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Abstract: In this paper, the displacement fields responsible for acoustic emission (AE), excited from
a point source in a transversely isotropic cylinder, are derived by solving the Navier-Lamé (NL)
equation. The point source as an internal defect is represented by a spatiotemporal concentrated force.
The introduction of three potentials correlated with the point source to displacement field vector
decouples the coupled NL equation in cylindrical coordinates. Under these conditions, we solve the
radial, tangential, and axial displacement fields. Analytical simulations of AE were carried out at
several point source locations. Our results demonstrate that analytical modeling is a powerful tool
for characterizing AE features generated from an internal defect source.
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1. Introduction

Acoustic emission (AE) refers to the elastic wave generated by a material as a result of
a sudden release of energy (other than heat) from localized sources within a solid. Material
degradation related to deformation and fracture development is classified as the primary
AE source, and is usually distinguished from secondary AE sources including leak and flow,
chemical reactions, and the fabrication process. Crack formation and growth are the most
important AE sources in practical non-destructive testing (NDT) investigations. The forma-
tion of a new crack face is accompanied by sudden changes in stress and displacement of
the material in the vicinity of the crack. Consequently, an elastic wave is generated from
the tip of the crack source [1]. AE testing has several unique advantages over other NDT
methods, the most significant of which is its real-time monitoring capability; this allows for
the detection of damage and degradation in various materials and structures [2–6]. AE data,
refined with appropriate algorithms [7–11], provide useful information about the source
of the emission and progression of crack growth; however, a quantitative interpretation
of the AE signal is required to understand the physical processes underlying AE features.
Analytical modeling of the AE signal is very important; however, in cylindrical structures,
it is difficult to predict the AE generated from an internal crack.

The point source, defined as a body force f acting at a point, has been adapted as an
AE excitation source in seismic displacements, crack formation and fracture, and concen-
trated vertical step force [12–16]. In the elastic field, the point source has been treated as a
concentrated time harmonic source [17]. Although the AE generated by the point source is
important for characterizing real signals observed in practical NDT investigations, theoreti-
cal modeling has been limited to spherical geometries with an infinite domain, given that a
homogeneous solution is obtainable from the three-dimensional wave equation in spherical
coordinates [12,13,17]. Most theoretical works on elastic wave propagation in cylindrical
coordinates have focused on situations with or without external perturbations [18–22]. In
cylindrical structures, the displacement field has been formulated in terms of one compres-
sion (P) potential, and two shear (vertically polarized, SV, and horizontally polarized, SH)
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potentials, by using the models proposed by Morse and Feshbach [23] and Buchwald [24],
respectively. The basic difference between the two models is that the compression and
shear parts are separated in one model, but not the other. The two models have been
examined comprehensively by Honarvar et al. [18,19] and Sakhr et al. [21,22]. In contrast to
cases that are unperturbed or perturbed by external forces, the three potentials should be
incorporated along with the concentrated force (CF) exerted by the internal defects [17,25].

In this study, a “concentrated force-incorporated potential” (CFIP) is introduced into
the displacement field on the basis of the model proposed by Morse and Feshbach [23],
and the Navier-Lamé (NL) equation is constructed (which involves the CF in a transversely
isotropic cylinder [TIC]). The CFIP allows the NL equation to be separated into three partial
differential equations (PDEs), representing the potentials for P, SV, and SH waves. As an
internal defect, the CF has both spatial and temporal properties, represented by the delta
function and harmonic oscillation of the point source, respectively. For solving the NL
equation, determining Green’s function for the delta function in cylindrical coordinates is
the first task. Mohammad et al. proposed a Green’s function for a closed cylinder, using
“the method of separation of variables” [26]. We reconstructed Green’s function for the
delta function by applying the continuity and discontinuity principles to the boundary
around the point source. Complete formation of the CF allowed us to solve the three
potentials generated by the point source in the closed cylinder. Absolute values of the
displacement fields were calculated by applying a fundamental set of boundary conditions
in the cylinder to the solutions, in which two modes of CF along the radial and axial
directions were considered. To our knowledge, no theoretical work on AE, excited by an
internal point source in cylindrical geometries, has been presented in the literature. This
paper establishes a mathematical model that provides insight into the overall process of the
AE signal from generation and propagation to reception. These studies can be employed
for evaluating the AE signal generated from an internal crack in a cylindrical structure.

