013a, 2013b) have experimentally

studied the structural behaviour of reinforced concrete (RC) sub-

assemblages under middle column removal scenarios. The test

results (Su et al., 2009; Yu and Tan, 2013a, 2013b) indicate that

compressive arch action (CAA) can substantially increase the

structural resistance of RC frames beyond flexural capacity,

which ignores the presence of beam axial compression. Moreover,

sub-assemblage deflections corresponding to CAA capacities of,

say, around 0.16–0.34 beam depth in the tests of Su et al. and

around 0.18–0.46 beam depth in the work of Yu and Tan were

much smaller than those for catenary action capacities (typically

greater than one beam depth). CAA is thus a favourable ALP as

it can be mobilised at much smaller deflections.

In practice, ALP analysis is conducted to determine whether

progressive collapse can be prevented within specified deforma-

tion limits such as the acceptance criteria in UFC 4-023-03 (US

DoD, 2010). That is, large structural resistance has to be achieved

within limited deformation. Structural performance at the CAA

stage fits into this framework. Currently, CAA can be numerically

analysed with relatively advanced techniques, such as by introdu-

cing fibre plastic hinges at critical sections (Sasani et al., 2011)

or by using fibre-based beam elements for all beams (Yu and Tan,

2013a). However, both fibre-based hinges and beam elements

require detailed characterisations of material properties of con-

crete and reinforcement, which have to be assumed at the design

stage. Also, the estimation of plastic hinge length in using fibre-

based hinges may introduce additional inaccuracy in predicting

structural deformation. If CAA capacity is of primary interest,

engineering analytical approaches can be used instead, and these

can be programmed into Excel spreadsheets. The model of Park

and Gamble (2000) is a good method to estimate the compressive

membrane action (CMA) capacity of lateral-edge-restrained RC

slabs. Due to the similarity of CMA and CAA, the Park and

Gamble model can also be used for calculating CAA capacities.

However, the model needs to assume the stress state of compres-

sion reinforcement at the beam critical sections as either attaining

yield strength or having zero stress, which violates the test

findings that compression reinforcement at the middle joint

regions could either be in yield or in an elastic state (Yu and Tan,

2010). In addition, the Park and Gamble model only considers

the effect of partial axial restraints at beam ends without consid-

ering partial rotational restraints and connection gaps. The latter,

in particular, has significant impact on the development of CAA.

To predict the CAA capacity of RC beams more accurately and

efficiently, a new engineering analytical model that accounts for

the actual stress state of compression reinforcement and all

imperfect boundary conditions is proposed. The model simply

requires input data of geometrical properties, the design strength of

materials and boundary conditions. The proposed model is vali-

dated with available test results (FarhangVesali et al., 2013; Sasani

and Kropelnicki, 2008; Su et al., 2009; Yu and Tan, 2013a, 2013b).

By considering dynamic effects at the CAA stage, CAA capacity

can be converted to progressive collapse resistance. Finally, the

proposed model is employed to investigate the effects of imperfect

boundary conditions, span-to-depth ratios and mechanical rein-

forcement ratios of beams and RC slabs on CAA capacity.

Development of the analytical model

Force equilibrium

Figure 1(a) shows a beam–column sub-assemblage subjected to a

concentrated load with both ends fixed. Due to symmetry, the free

body diagrams of a one-bay beam and the middle joint at the

CAA stage are shown in Figures 1(b) and 1(c) respectively.

Due to axial restraints at both ends, considerable axial compres-

sion is mobilised throughout the beam. At the CAA stage, the

rotations of beam sections are small so that there is no appreci-

able discrepancy between horizontal reaction forces and axial

forces in the beam (Yu and Tan, 2013b). Therefore, the axial

forces acting at the beam ends (Nu1) and the joint interfaces (Nu)

are equal

Nu ¼ Nu1 ¼ N1:

Provided that the resistance of the sub-assemblage at shear failure

is greater than that at flexural failure, the vertical resistance P is

determined based on the moment equilibrium in the one-bay

beam as shown in Figure 1(b) and the force equilibrium in the

vertical direction at the middle joint as shown in Figure 1(c)

P ¼ 2V ¼ 2(Mu1 þMu � N�� ql2
n=2)=ln2:
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where V is the shear force acting at the middle joint interfaces,

Mu1 and Mu are the ultimate bending moments acting at the

beam ends and the joint interfaces respectively, � is the middle

joint displacement, q is the self-weight and ln is the net span

length of a one-bay beam.

If a sub-assemblage is subjected to a uniformly distributed load

q, the structural resistance can be determined as

Ptot ¼ q(2ln) ¼ 4(Mu1 þMu � N�)=ln3:

To determine the P–� relationship, it is necessary to obtain M–�
and N–� relationships according to Equation 2 or Equation 3.

Figure 2 shows the experimental and theoretical M–N interaction

diagrams at the middle joint interfaces of a typical sub-assemblage

specimen S5 (Yu and Tan, 2013b). Negative axial force denotes

compression. The theoretical M–N diagrams are computed based

on the assumptions that a plane section remains plane and the

ultimate strain in the extreme compression fibre of concrete is

0.003 (MacGregor and Wight, 2005), and no strength reduction

factor is considered. Curve BD in Figure 2 corresponds to the state

that the tension steel has already reached the yield strength when

the extreme concrete fibre reaches the ultimate compressive strain

of 0.003.

With increasing sub-assemblage deflection, the state of M–N

interaction at the joint interface JI–AF (JI denotes joint interface

BE–RW

Crushing zone

BE–RW

Cracks

JI–RW

JI–RW

P

JI–AF

JI–AF Joint interface
Beam end

BE–AF

BE–AF

(a)

V1

Nu1

Mu1
ln

N N N� �u u1

δ

δ

q

Mu

Nu

V

(b)

P

Mu

V
N N

V

Mu

(c)

Figure 1. Free body diagrams of RC sub-assemblage at CAA:

(a) a beam–column sub-assemblage subjected to a concentrated

load; (b) one-bay beam; (c) middle joint
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Figure 2. M–N interaction diagram of critical beam sections
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and AF denotes the beam end connected to a steel frame) moves

from origin O to point A, as shown in Figure 2. Thereafter, the

point traverses along the path AC due to the presence of axial

compression increasing the ultimate moment of resistance, and

then reverses along the path CD after crushing of concrete occurs.

The experimental M–N path ACD agrees well with the curve BD

of the theoretical M–N diagram. At point A, the ultimate moment

of resistance M at section JI–AF is attained, but axial compres-

sion has already been mobilised, resulting in an enhanced

moment compared to pure flexure at point D. Similar observa-

tions can be obtained for the other critical sections indicated in

Figure 1(a).

The findings in Figure 2 suggest that, based on theoretical M–N

diagrams, both Mu and Mu1 can be estimated once N is known

and, furthermore, P can be determined. Then the kernel of the

model is to obtain the N–� relationship. In the following

subsections, the N–� relationship will be constructed through

compatibility conditions and axial force equilibrium of sub-

assemblages based on the following assumptions.

