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Abstract—This paper presents a theoretical analysis of an axial 

field machine using High Temperature Superconductors (HTS) 

wires and bulks. The air-gap magnetic field obtained with the 

HTS coil and modulated by the HTS bulks is predicted by two 2D 

axisymmetric models. Analytical models are based on the 

solution of Laplace’s equation by the separation of variable 

method. The torque is obtained by a quick numerical integration 

of the Laplace force that acts on the armature winding. The 

proposed model is compared with 3D finite element simulations 

and good agreement is obtained. This model can be used with an 

optimization design procedure with a large reduction of the 

computational time. 

 
Index Terms—Axial Field Machine, High Temperature 

Superconductors, Synchronous machine, Analytical Model 

I. INTRODUCTION 

he electric airplanes are presented as a solution for the air-

transportation of tomorrow, permitting to reduce fuel burn, 

noise, and emission of greenhouse gases due to the 

combustion of the fossil fuel [1]. The power-to-mass ratio of 

the electric solution should be high enough to replace the 

current technologies. Thus a study is being conducted here on 

the use of superconductors for electrical machines. In the 

literature, several researches were done concerning the 

superconducting machine in aeronautics [2]-[6]. The aim of 

this paper is to develop a fast analytical model to be 

implemented in an optimization procedure to reach the higher 

power-to-mass ratio. 

The superconducting flux modulation machine is shown in 

Fig. 1. This particular topology has been studied for the radial 

flux topology using low temperature superconductor [7]-[8]. 

In this paper, we study an axial-flux machine with HTS. The 

HTS materials are only used for the inductor. It is composed 

with a solenoid coil made with HTS tape, which produces a 

magnetic field along the axial direction. When HTS bulks of 

round shape are placed in the magnetic field, electrical current 

is induced into the material in order to screen the magnetic 

field. Behind a HTS bulks, the magnetic flux is then reduced 

and we obtained a magnetic field modulation in the air-gap.  
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Throughout the paper, the HTS bulks will be also called 

magnetic shield or screen. 

 The armature winding is made with three phase copper 

winding placed on each side of the bulks. The rotation of the 

HTS bulks gives a back-electromotive force in the stator 

winding due to the flux variation. No ferromagnetic material is 

used in this topology to decrease the total weight. So the 

superconducting machine is air-cored and copper coils are 

disposed on a non-magnetic support. In this kind of 

configuration, the magnetic field out of the machine is 

shielded actively by others superconducting coils not 

represented in Fig. 1. These coils are placed around the main 

coil. The same current in the opposite direction is driven to 

avoid the magnetic field of the main superconducting coil. 

The magnetic field determination is a 3D problem, due to 

the axial structure and the flux distribution behind the screens. 

The screening current which expulses the magnetic flux is 

developed from the external surface and penetrates into the 

bulk. The length of penetration depends on the shield cooling, 

the applied magnetic field, and the critical current density of 

the material. The shielding effect can be calculated by: 

1. Analytical techniques using the critical state model 

developed by Bean [9]. This method is easy to implement and 

fast but is limited to specific geometries with homogeneous or 

simple form for the critical current dependence [10]. 

2. Numerical methods as finite elements using a variety of 

formulation [11]-[16]. These methods can deal with complex 

geometries of superconductors but need more computational 

time than analytical methods.  

T 
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HTS shields
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Fig. 1.  Exploded view of the studied superconducting machine 



 

Due to the complexity of the studied machine, one way to 

compute the magnetic field is the use of numerical methods.  

Obviously, these methods describe accurately the flux 

modulation. However, the computational time needed to solve 

the problem is not suitable to be used in an optimization 

design procedure. Therefore, we propose an analytical model 

[17]-[20], based on some assumptions, describing the 

magnetic behavior for one pole pair of the superconducting 

inductor. The model will be accurate if the penetrations length 

of the screening current is small, which corresponds to the best 

operating point for the superconducting machine.  

The paper is organized as follows. In section II, the 

electromagnetic problem to be solved and the assumptions are 

given. In section III, equations of the analytical models are 

solved with the separation of variable method. In section IV, 

the electromagnetic torque is obtained using the Laplace force. 

Finally, the model is validated comparing the results obtained 

with the analytical model with those of the FE simulations. 

The model is then used to study the impact of the design 

parameters on the machine performance, such as the air-gap 

length or the copper winding dimensions.   