2. Green’s Function

The body force arising from the point source located at x0 is mathematically formulated
in terms of an oscillating impulse with natural frequencies of the material in a given
geometry, as follows:

f = P(t)δ(x− x0)e−iωt, (1)

where P(t) is the CF vector, δ(x− x0) is the delta function, and ω is the predominant angular
frequency (ω = 2πν) of AE. Green’s function g(x; x0), as the solution of the delta function,
is defined as
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Substituting the Laplacian in cylindrical coordinates into Equation (5) gives the following:

r2

gr

∂2gr

∂r2 +
r
gr

∂gr

∂r
+

1
gθ

∂2gθ

∂θ2 +
r2

gz

∂2gz

∂z2 = 0. (7)

Letting
1
gz

∂2gz

∂z2 = κ2
z , (8)

1
gθ

∂2gθ

∂θ2 = −v2, (9)

then Equation (7) has the form

r2 ∂2gr

∂r2 + r
∂gr

∂r
+
(

κ2
zr2 − v2

)
gr = 0. (10)

The solution of Equation (8) can be formulated in two regions:

gz(z; z0) =

{
Az(z0)eκzz 0 < z < z0 < l
Bz(z0)e−κzz 0 < z0 < z < l

(11)

The continuity and discontinuity principles are applied to find coefficients Az and
Bz. The continuity principle states that Green’s function is continuous around the point
source, i.e.,

gz(z; z0)|z=z+0
= gz(z; z0)|z=z−0

. (12)

Equation (12) leads to
Az(z0)eκzz0 = Bz(z0)e−κzz0 . (13)

Although Green’s function is discontinuous at the point source, the difference in
Green’s function between the adjacent two points, z0 ± ε, around the point source is unity.
When ε becomes 0, the discontinuity principle leads to

∂gz(z; z0)

∂z

∣∣∣∣
z=z+0

− ∂gz(z; z0)

∂z

∣∣∣∣
z=z−0

= 1. (14)

As a result, we obtain

− κzBz(z0)e−κzz0 − κz Az(z0)eκzz0 = 1. (15)

From Equations (13) and (15),

Az(z0) = −
1

2κz
e−κzz0 and Bz(z0) = −

1
2κz

eκzz0 .

Equation (11) becomes

gz(z; z0) =

{
− 1

2κz
e−κz(z0−z) 0 < z < z0 < l

− 1
2κz

e−κz(z−z0) 0 < z0 < z < l
. (16)

The solution of Equation (9) can be written as

gθ(θ; θ0) =

{
Aθ(θ0) cos vθ + Bθ(θ0) sin vθ 0 < θ < θ0 < 2π
Cθ(θ0) cos vθ + Dθ(θ0) sin vθ 0 < θ0 < θ < 2π

. (17)

Applying the continuity principle to Equation (17) results in

Aθ(θ0) = Cθ(θ0) and Bθ(θ0) = Dθ(θ0). (18)
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The second restriction for gθ(θ; θ0) is the symmetry between the point source and
observation point, i.e.,

gθ(θ0; θ) = gθ(θ; θ0). (19)

Equation (19) leads to

Aθ(θ) cos vθ0 + Bθ(θ) sin vθ0 = Aθ(θ0) cos vθ + Bθ(θ0) sin vθ.

To satisfy the conservation law,

Aθ(θ0) = cos vθ0 and Bθ(θ0) = sin vθ0. (20)

Equations (18) and (20) result in

gθ(θ; θ0) = [cos vθ0 cos vθ + sin vθ0 sin vθ] = cos[v(θ − θ0)].

For a complete cylinder, gθ(θ; θ0) is periodic, with a period of 2π:

cos[v(2π + θ − θ0)] = cos[v(θ − θ0)].

Therefore,
v = 0,±1,±2, · · · .

The final form of Equation (17) is

gθ(θ; θ0) = cos[v(θ − θ0)] (v = 0,±1,±2, · · · ). (21)

The solution of Equation (10) is a typical Bessel function, given by

gr(r; r0) =

{
Avr(r0)Jv(κzr) 0 < r < r0 < a
Bvr(r0)Jv(κzr) 0 < r0 < r < a

(22)

where Jv is the first kind of Bessel function of v-th order. Note that the second kind of
Bessel function is excluded because it has a singularity at the origin, which is included
in the domain of the cylinder. Applying the continuity principle to Equation (22), i.e.,
gr(r; r0)|r=r+0

= gr(r; r0)|r=r−0
, results in

Avr(r0)Jv(κzr0) = Bvr(r0)Jv(κzr0).

We find
Avr(r0) = Bvr(r0), (23)

where r0 =
√

x2
0i + x2

0j. In addition, applying the symmetry principle to Equation (22) gives

gr(r0; r) = gr(r; r0), with

Avr(r)Jv(κzr0) = Avr(r0)Jv(κzr).

we obtain
Avr(r0) = Jv(κzr0). (24)

Substituting Equations (23) and (24) into Equation (22) gives

gr(r; r0) = Jv(κzr0)Jv(κzr) (0 < r < a). (25)

Applying the boundary condition, i.e.,

gr(r; r0)|r=a−r0
= 0, gr(r; r0)|r=r0

6= 0,
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to Equation (25) gives Jv[κz(a− r0)] = 0. Denoting the n-th root of the first kind of Bessel
function of the v-th order as rvn, i.e., Jv(rvn) = 0, then rvn = κz(a− r0) (n = 1, 2, · · ·).
Since the first root of the first kind of Bessel function is most significant, we select n = 1.