Assumptions of the proposed model

The proposed model applies only after plastic hinges have

occurred at several critical sections, as shown in Figure 1(a). To

compute the cross-sectional forces M and N, the conventional

assumptions used in ACI 318-05 (ACI, 2005) are adopted.

Namely

(a) a plane section remains plane

(b) at each critical section, compression concrete has attained its

strength with an idealised equivalent rectangular stress block

and an ultimate strain of 0.003 in the extreme compression

fibre of concrete; tension reinforcement has yielded and

concrete tensile strength is ignored.

It is further assumed that

(c) the restraints from surrounding structures are converted to

equivalent axial and rotational restraints with linear elastic

stiffness, as shown in Figure 3.

The spread of failure from the beam above a removed column to

surrounding structures is beyond the scope of this paper. More-

over, based on experimental observations (FarhangVesali et al.,

2013; Sasani and Kropelnicki, 2008; Su et al., 2009; Yu and Tan,

2013a, 2013b), plastic hinges occur at the beam ends and at the

middle joint interfaces, symmetrically located at both sides of the

middle joint, as indicated in Figure 3, and the remaining beam

segments stay elastic.

The test results (Yu and Tan, 2013b) indicate that axial compres-

sion throughout the entire two-bay beam is equal. Due to constant

beam cross-sections, axial strains along the elastic beam segments

are equal as well. Compared with elastic segments, the plastic

hinge lengths and the middle joint width are much smaller, so it

is assumed that

(d ) axial shortening of beams is only induced by elastic axial

compressive strains, which are uniform throughout the whole

two-bay beam.

According to test results (Yu and Tan, 2010), the strain of

compression reinforcement at the CAA stage initially increased

up to yielding and subsequently decreased. Thus, it is assumed

that

(e) the material property of compressive steel reinforcement is

elastic–perfectly-plastic, and the unloading slope after

yielding equals the initial elastic modulus.

Before a middle column is removed, the bottom reinforcement in

the middle joint regions is in elastic compression at service loads.

After the column has been removed, the bottom reinforcement is

unloaded in compression and reloaded in tension up to yielding.

At CAA stage, with increasing middle joint displacement, the

tensile strains of the bottom reinforcement keep increasing at the

yield plateau with stress equal to the yield strength.

Compatibility conditions

After the ultimate moments of resistance have been obtained at

the beam ends and at the joint interfaces, due to symmetry, the

deformation and the rotation of one-half of the sub-assemblage

are exaggeratedly drawn in Figure 4. Due to mobilisation of axial

compression throughout the beam, the deformed beam causes

horizontal expansion by amounts (t þ t0) and 0:5�bj at the lateral

support and the middle joint interface respectively. The term t is

the small lateral deformation of the axial restraint, equal to

t ¼ N=Ka, in which N is the induced beam axial compression and

Ka Kr

Plastic hinge

P

Kr Ka

Figure 3. Locations of plastic hinges and equivalent boundary

conditions for a two-bay beam
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Ka is the axial restraint stiffness. The presence of t0 (the gap

between the support and the beam end) was found in the

laboratory tests and is considered in this paper. The term 0:5�bj

represents small axial deformation of the middle joint towards its

centre; � is the uniform axial strain throughout the two-bay beam,

equal to � ¼ N=EcA according to assumption (d ), bj is the middle

joint width, A is the cross-sectional area of beam sections and Ec

is the elastic modulus of concrete.

On the other hand, as shown in Figure 4, a large crack occurs at

the beam end with a distance l1 from the top fibre at the beam

end to the original support, and crushing of concrete with a

length of c tan(Łþ �) happens at the middle joint interface, in

which Ł is the rotation of the lateral support at the beam end and

� is the beam end rotation with respect to the rotated support.

Axial compression in the beam results in an elastic contraction of

�ln along the axis of the deformed beam according to assumption

(d ), in which ln is the net span length of the single-bay beam. As

shown in Figure 4, the projection of the displaced beam segment

onto the original beam configuration yields the compatibility

equation

[ln þ 0:5�bj þ (t þ t0)] sec(�þ Ł)

¼ l1 þ (1� �)ln � c tan(�þ Ł)4a:

The total net span length of the two-bay beam is l ¼ 2ln þ bj: If

the ratio ln=l is denoted as �, the joint width bj can be expressed

as (1� 2�)l and Equation 4a can be converted into

[�l þ 0:5�(1� 2�)l þ (t þ t0)] sec(�þ Ł)

¼ l1 þ (1� �)�l � c tan(�þ Ł)4b:

According to the geometric relationships at the beam end

restrained by the external support, as illustrated in the inset in

Figure 4, the distance l1 from the top fibre at the beam end to the

original support is given by

l1 ¼ h=2[tan(�þ Ł)]þ (h=2� c1) tan�5:

where c1 is the neutral-axis depth at the beam end.

Substituting Equation 5 into Equation 4b yields the expression

for the neutral-axis depth c at the middle joint interface

c ¼ h

2
� 0:5�l þ (t þ t0)

sin(�þ Ł)

� (1� �)�l
2 sin2[(�þ Ł)=2]

sin(�þ Ł)

þ h

2
� c1

� �
tan�

tan(�þ Ł)6:

The detailed derivation of Equation 6 from Equations 4 and 5 is

shown in Appendix 1.

l1

T�

Original
support

θ

φ

C �c
C �s c 1

Rotated support
(beam end)

h/
2

Top steel

Bottom steel

( /2 )tanh c� φ

h/2[tan( )]θ φ�

θ
φ

h/2h c/2 � 1

φ

l1

θ φ�

θ φ�

Joint
interface

T

δ

Cs

Cc

c tan(
)

θ
φ�

(1
)� ε ln

bj /2l b t tn j 00·5 ( )� � �ε

c

Figure 4. Compatibility conditions of beam–column

sub-assemblage
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Since the partial rotational restraint at the beam ends is assumed

as a linear elastic spring with a stiffness Kr, when the bending

moment Mu1 acts at the beam end, the corresponding rotation of

the lateral support Ł can be obtained as

Ł ¼ Mu1=K r7:

Substituting the expressions for beam axial strain �, the axial

restraint movement t and Equation 7 into Equation 6 gives

c ¼ h

2
� �

2
� �l2

2�

1

EcA
þ 2

lKa

� �
N

� �lt0

�
þ h

2
� c1

� �
1�Mu1�l

K r�

� �
8:

The derivation of Equation 8 is detailed in Appendix 1.

Equation 8 suggests that c can be expressed as a function of c1

and � as both N and Mu1 can also be determined by c1, which

will be explained later. Thus, for a given vertical displacement �
of the middle joint, c becomes a function of a single variable c1:

To solve the two unknowns c and c1, one more equation

correlating them should be provided.