II. PROBLEM DESCRIPTION 

As shown in Fig. 1, the axial flux superconducting machine 

is a 3D problem in an electromagnetic point of view. The 

natural way to solve this problem is to use a cylindrical 

coordinate system (r,,z). However, 3D analytical solutions 

written in cylindrical coordinate and obtained with the 

separation of variable method are complex and lead to 

numerical integration, which increases the computation time. 

Moreover, the bulk should have a tile shape (Fig. 2) to solve 

this 3D problem analytically, as was done for permanent 

magnets in [21]-[22]. In fact, the design of tile shape for HTS 

bulk with single or multi-seeds growth are restricted to small 

size and are usually obtained by sculpting a square or a round 

material. On the other hand, multi-domain round shape of 

HTS bulks can be bigger than 80 mm for the diameter [30]. 

This is the reason why the round shape is used for the studied 

machine.  

To take into account the round shape for the bulks, the 

magnetic field distribution in the air-gap will be obtained by 

solving two 2D axisymmetric problems. The first analytical 

problem is to determine a flux modulation function which 

represents the shielding effect of one superconducting bulks 

placed in a homogeneous magnetic field. This function was 

already developed for the radial flux machine, but this model 

is not adapted for the axial flux machine [23]. A perfect 

diamagnetic behavior for the bulk will be considered, so no 

magnetic flux density penetrates into the shield. The second 

analytical problem is to determine the magnetic field 

generated by the HTS coil alone. It is then multiplied by the 

modulation function in order to obtain the behavior of the 

superconducting inductor. As shown in Fig. 3, each 2D 

axisymmetric problem has its own center, 0 for the HTS coil 

problem and 0’ for the HTS bulk one.  
Fig. 3 gives the geometrical parameters. The problem is 

symmetrical around Z3, so only half of the problem has to be 

solved. The inner and outer radius of the HTS coil is 

respectively R3 and R4. The radius of the HTS bulk is R1 and 

its center is placed at r=Rm. The radius R5  (not represented in 

Fig. 3) represents the boundary limit for the analytical 

modeling and is placed far from the HTS coil. 

III. SUPERCONDUCTING INDUCTOR 

A. Flux modulation function 

The flux modulation function determines the behavior of 

the magnetic flux density around the shield. This function is 

obtained by the ratio of the axial component of the flux 

density with and without shields. The cross-section and 

regions of the 2D problem which has to be solved in order to 

obtain the flux modulation function is represented in Fig. 4. A 

permanent magnet (PM) of radius R2 and thickness Z0 (region 

I) is located far from the HTS bulk and placed on a 

ferromagnetic material with an infinite relative permeability. 

The magnet generates an axial magnetic field, which 

symbolize the behavior of the HTS coil added later. A round-

shape superconducting bulk of radius R1 is placed in front of 

the magnet. As said previously, the problem is symmetric 

around Z3, so the thickness of the bulk is two times (Z3-Z2). 

The radius R2 corresponds to the external boundary for this 

problem. The error introduced by this artificial boundary will 

be analyzed later.  

 

1) Governing equations  

 As shown in Fig .4, the problem is divided into three 

regions I, II and III. The magnetic field in each region satisfies 

the basic equations of magnetostatic. For the region I 
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Fig. 3. Flux modulation superconducting inductor with its geometrical 

parameters 
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Fig. 2. Superconducting bulk with round or tile shape  



 

(permanent magnet), a magnetic charge model is adopted. As 

the perfect diamagnetic behavior is considered for the HTS 

bulk, all the magnetic flux is deviated in the air region, 

numbered III. In Fig.1, the region III corresponds to the space 

between two HTS shields. 

 

 The direction of the PM’s magnetization is represented by 

the white arrow in Fig. 4. This is a volume magnetization but 

it can be replaced by an equivalent surface magnetic charge 

density at z=Z0 

 

0

r
magnet

B    (1) 

 

where
rB is the axial remanent induction of the magnet. 

For this problem, the Maxwell equations are as follow 

 

. 0 0 ( , )i iB         H       i I II or III       (2) 

 

where 
iB  and 

iH  are the magnetic flux density and the 

magnetic field in region i. The magnetic field can be written in 

term of a magnetic scalar potential Φi, since no current 

distribution is involved. 

 

( , )iH      or 
i

i I II III     (3) 

 

Equations (2) and (3) are combined to give the following 

Laplace equation written in the 2D cylindrical coordinates. 