κz =
rv1

a− r0
. (26)

Introducing a parameter, Av1, to Equation (25) gives

gr(r; r0) = Av1 Jv

(
rv1

a− r0
r0

)
Jv

(
rv1

a− r0
r
)

(0 < r < a). (27)

From Equations (16), (21) and (27), the formula of the Green’s function for the Kro-
necker delta function becomes

g(r, θ, z; r0, θ0, z0) = Av1 Jv

(
rv1

a−r0
r0

)
Jv

(
rv1

a−r0
r
)

cos[v(θ − θ0)]

×

 −
a−r0
2rv1

e−
rv1

a−r0
(z0−z) 0 < z < z0 < l

− a−r0
2rv1

e−
rv1

a−r0
(z−z0) 0 < z0 < z < l

.
(28)

The next task is to find the constant Av1 in Equation (28). Equation (4) is rewritten as
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2gr(r; r0)gθ(θ; θ0)gz(z; z0)

= gθ gz
r

∂
∂r

(
r ∂gr

∂r

)
+ gr gz

r2
∂2gθ

∂θ2 + grgθ
∂2gz
∂z2

= δ(r−r0)δ(θ−θ0)δ(z−z0)
r .

(29)

First, solve δ(z− z0) by integrating both sides over (0, l)∫ z=l
z=0

[
gθ gz

r
∂
∂r

(
r ∂gr

∂r

)
+ gr gz

r2
∂2gθ

∂θ2 + grgθ
∂2gz
∂z2

]
dz

= grgθ

∫ z=l
z=0

∂2gz
∂z2 dz.

Therefore,

grgθ
∂gz

∂z

∣∣∣∣z=l

0
=

δ(r− r0)δ(θ − θ0)

r
. (30)

From Equations (16), (26), and (30), we obtain

grgθ
∂gz
∂z

∣∣∣z=l

0
= grgθ

[
− 1

2 e−
rv1

a−r0
(z0−z)

∣∣∣∣z0

0
+ 1

2 e−
rv1

a−r0
(z−z0)

∣∣∣∣l
z0

]
= gr gθ

2

[
e−

rv1
a−r0

z0 + e−
rv1

a−r0
(l−z0) − 2

]
,

and
grgθ

2

[
e−

rv1
a−r0

z0 + e−
rv1

a−r0
(l−z0) − 2

]
=

δ(r− r0)δ(θ − θ0)

r
. (31)

Substituting Equation (21) into the above equation and integrating both sides over
(0, 2π) gives

gr
2

[
e−

rv1
a−r0

z0 + e−
rv1

a−r0
(l−z0) − 2

]
∑∞

v=−∞
∫ 2π

0 cos[v(θ − θ0)]dθ

= δ(r−r0)
r

∫ 2π
0 δ(θ − θ0)dθ.

Since ∫ 2π

0
cos[v(θ − θ0)]dθ =

{
2π if θ = θ0
0 otherwise

,
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the above equation is given by

πgr

[
e−

rv1
a−r0

z0 + e−
rv1

a−r0
(l−z0) − 2

]
=

δ(r− r0)

r
. (32)

Substituting Equation (27) into Equation (32) results in

π

[
e−

rv1
a−r0

z0 + e−
rv1

a−r0
(l−z0) − 2

]
Av1 Jv

(
rv1

a− r0
r0

)
Jv

(
rv1

a− r0
r
)
=

δ(r− r0)

r
. (33)

Multiplying both sides of Equation (33) by rJp

(
rv1

a−r0
r
)

and integrating over (0, a− r0)
gives

π

[
e−

rv1
a−r0

z0 + e−
rv1

a−r0
(l−z0) − 2

]
×Av1 Jv

(
rv1

a−r0
r0

) ∫ a−r0
0 Jv

(
rv1

a−r0
r
)

Jp

(
rv1

a−r0
r
)

rdr

=
∫ a

0 δ(r− r0)Jp

(
rv1

a−r0
r
)

d.

(34)

Given [26]

∫ a−r0

0
Jµ

(
αµ

a− r0
r
)

Jν

(
αν

a− r0
r
)

rdr =
(a− r0)

2

2
[

Jµ+1
(
αµ

)]2
δµν

and ∫ a−r0

0
δ(r− r0)Jµ(r)dr = Jµ(r0),

Equation (34) can be rewritten as

π
[
e−rv1z0/(a−r0) + e−rv1(l−z0)/(a−r0) − 2

]
Av1 Jv

(
rv1

a−r0
r0

)
(a−r0)

2

2 [Jv+1(rv1)]
2

= Jv

(
rv1

a−r0
r0

)
.