Determination of beam cross-sectional forces

Based on assumptions (a) and (b), the stress and strain distribu-

tions as well as internal force components at a beam section are

shown in Figure 5. Both M and N are calculated with respect to

the middle-depth axis of a beam section.

Figure 5(d) shows that the beam axial force is contributed by

concrete and reinforcement. Therefore

Nu1 ¼ C9c þ C9s � T 99:

Nu ¼ Cc þ Cs � T10:

where C9c and Cc are the concrete compressive forces, C9s and Cs

the steel compressive forces, and T 9 and T the steel tensile forces

acting on the beam ends and the middle joint interfaces respec-

tively.

Based on Figure 5(c), C9c can be calculated as

C9c ¼ 0:85 f c9b�1c111:

where f c9 is the compressive strength of concrete and �1 is the

ratio of the equivalent rectangular stress block depth to the

neutral-axis depth, as defined in ACI 318-05 (ACI, 2005).

According to Figure 5(b), the strains of compression and tension

reinforcement at the beam ends are given by

�9s ¼ (1� a9s1=c1)�cu12:

�s ¼ [(h� as1)=c1 � 1]�cu13:

where a9s1 is the distance from the extreme compression fibre of

concrete to the centroid of compression reinforcement, as1 is the

distance from the utmost tension fibre of concrete to the centroid

of tension reinforcement at the beam end and �cu is a specified

ultimate compressive strain of concrete.

h

b

as1

Nu1

Mu1

a�s1

(a)

c1

εs

Mid-depth axis

(b)

εcu

ε �s
�1 1c f �s

0·85f �c

h/2

T �

C �c
C �s

(c) (d)

fy

Figure 5. Strain and stress distribution at a beam section:

(a) section and forces; (b) strain distribution; (c) stress

distribution; (d) internal forces
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After obtaining �9s via Equation 12, except for the first load step,

the strain at each load step should be compared with the one at

the last step to check whether compression reinforcement is

unloaded. Accordingly, the steel compressive force is determined

according to a perfectly-elastic–plastic constitutive model

C9s ¼
�9sEsA9 if �9s,�y

f yA9s if �9s > �y and �9 > �9sp

[ f y�Es(�9sp� �9s)]As if �9s > �y and �9 , �9sp

8>><
>>:

14:

where �y is the yield strain, �9sp is the strain at the last load step

and A9s is the bar area.

Since the tension reinforcement at the beam end is yielded and

the tensile strain keeps increasing at the CAA stage, the

corresponding tension is calculated as

T 0 ¼ f yAs15:

Due to the reinforcement yielded in tension, �s is greater than �y:

According to Equation 13, c1 should be less than

cyt1 ¼ (h� as1)=(1þ �y=�cu): Likewise, the compressive force of

concrete (Cc), the compressive (Cs) and the tensile forces (T) of

reinforcement at the joint interfaces can be determined from

Equations 11 to 15, but as functions of the neutral-axis depth c.

Finally, according to Figure 5(d), the bending moments Mu1 and

Mu at the beam ends and the joint interfaces can be determined

with respect to mid-depth axis as

Mu1 ¼ C9c(h=2� �1c1=2)þ C9s(h=2� a9s1)

þ T 9(h=2� as1)16:

Mu ¼ Cc(h=2� �1c=2)þCs(h=2� a9s)þ T (h=2� as)17:

where a9s and as are the counterparts at the middle joint interface

to a9s1 and as1 respectively, as shown in Figure 5(a).

In summary, Equations 9 to 17 show that Nu and Nu1 are functions

of c and c1 respectively, and the equilibrium of axial force in

Equation 1 correlates c with c1: In other words, c is a function of

c1: Note that if the effects of slabs are considered, beam sections

will become T- or L-shaped, and then the determination of

internal forces should be slightly modified only when the flanges

are under compression.

Implementation of the model

Axial force equilibrium gives one equation in terms of the two

unknowns c and c1, independent of �, and the compatibility

condition produces the second equation (i.e. Equation 8) in terms

of c, c1 and �. Consequently, for a given �, solving these two

non-linear equations simultaneously can determine the values of

c and c1: Subsequently, by substituting c and c1 into Equations 9

to 17, one can obtain the axial force N and bending moments Mu1

and Mu and, furthermore, determine the vertical resistance P

according to Equation 2 or 3. It is tedious to express these two

non-linear equations explicitly. However, by following the proce-

dure shown in Figure 6 and gradually increasing �, CAA capacity

and the maximum beam compression force can be obtained.

Implementation of this proposed model can be achieved using

either the Matlab program or Excel spreadsheets. In the proce-

dure, two points should be noted.

j Determine the upper bound value (denoted c1-upp) of the

neutral-axis depth c1 at the beam end to ensure that the

neutral-axis depth c at the middle joint interface is greater

than zero via Equation 8 and tension reinforcement is at yield

stage.

j Solve c1 in an interval between 0.01cyt1 and c1-upp: If there is

no solution in this interval, calculation should be stopped and

Pmax and Nmax can be selected from the previous load steps.

Equivalent stiffness of restraints

When restraints from the surrounding structures to a beam–

column sub-assemblage are converted to equivalent restraints as

shown in Figure 3, it is very likely that the restraint stiffnesses at

the two ends of a sub-assemblage are unequal. For example, the

axial restraint stiffnesses are k1 and k2 at each end of the sub-

assemblage, and the corresponding displacements are ˜1 and ˜2

respectively under a given load. The equivalent symmetrical axial

restraints must satisfy force equilibrium and deformation compat-

ibility caused by the actual axial restraints at both ends. There-

fore

k1˜1 ¼ k2˜2 ¼ keq˜18:

2˜ ¼ ˜1 þ ˜219:

Combining Equation 18 with Equation 19 gives the equivalent

axial stiffness keq, which satisfies assumption (c)

keq ¼ 2k1k2=(k1 þ k2)20:

where ˜ is the displacement of equivalent axial restraints.

If a sub-assemblage is simply supported at both ends, either k1

or k2 equals zero. As a result, keq is zero according to Equation

20. As shown by Equation 8, the value of neutral-axis depth c at

the joint interfaces will tend to negative infinity; that is, no
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internal force
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compression zone at the middle joint interfaces. Therefore, CAA

cannot be mobilised.

The equivalent rotational stiffness is simply selected as the

smaller stiffness of both ends because the weaker rotational

restraint significantly reduces compression zone at the beam ends.

Validation of the proposed model
A comparison of experimental and analytical results is given in

Table 1. Similar to the test results, the proposed model does not

consider the effect of the self-weight of specimens. The geo-

metric and material properties of all the specimens and associated

boundary conditions are also included in Table 1. More detailed

information about the tests can be found in the corresponding

papers (FarhangVesali et al., 2013; Sasani and Kropelnicki, 2008;

Su et al., 2009; Yu and Tan, 2013a, 2013b). Since the restraint

stiffnesses and the maximum axial force in the test of Sasani and

Kropelnicki (2008) were not provided, large restraint stiffnesses

are assumed in the analysis and the corresponding maximum

axial force is not used for comparison. Similarly, a large axial

restraint stiffness of 1.0 3 106 kN/m was assumed in the tests

reported by FarhangVesali et al. (2013) and the corresponding

predicted axial forces were not compared. The comparisons in

Table 1 indicate that the proposed analytical model is able to

predict the capacity of CAA and the maximum beam axial

compression with satisfactory accuracy and reliability. For pre-

dicting CAA capacity, the mean value is 0.965 and the coefficient

of variation (CoV) is less than 10%.