 
2 2

2 2

1
0i i i

r rr z

  
  

 
 (4) 

 

2) Boundary conditions 

Some boundary conditions have to be defined in the r- and 

z-directions to solve this problem. The diamagnetic behavior 

of bulks acts as a flux barrier which imposed the normal 

component of the flux density equal to zero at its boundaries: 

 

1 2(0 , ) 0zB r R Z    (5) 

1 2 3( , ) 0
r

B R Z z Z     (6) 

 

where Bz and Br represents respectively the axial and radial 

component of the flux density. Moreover, in order to obtain a 

purely axial direction for the magnetic flux produced by the 

magnet alone, the normal component of the magnetic field is 

imposed equal to zero at all others boundaries and is finite at 

r=0.  

(0, ) is finiteH z   (7) 

2( , ) 0rH R z    (8) 

( ,0) 0
r

H r    (9) 

1 2 3( , ) 0rH R r R Z     (10) 

In each region, the relative permeability is equal to 1. So 

from (5) to (10), the boundary condition can be re-written in 

terms of the magnetic scalar potential in order to find the 

eigenvalue of the problem defined in the r-direction. 
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  (11) 

 

3) General solution in each region 

By using the separation of variable method, a general 

solution of (4) is obtained by satisfying the boundary 

conditions (11). The general solution is the same for regions I 

and II and can be written as 

 

0 0( , )i i ir z A z B     

0

1

( )k kz z

ik ik k

k

A e B e J r
  






      

(  or )i I II   

(12) 

with 

2

k

k

X

R
    (13) 

where
kX  is the kth zero of the derivative of the Bessel 

function  
0 ( )

k
J X . Coefficients 

0iA , 
0iB , 

ikA  and 
ikB  will be 

determined using the interface conditions.  

The general solution for the modulate region III is slightly 

different, the boundary conditions (11) at r= R1 and r=R2 are 

used to obtain the eigenvalues. It can be written as 

 

0 0( , )III III IIIr z A z B     

, ,

1

l lz z

III l III l

l

A e B e
 






     

 0 1 1 1 1 0( ) ( ) ( ) ( )
l l l l

J r Y R J R Y r       

(14) 

 

where  is the lth zero of the cross product of the Bessel 

function. 

 

1 1 1 2 1 2 1 1( ) ( ) ( ) ( ) 0
l l l l

J R Y R J R Y R      (15) 

 

The unknown coefficients 
0IIIA , 

0IIIB , 
IIIl

A  and 
IIIl

B  will 

be determined using the interface conditions. 
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Fig. 4. Sectional view of the flux modulation function problem in the (r,z) 

plane, its boundary conditions and flux line with HTS bulks  



 

4) Unknown coefficient determination 

Equations (12) and (14) show that the problem presents six 

unknown coefficients per harmonic. To solve this problem, we 

need six independents linear equations. Two equations are 

obtained by the remaining boundary conditions (9) and (10). 

The tangential component of the magnetic field strength is 

continuous through a region interface. The normal component 

at z=Z0 is not continuous due to the surface magnetic charge 

of the magnet. The normal component at z=Z2 is given by (5) 

between r=0 and r=R1 and is continuous elsewhere. 

 

at z=0: 0I    

(16) 
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I II
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 

  

 
I II   
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1 2

0   elsewhere
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   
 
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1 2 1 2

II IIIR r R R r R   
     

at z=Z3: 0III    

 

Using these six linear equations, all unknown constants can 

be obtained. Developments are given in the Appendix A. It is 

worth noting that the zero order Bessel function integrations 

involved during the coefficients computation has an analytical 

form [24]. 

 

5) Definition of the flux modulation function 

Once the magnetic scalar potential is known in each region, 

the axial and the radial component of the flux density can be 

computed in the air-gap region (II). 

 

0( , ) II

IIz
B r z

z



 


  (17) 

0( , ) II

IIr
B r z

r



 


 (18) 

The flux modulation function is the ratio of (17) and the 

value of the magnetic flux density without shield. This value 

can be simply obtained by using the Ampere law. 
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(19) 

Finally, the flux modulation function is given by 

 

0

( , )
( , ) IIz

B r z
FM r z

B
   (20) 

B. HTS coil problem 

The cross-section of the HTS coil problem and the different 

regions are given in Fig. 5. To simplify the analysis, the 

coordinates system is translated axially by z=-Z3 compare to 

Fig. 3. The symmetry of the problem is used to reduce the 

number of regions. For region I, the current density is applied 

between r=R2 and r=R3 and between z=0 and z=(Z3-Z1). The 

region II corresponds to the air domain with no current.   