(35)

From Equation (35), we obtain the constant

Av1 =
2

π(a− r0)
2
[
e−rv1z0/(a−r0) + e−rv1(l−z0)/(a−r0) − 2

]
[Jv+1(rv1)]

2
. (36)

Finally, we obtain the Green’s function for the Kronecker delta function

g(r, θ, z; r0, θ0, z0) = Gv1 Jv

(
rv1

a−r0
r0

)
Jv

(
rv1

a−r0
r
)
{cos[v(θ − θ0)]}

×

 e−
rv1(z0−z)

a−r0 (0 < z < z0 < l)

e−
rv1(z−z0)

a−r0 (0 < z0 < z < l)
,

(37)

where

Gv1 = − a− r0

2rv1
Av1 = − 1

π(a− r0)rv1
[
e−rv1z0/(a−r0) + e−rv1(l−z0)/(a−r0) − 2

]
[Jv+1(rv1)]

2 . (38)

For an azimuthally independent force (v = 0), Equation (37) becomes

g(r, z; r0, z0)= G1 J0

(
r01

a− r0
r
)

, (39)
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where

G1 = −
J0

(
r01

a−r0
r0

)
π(a−r0)r01[e−rv1z0/(a−r0)+e−rv1(l−z0)/(a−r0)−2][J1(r01)]

2

×

 e−
r01(z0−z)

a−r0 (0 < z < z0 < l)

e−
r01(z−z0)

a−r0 (0 < z0 < z < l)
.

(40)

For convenience, we introduce new coordinates, defined as ξ = r− r0, ϑ = θ − θ0 and
η = z− z0, where the location of the point source is the new origin at ξ0 = 0, ϑ0 = 0 and
η0 = 0. Thus, Equations (39) and (40) are rewritten as

g(ξ, ϑ, η) = G1 J0

(
r01

a− r0
ξ

)
, (41)

G1 = −
J0

(
r01

a−r0
ξ0

)
π(a−r0)r01[e−rv1z0/(a−r0)+e−rv1(l−z0)/(a−r0)−2][J1(r01)]

2

×

 e
r01η
a−r0 ( z0 − l < η < 0)

e−
r01η
a−r0 (0 < η < l − z0)

.
(42)

3. Displacement Fields Generated by a Point Source

The NL equation governing a wave in an elastic and homogeneous medium subject to
a local body force f can be written in vector form, as follows [27]

(λ + 2µ)
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∂2u
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where u is the displacement vector, λ and µ are the Lamé constants, and ρ is the density of
the media. In this paper, the displacement field u in cylindrical coordinates proposed by
Morse and Feshbach [23] is given as

u =
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where Φ is a scalar potential for the compressional wave (P), Xêz is a vector potential for
the SH wave, Ψêz is a vector potential for the SV wave, and a is the radius of the cylinder.
When the displacement field is generated by an intrinsic point defect, the three potentials
are correlated with the force vector P (referred to as CFIP) as

Φ =
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where φ, χ and ψ are unknown scalar functions, and the negative sign for the SH potential
is used for further applications. Factoring the spatial and temporal parts in the potentials
leads to

φ(x, t; x0) = φ(x; x0)e−iωt, (48)

χ(x, t; x0) = χ(x; x0)e−iωt, (49)

ψ(x, t; x0) = ψ(x; x0)e−iωt, (50)

The displacement vector can be written as:

u(x, t; x0, t0) = u(r, θ, z, t; r0, θ0, z0, t0)
= [
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where φ = φ(x; x0), χ = χ(x; x0) and ψ = ψ(x; x0). By substituting Equation (51) into
Equation (43) and applying some manipulation, such as
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where Φ is a scalar potential for the compressional wave (P),  is a vector potential for 
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When the displacement field is generated by an intrinsic point defect, the three potentials 
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where φ, χ and ψ are unknown scalar functions, and the negative sign for the SH potential 
is used for further applications. Factoring the spatial and temporal parts in the potentials 
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In the above equation, the components in the gradient, the curl, and the curl of curl, 
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Introducing the longitudinal wave (P) speed
(
cP =

√
λ + 2µ/ρ

)
and transverse wave

(S) speed
(
cS =

√
µ/ρ

)
into the above equations leads to
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(52)

In the above equation, the components in the gradient, the curl, and the curl of curl, 
can be independently zero ( + 2 ) + + = 0, (53) 

2ψ + k2
s ψ = 0, (57)
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φ(ξ, ϑ, η) = φr(ξ)φθ(ϑ)φz(η), (59)

χ(ξ, ϑ, η) = χr(ξ)χθ(ϑ)χz(η), (60)

ψ(ξ, ϑ, η) = ψr(ξ)ψθ(ϑ)ψz(η). (61)

First, let us solve PDE of Equation (56). Using a similar method to that applied to the
case of Green’s function, the axial and the angular parts can be obtained as

φz(η) = Aze−ikηη , (62)

φθ(ϑ) = Amθ cos mϑ + Bmθ sin mϑ (m = 0,±1,±2, · · ·), (63)

respectively. Substituting the Laplacian operator and Equations (41), (59), (62), and (63),
and introducing some straightforward algebra to Equation (56) leads to