Figure 7 shows that the proposed model can also predict the

reasonable trend of load–deflection (P–�) and beam axial force–

deflection (N–�) relationships of the sub-assemblages, from the

deflection of one-tenth to one beam depth. Compared with the

experimental results, the proposed model tends to predict smaller

displacements corresponding to the CAA capacity; this is due to

ignoring the flexural deformation of elastic beam segments and

the possible fixed-end rotation due to bar slips. In addition, the

model can only be applied with sufficient vertical deflection when

plastic hinges have developed at all critical sections. However,

when a sub-assemblage deflects beyond one beam depth, it is

likely that catenary action takes over CAA to sustain applied

loads. Therefore, the P–� and N–� relationships are discussed

within the deflection range of one-tenth to one beam depth.

Dynamic increase factors at CAA stage
To assess progressive collapse resistance, dynamic effects must

be considered. According to the non-linear static analysis with

the ALP method in UFC 4-023-03 (US DoD, 2010), dynamic

effects can be incorporated by using dynamic increase factors

(DIFs). Progressive collapse resistance is equal to static resistance

divided by a corresponding DIF. The DIF model in UFC 4-023-

03 (Figure 8) is derived from curve fitting on elastic–plastic

hardening structural responses. The DIF decreases with increas-

ing the ratio of plastic to yield rotations (or ductility). Because

the structural behaviour of an RC sub-assemblage from the elastic

state to the CAA capacity presents an elastic–plastic hardening

performance, the DIF model shown in Figure 8 can be used to

estimate DIFs at CAA capacities.

Since the deflections corresponding to CAA capacities predicted

by the proposed model are always smaller than those found in the

tests, the experimental results were used to determine DIFs at

CAA capacities, as shown in Table 2. More information about

each specimen is given in Table 1. The total rotation at CAA

capacity is determined by chord rotation, as recommended in

UFC 4-023-03. The approach to calculate the yield rotation is

illustrated in Appendix 2. The difference between the chord

rotation and the yield rotation is the plastic rotation. Table 2

shows that the DIFs are less than 1.15 at CAA capacities for all

sub-assemblages. Moreover, Figure 8 shows that the decrement of

DIF is not significant when the ratio Łpra/Ły . 4. For conserva-

tism, the value of 1.15 is suggested as the DIF for analysis on

CAA. That is, progressive collapse resistance is around 87% of

the corresponding calculated CAA capacity.

Parametric studies on CAA capacities
Under a middle column removal scenario, CAA is mobilised

because adequate horizontal restraints are provided to allow the

development of axial force. However, under a penultimate or a

corner column removal scenario, the main structural mechanism

to redistribute gravity loads is essentially a flexural mechanism of

beams without axial force (Sasani and Sagiroglu, 2008). There-

fore, the development of CAA is significantly affected by

boundary conditions, which can be converted to axial, rotational

and vertical supports at beam ends, as illustrated in Figure 3.

Moreover, in practice, the geometric and material properties of

beams vary over a large range. All these parameters may affect

the development of CAA. Therefore, the proposed analytical

model was used to investigate the effects of imperfect boundary

conditions, reinforcement ratios of beams, beam span-to-depth

ratios and RC slabs on the development of CAA.

Effect of axial connection gaps

As with the laboratory testing, it was found that connection gaps

existed between boundary restraints and specimens. Because hole

tolerance is required to facilitate installing and dismantling a

specimen before and after testing, connection gaps are inevitable.

However, in cast-in-situ RC structures, there is no gap in

continuous beams. Therefore, specimen S4, with parameters

shown in Table 1, was used to investigate the effect of axial

connection gaps on CAA capacities.

Figure 9 shows that the overall trends of the load–deflection

relationships are similar under different connection gaps. CAA

resistance is normalised by CAA capacity P0 at zero gap (i.e.

t0 ¼ 0). Compared with a total beam span length of 5750 mm, a

gap of 0.8 mm is negligible. However, when the gap increases by

0.8 mm, the CAA capacity Pa of the sub-assemblage decreases by

around 8%, indicating that CAA capacity is very sensitive to

axial connection gaps. Therefore, it is necessary to measure the
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Testa Boundary conditions Beam sections l/hb Longitudinal

reinforcement at

middle jointsc

Material properties Capacity of CAA: kN Maximum axial

compression: kN

Axial

stiffness:

kN/m

Axial

gap:

mm

Rotational

stiffness:

kNm/rad

Width

b: mm

Depth

h: mm

Top Bottom

f c9:

MPa

fy: MPa Test

Pu

Analytical

Pa

Pa/Pu

Test

Nu

Analytical

Na

Na/Nu

S1 1.06 3 105 0.5 1.00 3 104 150 250 23.0 2T10 + 1T13 2T10 31.24 511 41.64 43.57 1.046 177.9 156.70 0.881

S2 1.06 3 105 1.2 1.00 3 104 150 250 23.0 3T10 2T10 31.24 511 38.38 38.39 1.000 155.9 141.86 0.910

S3 4.29 3 105 1.0 3.00 3 104 150 250 23.0 3T13 2T10 38.15 511 (T10), 494 (T13) 54.47 56.15 1.031 221.0 227.85 1.031

S4 4.29 3 105 0.8 3.00 3 104 150 250 23.0 3T13 2T13 38.15 494 63.22 63.90 1.011 212.7 231.50 1.088

S5 4.29 3 105 0.8 3.00 3 104 150 250 23.0 3T13 3T13 38.15 494 70.33 72.16 1.026 238.4 224.03 0.940

S6 4.29 3 105 0.8 3.00 3 104 150 250 23.0 3T16 2T13 38.15 494 (T13), 513 (T16) 70.33 74.08 1.053 218.1 196.49 0.901

S7 4.29 3 105 1.2 3.00 3 104 150 250 18.2 3T13 2T13 38.15 494 82.82 83.15 1.004 233.1 244.61 1.049

S8 4.29 3 105 0.8 3.00 3 104 150 250 13.4 3T13 2T13 38.15 494 121.34 126.31 1.041 272.5 300.15 1.101

A1 1.00 3 106 0.0 1.75 3 104 150 300 9.0 2˘12 2˘12 24.55 350 168.00 152.53 0.908 388.0 338.71 0.873

A2 1.00 3 106 0.0 1.75 3 104 150 300 9.0 3˘12 3˘12 26.83 350 221.00 190.04 0.860 324.0 367.68 1.135

A3 1.00 3 106 0.0 1.75 3 104 150 300 9.0 3˘14 3˘14 29.64 340 246.00 228.34 0.928 305.0 403.08 1.322

A4 1.00 3 106 0.0 1.75 3 104 150 300 9.0 2˘12 1˘14 21.89 350 (˘12), 340 (˘14) 147.00 133.09 0.905 344.0 305.08 0.887

A5 1.00 3 106 0.0 1.75 3 104 150 300 9.0 3˘12 2˘12 25.16 350 198.00 169.14 0.854 393.0 348.02 0.886

A6 1.00 3 106 0.0 1.75 3 104 150 300 9.0 3˘14 2˘14 27.21 340 226.00 200.00 0.885 191.0d 380.37 —