 

1) Governing equations  

A Coulombian approach is used to describe the current 

distribution [25]. This method allows us to work directly with 

a magnetic scalar potential formulation. Therefore, the current 

density in the coil is replaced by an equivalent surface 

magnetic charge density σcoil at z=Z3-Z1, as shown in Fig. 6. 
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  (21) 

 

where Jc is the critical current density in the HTS coil. 

The surface magnetic charge density drawn in Fig. 6 can be 

developed into Bessel-Fourier series as follows 
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Fig. 5. Sectional view of the superconducting coil problem in the (r,z) plane 

and its boundary conditions 
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Fig. 6. Equivalent surface magnetic charge distribution at z=Z3 – Z1 along the 

r-direction 



 

 

The analytical forms of the integrals in (23) are given in 

appendix B. For region I and II, the Laplace equation has to be 

solved. 
2 2

2 2

1
0i i i

r rr z

  
  

 
 (24) 

2) Boundary conditions 

As shown in Fig. 5, boundaries are placed such as R5>>R4 

and Z3>>(Z3-Z1) and act as infinite boundary conditions. This 

imposes the normal component of the magnetic field to be 

zero 

5 3(0 , ) 0
z

H r R Z     (25) 

5(0 ,0) 0
r

H r R    (26) 

5 3( ,0 ) 0
r

H R z Z    (27) 

 

Moreover, the magnetic field has to be finite at r=0. 

 

(0, ) is finiteH z   (28) 

 

From (27) and (28), the boundary conditions can be re-

written in terms of the magnetic scalar potential in order to 

find the eigenvalue of the problem in the r-direction. 
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0

(0, ) is finite

r Rr

z



 
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  (29) 

  

3) General solution in the each region 

A general solution of (24) is obtained satisfying the 

boundary conditions (29) by using the method of separation of 

variables. The general solution is common for regions I and II 

and can be written as 

 

0 0( , )
i i i

r z C z D    

0

1

( )m mz z

im im m
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C e D e J r
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(  or )i I II   

(30) 

with 

5

m

m

X

R
    (31) 

where
mX is mth zero of the derivative of the Bessel function 

0 ( )mJ X . Unknown coefficients
0iC , 

0iD , 
imC  and 

imD  will be 

determined with interface conditions.  

 

4) Unknown coefficient determination 

Equations (30) show that the problem has four unknown 

coefficients per harmonic. Two equations are obtained by the 

remaining boundary conditions (25) and (26). The two others 

equations are given by the interface conditions at z=(Z3-Z1). It 

corresponds to the continuity of the tangential component of 

the magnetic field and the continuity of the normal component 

of the flux density 

 

at z=0: 0I    
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( )I II
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0II

z
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Using these four linear equations, all unknown constants 

can be obtained. Developments are given in appendix C. 

 

5) Axial magnetic field from the scalar potential 

Once the scalar potential is known in each region, the axial 

component of the flux density can be obtained in region I, 

where the stator windings will be placed. 

 

0( , ) ( )I

coilz coil
B r z r

z
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
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C. Global solution: field of the HTS inductor 

In order to deal with a simpler expression of the Laplace 

force, the cylindrical topology is linearized. In Fig. 7, the 

magnetic flux density behind an HTS shield is shown for a 

cylindrical and a linearized problem around the mean radius 

Rm. Both configurations give the same flux modulation value, 

so the curvature effects can be neglected without an important 

error. The r-coordinate of the 2D-axisymmetric problems is 

then transformed into the x- and y-coordinate by  

 
2 2 2

r x y    (34) 

  

The center of both problem is not the same, so a translation 

of the mean radius is done in the flux modulation function. 

0 0

Rm
Rm

2X1

τ=2π/p

a) b)

External boundary of the 

linearized problem

 
Fig. 7. Magnetic flux density shielded by HTS bulks for (a) cylindrical 

problem (b) linearized problem 
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Linearized problem boundary
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2D-axis boundary
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Fig. 8. 2D-axis external boundary at r=R2 compared to the linearized 

problem external boundary 

 



 

Finally, the magnetic behavior of the superconducting 

inductor is given by  

 

3( , , ) ( , ) ( , )
z m coilz

B x y z FM r R z B r z Z      (35) 

 

where r is given by (34) and the function FM by (20).  

The expression of the tangential component can be obtained 

as follow 

2 3( , , ) ( , ) ( , )
m coilz

B x y z FM r R z B r z Z       (36) 

with 

2

0

( , ) cos( )
( , ) IIrB r z

FM r z
B


  

(37) 

Moreover 1tan ( / )y x  ,  r is still given by (34) and B0 is 

given by (19). This tangential component of the magnetic field 

has no influence on the electromagnetic torque. It is however 

required to account for some important computation such as 

the eddy-current losses in the stator coils [26].  