∂2φr

∂ξ2 +
1
ξ

∂φr

∂ξ
+

(
α2 − m2

ξ2

)
φr = −

k2
p

ρω2

(
1

φϑφη

)
G1 J0

(
r01

a− r0
ξ

)
, (64)

where α2 = k2
p − k2

η . Equation (64) is a second-order linear nonhomogeneous PDE, the
solution of which is a linear combination of the homogeneous (φrh) and particular (φrp)
solutions. The homogeneous solution of Equation (64) is

φrh =

{
Amr

[
Jm(αξ)
Im(αξ)

]
+ Bmr

[
Ym(αξ)
Km(αξ)

]}
(α2 ≥ 0)
(α2 < 0)

,
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where Jm and Im are the first kind and its modified Bessel functions, respectively, and Ym
and Km are the second kind and its modified Bessel functions, respectively. The Bessel
functions of the second kind are excluded due to the singularity at the origin included in
the domain of the cylinder. For the case of α2 ≥ 0,

φrh = Amr Jm(αξ). (65)

According to Korenev’s solutions [28], the particular solution of the inhomogeneous
equation has the form

φrp = −
k2

p

ρω2

(
1

φϑφη

)
G1

1

1−
[

r01
α(a−r0)

]2 Jm

[
r01

α(a− r0)
ξ

]
,

r01

α(a− r0)
6= 1. (66)

The linear combination of Equations (65) and (66) results in

φ(ξ, ϑ, η) = φr(ξ)φθ(ϑ)φz(η)

= [Amr Jm(αξ)][Amθ cos(mϑ)]
(

Aze−ikηη
)
− k2

p
ρω2 G1

1

1−
[

r01
α(a−r0)

]2 Jm

[
r01

α(a−r0)
ξ
]
.

For further applications, the above equation is rewritten as

φ(ξ, ϑ, η) = Am Jm(αξ) cos(mϑ)e−ikηη −
k2

p

ρω2 G1
1

1−
[

r01
α(a−r0)

]2 Jm

[
r01

α(a− r0)
ξ

]
, (67)

where the coupling constant Am = Amr Amθ Az.
Following a similar procedure, the functions of χ(ξ, ϑ, η) and ψ(ξ, ϑ, η) can be obtained

as

χ(ξ, ϑ, η) = Bm Jm(βξ) sin(mϑ)e−ikηη −
k2

p

ρω2 G1
1

1−
[

r01
β(a−r0)

]2 Jm

[
r01

β(a− r0)
ξ

]
, (68)

ψ(ξ, ϑ, η) = Cm Jm(βξ) cos(mϑ)e−ikzη . (69)

As shown in Figure 1, we introduce force vector P acting in the radial and the axial
directions to solve for Φ. Equation (45) can be rewritten as

Φ =
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Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 21 
 

= [𝐴𝑚𝑟𝐽𝑚(𝛼𝜉)][𝐴𝑚𝜃cos(𝑚𝜗)](𝐴𝑧𝑒
−𝑖𝑘𝜂𝜂) −

𝑘𝑝
2

𝜌𝜔2 𝐺1
1

1−[
𝑟01

𝛼(𝑎−𝑟0)
]
2 𝐽𝑚 [

𝑟01

𝛼(𝑎−𝑟0)
𝜉]. 

For further applications, the above equation is rewritten as 

𝜙(𝜉, 𝜗, 𝜂) = 𝐴𝑚 𝐽𝑚(𝛼𝜉)cos(𝑚𝜗)𝑒−𝑖𝑘𝜂𝜂 −
𝑘𝑝

2

𝜌𝜔2 𝐺1
1

1−[
𝑟01

𝛼(𝑎−𝑟0)
]
2 𝐽𝑚 [

𝑟01

𝛼(𝑎−𝑟0)
𝜉], (67) 

where the coupling constant 𝐴𝑚 = 𝐴𝑚𝑟𝐴𝑚𝜃𝐴𝑧. 

Following a similar procedure, the functions of 𝜒(𝜉, 𝜗, 𝜂) and 𝜓(𝜉, 𝜗, 𝜂) can be ob-

tained as 

𝜒(𝜉, 𝜗, 𝜂) = 𝐵𝑚𝐽𝑚(𝛽𝜉)sin(𝑚𝜗)𝑒−𝑖𝑘𝜂𝜂 −
𝑘𝑝

2

𝜌𝜔2 𝐺1
1

1−[
𝑟01

𝛽(𝑎−𝑟0)
]
2 𝐽𝑚 [

𝑟01

𝛽(𝑎−𝑟0)
𝜉], (68) 

𝜓(𝜉, 𝜗, 𝜂) = 𝐶𝑚 𝐽𝑚(𝛽𝜉) cos(𝑚𝜗) 𝑒−𝑖𝑘𝑧𝜂 . (69) 

As shown in Figure 1, we introduce force vector P acting in the radial and the axial 

directions to solve for . Equation (45) can be rewritten as 

𝛷 = 𝜵 ∙ 𝑷𝜙 =
𝜕(𝑷𝜙)

𝜕𝜉𝑖
+

𝜕(𝑷𝜙)

𝜕𝜉𝑗
+

𝜕(𝑷𝜙)

𝜕𝜂
, (70) 

where 𝜉𝑖 = 𝑥𝑖 − 𝑥0𝑖, 𝜉𝑗 = 𝑥𝑗 − 𝑥0𝑗, and 𝜂 = 𝑥𝑧 − 𝑥0𝑧. 