B1 1.00 3 106 0.0 1.75 3 104 150 300 14.0 3˘14 3˘14 17.63 340 125.00 111.93 0.895 225.0 230.45 1.024

B2 1.00 3 106 0.0 1.75 3 104 150 300 19.0 3˘14 3˘14 18.32 340 82.90 79.71 0.962 210.0 222.67 1.060

B3 1.00 3 106 0.0 1.75 3 104 150 300 19.0 3˘14 2˘14 20.06 340 74.70 72.57 0.971 210.0 244.85 1.166

C1 1.00 3 106 0.0 1.75 3 104 100 200 13.5 2˘12 2˘12 15.12 350 60.90 49.62 0.815 108.0 90.95 0.842

SS 1.00 3 106 0.0 1.00 3 104 170 190 21.9 5D9.5 2D9.5 41.37 516 74.73 79.65 1.066 — 274.00 —

V1 1.00 3 106 0.0 1.45 3 104 180 180 24.4 2N10 2N10 30.50 580 40.50 38.50 0.951 — 199.70 —

V2 1.00 3 106 0.0 1.35 3 104 180 180 24.4 2N10 2N10 27.00 580 35.70 35.04 0.982 — 171.90 —

V3 1.00 3 106 0.0 1.85 3 104 180 180 24.4 2N10 2N10 30.00 580 41.40 38.29 0.925 — 197.08 —

V4 1.00 3 106 0.0 1.80 3 104 180 180 24.4 3N10 2N10 26.00 580 40.10 39.93 0.996 — 160.86 —

V5 1.00 3 106 0.0 1.60 3 104 180 180 24.4 3N10 2N10 29.50 580 41.60 40.35 0.970 — 178.55 —

V6 1.00 3 106 0.0 1.45 3 104 180 180 24.4 3N10 2N10 30.00 580 39.40 40.62 1.031 — 181.58 —

Mean for all specimens 0.965 1.006

CoV for all specimens 0.070 0.132

a S1–S8 from Yu and Tan (2013a, 2013b); A1–C1 from Su et al. (2009); SS from Sasani and Kropelnicki (2008); V1–V6 from FarhangVesali et al. (2013). Concrete strengths in the tests of Su et
al. are converted from cubic strength to cylinder strength by multiplying 0.76. Elastic modulus of concrete computed based on specifications of ACI 318-05 (ACI, 2005) if not given in the tests.
b l is total length of the whole two-bay beam, equal to the summation of two net span lengths of a single-bay beam and a joint width.
c T denotes high-strength reinforcement; the numbers after T, ˘, D and N are used to indicate bar diameter in the corresponding references.
d This axial force deviates largely from other test results within the same batch, so is not used for comparison.

Table 1. Comparisons of experimental and analytical results
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gaps between axial restraints and a specimen during testing.

Otherwise, the CAA capacity of the specimen will be under-

estimated compared with its prototype in RC structures. However,

this analytical model can be used to re-evaluate Pa of the tested

specimens with zero gaps to make the specimens more represen-

tative of continuous beams in RC structures.

Effect of axial restraint stiffness

To obtain general conclusions about the effects of partial axial

and rotational restraints on CAA capacities, specimens S4, S7

and A5 (Table 1), were selected for parametric study. To illustrate

the effect of axial restraint stiffness Ka, the stiffness term is

normalised by the beam axial stiffness

ªa ¼ Ka=(EcA=l)21:

where ªa is the non-dimensional relative axial stiffness, Ec is the

elastic modulus of concrete, A is the beam cross-sectional area

and l is the net span length of the two-bay beam, equal to 2ln

plus the column width. For example, for specimen S4, the

uncracked beam axial stiffness EcA=l was 1.93 3 105 kN/m and

Ka was 4.3 3 105 kN/m, so ªa ¼ 2.22. During the analysis, CAA

capacities were calculated using different Ka values with zero

gap, but the rotational restraint stiffness was kept the same as the

one in the tests, as listed in Table 1. The analysis of specimens

S7 and A5 followed the same procedure.

To show the beneficial effect of CAA beyond flexural capacity,

the CAA capacities Pa were normalised with flexural capacity Pf

under a concentrated load. Flexural capacity Pf is calculated by

ignoring beam axial force and self-weight in Equation 2 and

replacing the ultimate moments (Mu and Mu1) with nominal

moments of resistance (Mn and Mn1). That is

Pf ¼ 2(Mn þMn1)=ln22:

Mn and Mn1 are determined without considering strength reduc-

tion factors. The flexural capacity of each specimen is shown in

Figure 10.

Figure 10 shows that the overall trends of the effect of axial

restraint stiffness on CAA capacities are quite similar, although

the geometric and material properties of S4, S7 and A5 are quite

different. When the axial restraint is weak, defined as ªa , 1.0, a

larger Ka can more effectively increase Pa of each specimen;

when the axial restraint is strong, defined as ªa > 1.0, Ka does

not significantly affect Pa, and the marginal effect of a greater Ka

on increasing Pa decreases quickly. For example, from ªa ¼ 0.1

to ªa ¼ 1.0, the CAA capacity of S4 increases by around 24%. In

contrast, from ªa ¼ 1.0 to ªa ¼ 10, Pa of S4 only increases by

around 12%. When ªa . 5.0, the effect of Ka on CAA can be

neglected since, from ªa ¼ 5 to ªa ¼ 100 the enhancement of

CAA capacity of specimen S4 is only 3.6%.
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Compared with S4 and S7, the enhancement of structural

resistance of A5 due to CAA is more significant, and the CAA

capacity of A5 is more sensitive to the variation of axial restraint

stiffness in the range ªa , 1.0. This is mainly attributed to a

smaller beam span-to-depth ratio in A5, which will be explained

later. Note that in the structural tests (Su et al., 2009; Yu and

Tan, 2013b), the provided boundary conditions were regarded as

strong axial restraints.

In summary, CAA capacity is sensitive to axial restraint stiffness

Ka only when axial restraint is weak (i.e. ªa , 1.0). The effect

of a greater Ka on CAA capacity becomes marginalised when

axial restraint is strong (i.e. ªa > 1.0). Therefore, to be con-

servative in design, the beneficial effect of CAA on structural

resistance can be considered only when strong axial restraints

are provided.