As explained previously and shown in Fig. 8, the external 

boundary of the modulation function problem R2 is different 

from the boundary of the linearized problem (X1,Y1). So for 

every point located at r > R2, the value of the modulation 

function (20) at r=R2 is imposed. The error introduced by the 

2D-axisymmetric boundary is investigated in the next part. 

IV. ELECTROMAGNETIC TORQUE CALCULATION 

The electromagnetic torque is obtained using the x-

component of the Laplace force from the center of the 

machine. In the case of an axial flux machine, the radial 

current density of the armature winding and the axial magnetic 

flux density of the inductor generate this stress. For the 

linearized axial machine, the radial direction of the current 

density is transformed in the y-coordinate. The force is then 

numerically integrated over the copper coils. 

 

e z y
V

T yB J dV    (38) 

 

The y component of the current density in (38) is obtained 

by a 2-D Fourier series, defined as 
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R
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(41) 

 

The coefficient Jmny depends on the type of armature winding 

used (distributed or concentric), as exposed in [27]. 

 

 

 

 

The axial component of the magnetic flux density is then 

obtained from (35). 
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Fig. 10. Tangential component of the flux density along the x-coordinate 

5mm behind the screen 

 
Fig. 9. Axial component of the flux density along the x-coordinate 5mm 

behind the screen 

 
Fig. 11. Maximal error on Bz versus the HTS bulk filling at y=Rm 
 



 

 

where σPM is the equivalent surface magnetic charge density of 

the magnet in the modulation function problem, B0 is given by 

(19) and Jc is the critical current density of the HTS coil. The 

constant KIIm is given by 

 

1 2 1

m

1 1 2 1

( ( )) ( )
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II
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th Z Z th Z
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sh Z th Z Z th Z
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   

 


 
 (43) 

 

where σcm is the equivalent surface magnetic charge density of 

the HTS coil problem. 

V. RESULTS OBTAINED WITH THE ANALYTICAL MODEL 

In this section, the air-gap magnetic field distribution and 

the electromagnetic torque obtained with the proposed 

analytical model is compared with 3D FE simulations 

(COMSOL Multiphysics©) considering the actual geometry of 

the studied machine (Fig. 1). For each position of the rotor, the 

electromagnetic torque is calculated using (38). Then, the 

influence of some geometrical parameters like the air-gap 

length or the ratio between inner and outer radius of the 

armature winding is analyzed and compared with typical 

values. The geometrical parameters of the studied machine are 

given in the Table I. 

A. Magnetic field distribution 

Figs. 9 and 10 respectively show the axial and tangential 

component of the flux density at r=Rm and z=Z2-g/2, where g 

is the air-gap length. The shielding effect of the HTS bulks is 

well observed in Fig. 9, the magnetic flux density is reduced 

by more than 90% behind the screen. 

The 3D HTS inductor using Table I parameters, is also 

solved using FE software with cylindrical bulks. As shown in 

Figs. 9 and 10, a good matching is found between numerical 

and analytical results. The HTS bulk radius R1 is fixed to 40 

mm and the value of R2 is 72 mm. The shield filling is defined 

by the ratio R1/R2. For our problem, its value is equal to 55%. 

With this shield filling value, the maximal error between the 

analytical model and the 3D FE simulation is equal to 7%, as 

shown in Fig. 11.  

Fig. 11 shows that the maximal error grows with the shield 

filling. This result is predictable because the magnetic flux 

density is fixed by the external boundaries. When R1 ≈ R2 

(shield filling ≈ 100%), the flux passes through the thin band 
between these radii which increase the value of the magnetic 

field. However, with the linearized external boundary the flux 

has the opportunity to pass above and below the bulk and the 

magnetic field doesn’t increase in the same way. That’s why 
the value of the axial magnetic flux density is higher with the 

analytical model (Fig. 9). The difference between the 2D-

axisymmetric external boundary of the flux modulation 

problem and the linearized problem is acceptable until a shield 

filling of 65%. Hopefully, the electromagnetic torque is higher 

TABLE I 

DESIGN PARAMETERS OF THE SUPERCONDUCTING MACHINE 

Type Symbol Value 

Poles-pairs p 5 

HTS coil diameter 2R4 353 mm 
HTS coil length 2(Z3-Z1) 69 mm 

HTS coil thickness R4-R3 10,5 mm 
HTS bulk radius R1 40 mm 
HTS bulk center Rm 114,5 mm 