 

Figure 1. Two forms of the point source vector along the xj and xz directions used in analytical mod-

eling. 

For 𝑷 = 𝑃𝑗, 

𝛷𝑗 = 𝑃𝑗𝛯
𝜕𝜙

𝜕𝜉
, (71) 

where 

𝛯 =
𝜉𝑖

𝜉
𝛿𝑖𝑗 +

𝜉𝑗

𝜉
=

𝑎 cos𝜑−𝑥0𝑖
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2+𝜉𝑗
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𝛿𝑖𝑗 +

𝑎 sin𝜑−𝑥0𝑗

√𝜉𝑖
2+𝜉𝑗

2 
   (72) 
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For 𝑷 = 𝑃𝑧, 

𝛷𝑧 = 𝑃𝑧
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. (73) 
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𝑟01

𝛼(𝑎−𝑟0)
]
2

𝜕𝐽𝑚[
𝑟01
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𝑟01
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]
2 𝐽𝑚 [

𝑟01
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In Equation (75), 

Figure 1. Two forms of the point source vector along the xj and xz directions used in analytical modeling.



Appl. Sci. 2022, 12, 5272 10 of 21

For P = Pj,

Φj = PjΞ
∂φ

∂ξ
, (71)

where

Ξ =
ξi
ξ

δij +
ξ j

ξ
=

a cosϕ− x0i√
ξ2

i + ξ2
j

δij +
a sinϕ− x0j√

ξ2
i + ξ2

j

(72)

ϕ is the angle between an observation point and the xi axis.
For P = Pz,

Φz = Pz
∂φ

∂η
. (73)

By substituting Equation (67) into Equations (71) and (73), we obtain

Φj = PjΞ

Am
∂Jm(αξ)

∂ξ
cos(mϑ)e−ikη η −

k2
p

ρω2 G1
1

1−
[

r01
α(a−r0)

]2

∂Jm

[
r01

α(a−r0)
ξ
]

∂ξ

, (74)

Φz = Pz

(−ikη

)
Am Jm(αξ) cos(mϑ)e−ikzη −

k2
p

ρω2
∂G1

∂η

1

1−
[

r01
α(a−r0)

]2 Jm

[
r01

α(a− r0)
ξ

]. (75)

In Equation (75),

∂G1
∂η = −

J0

(
r01

a−r0
ξ0

)
π(a−r0)r01

[
e
− r01z0

a−r0 +e
− r01(l−z0)

a−r0 −2

]
[J1(r01)]

2

×


(

r01
a−r0

)
er01η/(a−r0) z0 − l < η < 0(

− r01
a−r0

)
e−r01η/(a−r0) 0 < η < l − z0

.

(76)

From Equations (46) and (68), we obtain the SH potential:

Xêz = −
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× Pχ

= −
[(

∂Pkχ
∂ξ j
− ∂Pjχ

∂η

)
î +
(

∂Piχ
∂η −

∂Pkχ
∂ξi

)
ĵ +
(

∂Pjχ

∂ξi
− ∂Piχ

∂ξ j

)
êz

]
= −

(
∂Pjχ

∂ξi
− ∂Piχ

∂ξ j

)
êz

For P = Pj,

Xj = −Pj

(
∂χ

∂ξi
− δji

∂χ

∂ξ j

)
= −Pj

(
ξi
ξ
−

ξ j

ξ
δji

)
∂χ

∂ξ
= −PjΣ

∂χ

∂ξ
,

Xj = −PjΣ

Bm
∂Jm(βξ)

∂ξ
sin(mϑ)e−ikzη −

k2
p

ρω2 G1
1

1−
[

r01
β(a−r0)

]2

∂Jm

[
r01

β(a−r0)
ξ
]

∂ξ

. (77)

In the above equation,

Σ =
ξi
ξ
−

ξ j

ξ
δij =

a cosϕ− x0i√
ξ2

i + ξ2
j

−
a sinϕ− x0j

ξ
δij. (78)

For P = Pz,

Xz = −Pz

(
∂χ

∂ξi
δiz −

∂χ

∂ξ j
δjz

)
= 0. (79)
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Similarly, for the SV potential, we find

Ψj = −PjΣCm
∂Jm(βξ)

∂ξ
cos(mϑ)e−ikzη , (80)

Ψz = 0. (81)