Single-bay

span: mm

Deflection at CAA

capacity: mm

Chord rotation at

CAA capacity: rad

Yield rotation:

rad

Plastic rotation:

rad

DIF

(A) (B) (C) ¼ (B)/(A) (D) (E) ¼ (C) � (D)

S1 2750 78.0 0.0284 0.0040 0.0243 1.11

S2 2750 73.0 0.0265 0.0040 0.0225 1.11

S3 2750 74.4 0.0271 0.0036 0.0234 1.10

S4 2750 81.0 0.0295 0.0060 0.0234 1.14

S5 2750 74.5 0.0271 0.0079 0.0192 1.19

S6 2750 114.4 0.0416 0.0060 0.0356 1.11

S7 2150 74.4 0.0346 0.0047 0.0299 1.11

A1 1225 48.0 0.0392 0.0016 0.0376 1.06

A2 1225 56.4 0.0460 0.0023 0.0438 1.06

A3 1225 76.4 0.0624 0.0029 0.0594 1.06

A4 1225 65.0 0.0531 0.0012 0.0519 1.05

A5 1225 70.7 0.0577 0.0016 0.0561 1.05

A6 1225 69.2 0.0565 0.0021 0.0544 1.06

B1 1975 100.0 0.0506 0.0054 0.0452 1.09

B2 2725 102.0 0.0374 0.0074 0.0301 1.14

B3 2725 85.5 0.0314 0.0053 0.0261 1.12

C1 1225 33.7 0.0275 0.0050 0.0226 1.13

SS 2000 41.6 0.0208 0.0033 0.0175 1.12

Table 2. DIFs at CAA capacities
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Effect of rotational restraint stiffness

To illustrate the effect of rotational restraint stiffness Kr, this term

is normalised by the rotational stiffness of beam ends 4EcI/l.

Then the relative stiffness ªr is given by

ªr ¼ K r=(4EcI=l)23:

where I is the second moment inertia of an uncracked concrete

beam section.

For specimen S4, the rotational stiffness of beam ends 4EcI/l was

4028 kN m/rad and Kr was 30 000 kN m/rad, so the corresponding

ªr was 7.4. During the analysis, CAA capacities were calculated

using different Kr, but the connection gap was set as zero and the

axial restraint stiffness was kept the same as the one in each test,

as listed in Table 1. The analysis of S7 and A5 followed the same

procedure. Moreover, the CAA capacities were normalised by the

corresponding flexural capacities, as indicated in Figure 11.

Figure 11 shows that strong rotational restraint (i.e. ªr > 1) has

no significant effect on CAA capacity. For example, from ªr ¼ 1

to 5, the increase of CAA capacity of S4 is less than 5%.

Moreover, when ªr > 5, the effect of rotational restraint stiffness

Kr on Pa can be neglected. However, for weak rotational restraint,

defined as ªr , 1, Pa decreases significantly with reducing Kr, as

large rotations at the beam ends substantially reduce the compres-

sive depth of beam sections. When ªr is too small (e.g. less than

0.2), CAA cannot be effectively developed for S4.

Similar conclusions about the effect of rotational restraint

stiffness Kr can be found in specimens S7 and A5, as illustrated

in Figure 11. These help to confirm the experimental finding of

Guice and Rhomberg (1988), that high rotational restraint

stiffness does not affect the compressive membrane capacity of

RC slabs. Therefore, to mobilise CAA, adequate rotational

restraints must be provided. To be conservative in design, the

provision of strong rotational restraints with ªr > 1.0 can be

regarded as a prerequisite to include CAA. In the structural tests

(Su et al., 2009; Yu and Tan, 2013b), the provided boundary

conditions were regarded as strong rotational restraints.

Effects of beam span-to-depth ratio and mechanical

reinforcement ratio

Su et al. (2009) reported that CAA capacity is a function of the

flexural reinforcement ratio (r) and the ratio of beam span (ln) to

depth (h). Considering various yield strengths of steel reinforce-

ment ( fy) and compressive strengths of concrete ( fc9), the mech-

anical reinforcement ratio ø ¼ r f y= f c9 is a more representative

parameter since ø is frequently used as a measure of the flexural

behaviour of a beam and incorporates three major variables

affecting that behaviour (MacGregor and Wight, 2005). There-

fore, the effects of span-to-depth ratio (ln/h) and mechanical

reinforcement ratio (ø) of beams on CAA are investigated here.

Under a middle column removal scenario, plastic hinges occur

near the middle joint interfaces and the beam ends of a sub-

assemblage, associated with sagging and hogging moments re-

spectively. Under a sagging moment, the top and the bottom

reinforcements at the middle joint interfaces are in compression

and tension respectively. Moreover, the top compression rein-

forcement at the middle joint interfaces is the same as the tension

reinforcement at the beam ends subjected to a hogging moment.

As a result, the total reinforcement at a middle joint interface can

represent all flexural (or tension) reinforcement at critical sections

of a single-bay beam and the total reinforcement ratio is used to

determine ø.

Based on the investigation of imperfect boundary conditions,

both the axial and rotational restraints in the tests of Yu and Tan

(2013b) were categorised as strong restraints and they were used

to investigate the effect of ln/h and ø on the CAA of RC sub-

assemblages. Five case study groups are listed in Table 3. A large

range of flexural reinforcement ratio is covered, from 0.49% to

1.87%. The single-bay beam span-to-depth ratio ln/h varies from

6.5 to 11. Besides the CAA capacity Pa, the flexural action

capacity Pf (determined by Equation 22) and the enhancement

factor Æ of structural resistance due to CAA are also listed in

Table 3.

Figure 12 shows that the enhancement factor of RC sub-

assemblages due to CAA varies from around 30% to 100%. With

increasing mechanical reinforcement ratio ø, Æ significantly

decreases for a given ln/h. In other words, RC beams with low

reinforcement ratios can gain a beneficial effect from CAA. For

instance, for ln/h ¼ 11, when ø decreases from 35.72% to

16.32%, Æ increases from 28.2% to 77.4%. For a known ø, a

smaller ln/h results in a greater Æ. That is, the enhancement of

structural resistance due to CAA in a stocky RC beam is more

evident. For example, for ø ¼ 16.32%, when ln/h decreases from

11.0 to 6.5, the corresponding Æ increases from 77.4% to 98.0%.
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In contrast, when ø ¼ 35.72%, such a variation in ln/h only

results in Æ increasing from 28.2% to 37.6%.

In summary, for beams under adequate axial and rotational

restraints, a lower mechanical reinforcement ratio and a lower

span-to-depth ratio will give rise to a significant enhancement of

structural resistance contributed by CAA.