Total air-gap g 4,5 mm 
Critical current density Jc 230 A/mm² 
Outer radius copper coil Ro 145 mm 
Inner radius copper coil Ri 84 mm 
Thickness copper coil E 9,5 mm 

Width copper coil W 13 mm 
 

 
Fig. 12. Analytical and numerical results for the electromagnetic torque  

 

 
Fig. 13. Variation of the electromagnetic torque versus the air-gap length 
 

 
Fig. 14. Torque as a function of the ratio Ri/Ro 



 

for this kind of machine where the shield filling is around 

50%, which corresponds to a region where the analytical 

model is accurate.  

B. Electromagnetic torque 

The electromagnetic torque is calculated over a periodicity 

length and is shown in Fig. 12. The error between the 

analytical model and numerical simulations is lower than 4%. 

The full load condition is obtained at x=0. For this position, 

the torque reaches 79 Nm using the analytical model and 76 

Nm with the 3D FE simulations. 

By using the Laplace force calculation, the reluctance 

torque of the machine is neglected. This is not a problem for 

the studied machine because the reluctance torque is very low 

due to its large air-gap. However, this should be considered in 

a machine with a thinner air-gap [28]. 

The length of the air-gap has a significant importance on the 

performance of a superconducting machine. Fig. 13 shows the 

torque as a function of the air-gap length. It results that the 

torque decreases quickly with this length, so special care 

should be taken in reducing its value during the design. The 

power of the superconducting machine decreases by 20% 

when the air-gap increase from 1 mm (conventional machine) 

to 4,5 mm (partial superconducting machine) because of the 

thickness of the thermal insulation (cryostat and vacuum). 

This loss is compensated by the high magnetic flux density 

obtained with the HTS wire. Fig. 13 shows that the proposed 

analytical model remains accurate for large value of the air-

gap. 

The electromagnetic torque is then plotted as a function of 

the armature winding radius ratio kD=Ri/Ro. Fig. 14 shows that 

the torque has a maximum value for kD = 55%. This behavior 

is classical for an axial flux machine and can be found 

analytically [29] with a simple formula (44) which gives the 

maximum torque value for a radius ratio kD = 57.7%. 

 
3 2

m2 (1 )
i o D D

T B A R k k    (44) 

 

where Bm is the maximum value of the air-gap flux density,  

Ai is the electrical load at the mean radius,  

Ro is the outer radius of the armature winding. 

Once again, we can observe in Fig. 14 that good agreement 

is obtained between the analytical model and the 3D FE 

simulations. The analytical model is much faster than the 

numerical one. It takes only 0,5s with the proposed model for 

ten points of calculation whereas 72s is needed for the finite 

element method.  

VI. CONCLUSION 

In this paper, an analytical model for computing the 

magnetic behavior of a flux modulation superconducting 

machine is developed. The magnetic field distribution is 

obtained with two 2D axisymmetric analytical models. 

Even if the real problem is purely 3-D, this approach gives 

accurate results. We have seen that the maximal error on the 

electromagnetic torque is less than 4% for a given geometry. 

Another important result concerns the computational time. 

The torque computation obtained with the analytical is 140 

times faster than the 3-D FE simulation. This analytical model 

is a useful tool to be included in an optimization procedure.  

APPENDIX 

 

A-Unknown coefficients determination: 

From (16), we obtain a system of six equations. 

-for the mean value term: 
at z=0: 

0 0IB    

at z=Z0: 
0 0I II magnetA A     

0 1 0 0 1 0I I II I IA Z B A Z B     
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0 2 0 2 1( )
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0 2 0 0 2 0III III II IIA Z B A Z B     

at z=Z3: 
0 3 0 0III IIIA Z B    

 

 

-for harmonic terms: 
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B-Bessel function integration rules: 
2

0 2 1 2
0

( ) ( )
Y

m m
rJ r dr Y J Y    

 2 2

0 1 1 0 0 1( ) ( ) ( ) ( ) ( ) ( )
2

r
r J r dr r J r J r H r J r H r


     

where 

 ( )vH r  denotes the Struve function of order v. 

 

 

 

 



 

C-Unknown coefficient determination: 

From (32), we obtain a system of four equations. 

-for the mean value term: 
at z=0: 

0 0ID    

at z=Z3-Z1: 
0 0 0I IIC C    
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-for harmonic terms: 
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