All three potentials for the P, SH, and SV waves have now been completely determined,
and we can thus derive the displacement components of ur, uθ and uz in terms of the
three potentials. The relations between the displacements and potentials are given in
Appendix A. First, let us derive the components generated by Pj. It can be easily shown
that by substituting Equations (74), (77), and (80) into Equations (A5)–(A7), and taking
the location of the point source as the origin (ξ = 0, ϑ = 0, η = 0), the displacement d
component is reduced to

udj = Pj

(
AmjF1

dj + BmjF2
dj + CmjF3

dj + F4
dj

)
e−iωt, (82)

where subscript d represents the radial (r), the tangential (θ), or the axial (z) components.
For the radial component urj,

F1
rj =

[
Ξ

∂2 Jm(αξ)

∂ξ2

]
cos(mϑ)e−ikzη , (83)

F2
rj =

mΣ
ξ

∂Jm(βξ)

∂ξ
cos(mϑ)e−ikzη , (84)

F3
rj = ikzaΣ

[
∂2 Jm(βξ)

∂ξ2 cos(mϑ)

]
e−ikzη , (85)

F4
rj = −Ξ

(
k2

p

ρω2

)
G1

1

1−
[

r01
α(a−r0)

]2

∂2 Jm

[
r01

α(a−r0)
ξ
]

∂ξ2

. (86)

For the tangential component uθ j,

F1
θ j = −

mΞ
ξ

∂Jm(αξ)

∂ξ
sin(mϑ)e−ikzη , (87)

F2
θ j = −

[
Σ

∂2 Jm(βξ)

∂ξ2

]
sin(mϑ)e−ikzη , (88)

F3
θ j = −

ikzamΣ
ξ

∂Jm(βξ)

∂ξ
sin(mϑ)e−ikzη , (89)

F4
θ j = −Σ

(
k2

s
ρω2

)G1
1

1−
[

r01
β(a−r0)

]2

∂2 Jm

[
r01

β(a−r0)
ξ
]

∂ξ2


. (90)

For the axial component uzj,

F1
zj = −ikz Ξ

∂Jm(αξ)

∂ξ
cos(mϑ)e−ikzη , (91)

F2
zj = 0, (92)

F3
zj = −aΣ

{
∂3 Jm(βξ)

∂ξ3 +
1
ξ

∂2 Jm(βξ)

∂ξ2 − m2

ξ2
∂Jm(βξ)

∂ξ

}
cos(mϑ)e−ikzη , (93)
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F4
zj = −Ξ

(
k2

p

ρω2

)∂G1

∂η

1

1−
[

r01
α(a−r0)

]2

∂Jm

[
r01

α(a−r0)
ξ
]

∂ξ


. (94)

Following similar procedures, the three displacements generated by Pz can be derived
by substituting Equations (75), (79), and (81) into Equations (A6)–(A8):

udz = Pz

(
AmzF1

dz + BmzF2
dz + CmzF3

dz + F4
dz

)
e−iωt (95)

For the radial component urz,

F1
rz = −ikz

∂Jm(αξ)

∂ξ
cos(mθ)e−ikzη , (96)

F2
rz = F3

rz = 0, (97)

F4
rz = −

(
k2

p

ρω2

)∂G1

∂η

1

1−
[

r01
α(a−r0)

]2

∂Jm

[
r01

α(a−r0)
ξ
]

∂ξ


. (98)

For the tangential component uθz,

F1
θz =

ikzm
ξ

Jm(αξ) sin(mϑ)e−ikzη , (99)

F2
θz = F3

θz = F4
θz = 0. (100)

For the axial component uzz,

F1
zz = −k2

z Jm(αξ) cos(mϑ)e−ikzη , (101)

F2
zz = F3

zz = 0, (102)

F4
zz = −

(
k2

p

ρω2

)∂2G1

∂η2
1

1−
[

r01
α(a−r0)

]2

∂Jm

[
r01

α(a−r0)
ξ
]

∂ξ


. (103)

The only remaining task to complete the displacement fields is to determine the
coupling constants Am, Bm, and Cm. These constants can be determined directly by applying
a fundamental set of linear elastic boundary problems. The outer surface of the cylinder
studied in the present paper is stress-free. Thus, the following stress components are zero
under these circumstances, i.e., ξ = a− r0:

σrr = σrθ = σrz = 0. (104)

Substituting Equations (A17)–(A21) into Equation (104) yields the following algebraic
equations  a11 f a12 f a13 f

a21 f a22 f a23 f
a31 f a32 f a33 f

 Am f
Bm f
Cm f

 =

 b1 f
b2 f
b3 f

, (105)

where f = j for Pj and f = z for Pz. The elements in Equation (105) are given in Appendix A.
For Pj, the elements of b1j, b2j and b3j are non-zero; therefore, the coupling constants can be
determined by solving Equation (105).