Effects of RC slabs

In monolithic RC cast-in-situ structures, slabs serve as the top

flanges of beams due to good structural integrity. Accordingly,

interior and perimeter beams will become T- and L-shaped

respectively. Moreover, slab reinforcement can also serve as

flexural reinforcement of T- or L-beams. Table 4 shows the cases

studied for the effects of RC slabs on CAA capacities. Except for

the beam cross-sections, all the study cases have the same

boundary conditions and material and geometric properties as

those of specimen S4, as shown in Table 1. Note that the

connection gaps at beam ends are set as zero in the analysis. S4

has a rectangular section of 250 mm by 150 mm. In the other

cases in Table 4, the flange width is assumed to be 500 mm and

the variables are the flange depth and consideration of whether

slab reinforcement is the flexural reinforcement.

Table 4 indicates that, compared with S4, if the slabs function as

top flanges only (cases S4-1, S4-2 and S4-5), the flexural capacity

is increased by 7.1% whereas the CAA capacity is enhanced by

17.9–19.4%. If the slab reinforcement in the flanges is also

included (cases S4-3 and S4-4), both flexural and CAA capacities

are greatly increased. However, the contribution to enhancing

CAA capacity from the top flanges is more dominant than that

from slab reinforcement. For example, with a top flange of

500 mm by 80 mm (i.e. S4-2), CAA capacity increases from

69.10 kN to 82.02 kN. When the slab reinforcement of 4˘6 is

ln/h Longitudinal reinforcement and ratio at

middle joint interfacesa

Mechanical

reinforcement ratio

ø: %

Flexural action

capacity Pf: kN

CAA capacity

Pa: kN

Enhancement

factor Æ
(¼ (Pa � Pf)/Pf)

Top Bottom

11.0 3T10 (0.73%) 2T10 (0.49%) 16.32 30.25 53.65 0.774

3T13 (1.23%) 2T10 (0.49%) 22.46 40.47 61.29 0.514

3T13 (1.23%) 2T13 (0.82%) 26.51 47.27 68.50 0.449

3T13 (1.23%) 3T13 (1.23%) 31.81 55.94 76.69 0.371

3T16 (1.87%) 2T13 (0.82%) 35.72 61.56 78.94 0.282

9.5 3T10 (0.73%) 2T10 (0.49%) 16.32 35.03 64.31 0.836

3T13 (1.23%) 2T10 (0.49%) 22.46 46.86 73.09 0.560

3T13 (1.23%) 2T13 (0.82%) 26.51 54.74 81.50 0.489

3T13 (1.23%) 3T13 (1.23%) 31.81 64.78 91.00 0.405

3T16 (1.87%) 2T13 (0.82%) 35.72 71.29 93.38 0.310

8.5 3T10 (0.73%) 2T10 (0.49%) 16.32 39.15 73.64 0.881

3T13 (1.23%) 2T10 (0.49%) 22.46 52.37 83.41 0.593

3T13 (1.23%) 2T13 (0.82%) 26.51 61.18 92.86 0.518

3T13 (1.23%) 3T13 (1.23%) 31.81 72.40 103.49 0.429

3T16 (1.87%) 2T13 (0.82%) 35.72 79.67 105.98 0.330

7.5 3T10 (0.73%) 2T10 (0.49%) 16.32 44.37 85.59 0.929

3T13 (1.23%) 2T10 (0.49%) 22.46 59.36 96.61 0.628

3T13 (1.23%) 2T13 (0.82%) 26.51 69.34 107.39 0.549

3T13 (1.23%) 3T13 (1.23%) 31.81 82.05 119.46 0.456

3T16 (1.87%) 2T13 (0.82%) 35.72 90.29 122.08 0.352

6.5 3T10 (0.73%) 2T10 (0.49%) 16.32 51.20 101.38 0.980

3T13 (1.23%) 2T10 (0.49%) 22.46 68.49 114.07 0.665

3T13 (1.23%) 2T13 (0.82%) 26.51 80.00 126.57 0.582

3T13 (1.23%) 3T13 (1.23%) 31.81 94.67 140.54 0.485

3T16 (1.87%) 2T13 (0.82%) 35.72 104.19 143.34 0.376

a r ¼ As=bd; b ¼ 150 mm and d ¼ 215 mm.

Table 3. Study cases with different beam span-to-depth ratios and mechanical reinforcement ratios. The stiffness of the axial and the

rotational restraints and the material properties are the same as the test of Yu and Tan (2013b): fc9 ¼ 38.2 MPa, fy ¼ 511 MPa for T10,

fy ¼ 494 MPa for T13, fy ¼ 513 MPa for T16; Es ¼ 200 GPa for all reinforcements
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considered (i.e. S4-4), CAA capacity is further increased to

85.83 kN. That is, the slab reinforcement resulted in an additional

increment of 3.83 kN (around 5.5% of the CAA capacity of S4).

In summary, for analysis of RC frames, it is necessary to consider

the beneficial effects of RC slabs on CAA capacity.

Discussion
Although the proposed analytical model is based on RC beam–

column sub-assemblages, it can be extended for other scenarios

involving the mobilisation of CAA, such as RC columns or

masonry walls subjected to impact loads and bridge girders

subjected to overload. Moreover, the enhancement factor of

structural resistance due to CAA can be incorporated into

conventional plastic hinges, as suggested in UFC 4-023-03 (US

DoD, 2010), so that the beneficial effect of CAA can be consid-

ered in frame analysis and design.

In practice, the two adjacent beams in a sub-assemblage may

have unequal spans. In this scenario, the force equilibrium and

compatibility equations should be individually established at each

single-bay beam. The force equilibrium at the middle joint then

links the internal forces (i.e. axial force, bending moment and

shear force) in the two single-bay beams. Accordingly, the

neutral-axis depths at the two middle joint interfaces and at the

two beam ends should be calculated at a given vertical displace-

ment � of the middle joint. Similar to the procedure shown in

Figure 6, load–deflection and axial force–deflection relationships

can be obtained. Moreover, the beam with a longer span governs

CAA development due to the larger beam span-to-depth ratio

reducing the enhancement from CAA. Therefore, the CAA

capacity of a sub-assemblage with two unequal-span beams is

less than that with two equal-span beams, provided that the total

lengths of the two sub-assemblages are the same.

Conclusion
Based on the assumptions commonly used in flexural theory and

in the design of RC framed members, an analytical model is

proposed to evaluate the CAA of RC beam–column sub-assem-

blages under a middle column removal scenario, considering the

combined effects of stress state of compression reinforcement

and imperfect boundary conditions on CAA. The imperfect

boundary conditions include partial axial and rotational restraints,

and axial connection gaps at beam ends. Comparison of experi-

mental and analytical results indicates that the model is able to

predict both the CAA capacity and the maximum beam axial

compression of RC sub-assemblages with satisfactory accuracy

and reliability. Moreover, the structures present elastic–plastic

hardening behaviour at the CAA stage and the DIFs decrease

with increasing deformations. Based on available sub-assemblage

tests, the DIFs are not greater than 1.15. Therefore, progressive

collapse resistance can be estimated as 87% corresponding CAA

capacity.

Parametric studies indicate that adequate axial and rotational

restraint stiffness must be provided to develop CAA of RC sub-

assemblages. When the axial and rotational restraint stiffnesses

are respectively greater than those of restrained uncracked beams

(i.e. ªa > 1 and ªr > 1), the variation of each restraint stiffness
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Figure 12. Effect of beam span-to-depth ratio and mechanical

reinforcement ratio on CAA capacity

Study

case

Top

flange:

mm

Slab rebar

in flange

Flexural

capacity Pf:

kN

Increase of

Pf on top of

S4: %

CAA capacity

Pa: kN

Increase of

Pa on top of

S4: %

Beam section (dimensions in mm)

S4 NAa NA 47.27 — 69.10 —

S4-1 60 NA 50.61 7.1 81.46 17.9

S4-2 80 NA 50.61 7.1 82.02 18.7

S4-3 80 2˘6 54.34 15.0 83.96 21.5

S4-4 80 4˘6 58.02 22.7 85.83 24.3

S4-5 100 NA 50.61 8.1 82.49 19.4

150

500

25
0

hf

a Not available.

Table 4. Effect of RC slabs on CAA capacity
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does not significantly affect the CAA capacity of beams. How-

ever, when reducing the stiffness of weak restraints (ªa , 1 or

ªr , 1), the CAA capacity will decrease substantially. Therefore,

from conservatism, it is suggested that only when both relative

axial and rotational stiffness are greater than one (i.e. ªa > 1 and

ªr > 1), CAA can be considered as a beneficial alternate load

path to mitigate progressive collapse.

The span-to-depth ratio and the mechanical reinforcement ratio

of beams are two key parameters affecting CAA capacity. The

enhancement of structural resistance due to CAA is highly

dependent on different combinations of these two parameters. For

beams with adequate axial and rotational restraints as well as

shear strength, a lower mechanical reinforcement ratio and a

lower span-to-depth ratio will give rise to significant enhancement

of structural resistance contributed by CAA. Finally, RC slabs

can greatly increase CAA capacities by serving as top flanges,

but the contribution from flexural reinforcement of slabs is very

marginal. Therefore, for analysis of skeleton RC frames, it is

necessary to consider the beneficial effects of RC slabs on CAA

capacities.

Appendix 1: Derivation of the compatibility
equation
Substituting Equation 5 into Equation 4b, the following equation

can be obtained.

[�lþ 0:5�(1� 2�)lþ (tþ t0)] sec(�þ Ł)

¼ h

2
� c

� �
tan(�þ Ł)þ h

2
� c1

� �
tan�þ (1� �)�l

24:

Multiplying both sides of Equation 24 by cos(�þ Ł) and

rearranging leads to

0:5�l þ (t þ t0) ¼ h

2
� c

� �
sin(�þ Ł)

þ h

2
� c1

� �
tan� cos(�þ Ł)

þ (1� �)�l[cos(�þ Ł)� 1]25:

As

cos(�þ Ł)� 1 ¼ �2 sin2[(�þ Ł)=2]

Equation 25 can be further simplified as

0:5�l þ (t þ t0) ¼ h

2
� c

� �
sin(�þ Ł)

þ h

2
� c1

� �
tan� cos(�þ Ł)

� 2(1� �)�l sin2 �þ Ł

2

� �
26:

Dividing both sides of Equation 26 by sin(�þ Ł) and rearranging

yields

c ¼ h

2
� 0:5�l þ (t þ t0)

sin(�þ Ł)

þ h

2
� c1

� �
tan�

tan(�þ Ł)

� 2(1� �)�l sin2[(�þ Ł)=2]

sin(�þ Ł)27:

which is the same as Equation 6.

Since � and Ł are small, the trigonometric functions in Equation 6

can be replaced by equivalent infinitesimal mathematical terms.

Also, the beam axial strain � and the movements of the axial

restraints (t þ t0) are extremely small compared with ln: Therefore

sinŁ � Ł ¼ Mu1=K r

tan(�þ Ł) � (�þ Ł)

tan� � �

sin(�þ Ł) � 2 sin
�þ Ł

2

� �

� �þ Ł ¼ �

ln þ 0:5�bj þ (t þ t0)

� �

ln

¼ �

�l

and

� ¼ �

�l
�Mu1

Kr

124

Magazine of Concrete Research
Volume 66 Issue 3

Analytical model for the capacity of
compressive arch action of reinforced
concrete sub-assemblages
Yu and Tan



Substituting the above equivalent values of the trigonometric

functions into Equation 27 gives

c ¼ h

2
� (0:5�l þ t)

�
�l � �lt0

�

þ h

2
� c1

� �
1�Mu1�l

K r�

� �

� (1� �)
�

228:

Substituting t ¼ N=Ka and � ¼ N=EcA into Equation 28 and

rearranging yields

c ¼ h

2
� (1� �)

�

2

� �l2

2�

1

EcA
þ 2

lKa

� �
N � �lt0

�

þ h

2
� c1

� �
1�Mu1�l

K r�

� �
29:

Compared with unity, the compressive strain � of beams can be

neglected. Therefore, Equation 29 can be simplified as

c ¼ h

2
� �

2
� �l2

2�

1

EcA
þ 2

lKa

� �
N

� �lt0

�
þ h

2
� c1

� �
1�Mu1�l

K r�

� �
30:

which is the same as Equation 8.

Appendix 2: Determination of rotation
corresponding to yield moment
The rotation Ły corresponding to the yield moment My at critical

sections is determined with the effective stiffness values provided

in Table 6-5 of SEI 41-06 (ASCE, 2007). For RC beams, the

effective stiffness is 0.5EcIg, where Ec is the elastic modulus of

concrete and Ig the gross cross-sectional moment of inertia.

Typically, the bottom reinforcement in a middle joint is not

greater than the top one. Therefore, the middle joint interfaces

attain yield moments first. Based on the moment diagram of a

two-ends-fixed beam subjected to a point load acting at the beam

centre, the counter-flexural point is roughly at the middle point of

the ‘single-bay’ beams. That is, from the counter-flexural point to

the middle joint interface (the distance denoted lcf ), the curvature

increases linearly from zero to �y: As a result, the yield rotation

Ły is given by

Ły ¼ �ylcf=2 ¼ (My=0:5EcIg)lcf=231:

where the yield moment My is determined as (Park and Paulay,

1975)

My ¼ 0:5 f cbkd(d � kd=3)þ f 9sA9s(d � d9)32:

where f c is the stress of the ultimate compressive concrete fibre,

b and d are the width and effective depth of the beam section

respectively, f 9s and A9s are the stress and area of compression

steel respectively, d9 is the distance from the ultimate compres-

sive fibre of concrete to the centroid of compression steel and k is

the ratio of neutral-axis depth to the effective depth, given by

k ¼ [(rþ r9)2n2 þ 2(rþ r9d9=d)n]1=2 � (rþ r9)n33:

in which r and r9 are the tension and compression reinforcement

ratio respectively and n is the ratio of the elastic modulus of steel

reinforcement to concrete.
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