The CF in Equations (1) and (43) is the force impulse defined as

P(t) = P0t exp(−bt), (106)
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where P0 and b are parameters that determine the amplitude and the duration of the
wave, respectively [29]. The arrival time τ of the impulse at the position

(
ξi, ξ j, η

)
must be

considered, since the force impulse is acting in the f direction at position ξi = ξ j = 0 and
η = 0 at t = 0. Replacing t with (t − τ) yields

Pf (t− τ) = P0, f (t− τ)e−b(t−τ). (107)

The displacement components generated by the Φ f potential, and the X f and Ψ f po-
tentials, correspond to the compressional (P), and the shear (SH and SV) waves, respectively;
therefore, the arrival times of the two waves are given as

τP =

√
ξ2

i + ξ2
j + η2

cP
, τS =

√
ξ2

i + ξ2
j + η2

cS
, (108)

where cP and cS are the velocities of the P and S waves, respectively. The displacements
generated by Pf can be rewritten as

ur f =
[

Pf (t− τP)
(

Am f F1
r f + F4

r f

)
+ Pf (t− τs)

(
Bm f F2

r f + Cm f F3
r f

)]
e−iωt, (109)

uθ f =
[

Pf (t− τP)
(

Am f F1
θ j

)
+ Pf (t− τs)

(
Bm f F2

θ f + Cm f F3
θ f + F4

θ f

)]
e−iωt, (110)

uz f =
[

Pf (t− τP)
(

Am f F1
z f + F4

z f

)
+ Pf (t− τs)

(
Bm f F2

z f

)]
e−iωt. (111)

Furthermore, the P, SH, and SV waves can be obtained from Equations (109)–(111) as

uP
f = Pf (t− τP)

(
Am f F1

d f + F4
r f

)
e−iωt (d = r, z and θ), (112)

uSV
f = Pf (t− τS)

(
Cm f F3

d f

)
e−iωt (d = r, z and θ), (113)

uSH
f = Pf (t− τS)

(
Bm f F2

d f + F4
θ f

)
e−iωt (d = r, z and θ). (114)

4. Simulation

In this study, we consider only the azimuthal dependence of the wave propagation arising
entirely from the direction of the force vector, m = 0. A stainless-steel (SS) cylinder (a = 0.50 m,
l = 2.0 m, ρ = 7.80× 103 kg/m3, cP = 5.98 km/s, and cS = 3.30 km/s) was used as the test spec-
imen. Stiffness parameters (c11 = c22 = c33 = 2.086× 1011, c12 = c13 = c23 = 1.465× 1011,
c44 = c55 = c66 = 1.269× 1011 N m−2) can be found for austenitic stainless steel [30].
Previously, the natural frequencies of SS active on AE in the range of 0–300 kHz were
determined experimentally by a tensile test (Appendix B). The frequency of ν = 155.4 kHz
(the angular frequency ω = 2πν) was found to be predominant.

First, we determined kz by applying the boundary conditions to Equations (A20) and
(A22) which were associated with the displacements due to Pz. From Equation (105), two
solutions of A0 were obtained, as follows:

A1
0z =

b1z
a11z

or A2
0z =

b3z

a31z
(115)

since a13z = a33z = 0.
When m = 0,

a11z = ikz

[
c13k2

z J0(αξ)− c12
ξ

∂J0(αξ)
∂ξ − c11

∂2 J0(αξ)
∂ξ2

]
e−ikzη

= ikz

{
c13k2

z J0(αξ) + c12
ξ αJ1(αξ)− c112

(
α
2
)2
[−J0(αξ) + J2(αξ)]

}
e−ikzη ,

(116)
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b1z = −
(

k2
p

ρω2

) 1

1−
[

r01
α(a−r0)

]2


c11

∂G1
∂η

∂2 J0

[
r01

α(a−r0)
ξ

]
∂ξ2 + c12

1
ξ

∂G1
∂η

∂J0

[
r01

α(a−r0)
ξ

]
∂r

+ c13
∂3G1
∂η3 J0

[
r01

α(a−r0)
ξ
]}

= −
(

k2
p

ρω2

) 1

1−
[

r01
α(a−r0)

]2

〈c11
∂G1
∂η 2

[
r01

2α(a−r0)

]2{
−J0

[
r01

α(a−r0)
ξ
]
+ J2

[
r01

α(a−r0)
ξ
]}

−c12
1
ξ

∂G1
∂η

r01
α(a−r0)

J1

[
r01

α(a−r0)
ξ
]
+ c13

∂3G1
∂η3 J0

[
r01

α(a−r0)
ξ
]
〉,

(117)

a31z = c44k2
zαJ1(αξ)e−ikzη , (118)

b3z = −c44

(
k2

p
ρω2

) ∂2G1
∂η2

1

1−
[

r01
α(a−r0)

]2 2
∂J0

[
r01

α(a−r0)
ξ

]
∂ξ


= 2c44

(
k2

p
ρω2

)
∂2G1
∂η2

1

1−
[

r01
α(a−r0)

]2
r01

α(a−r0)
J1

[
r01

α(a−r0)
ξ
]
.

(119)

In Equations (117) and (119), the partial derivatives of G1 with respect to η can easily
be obtained from Equation (42). On the circumference, ξ = a− r0 and η = l− z0, we solved
the roots of the function

f (kz) =
b1z
a11z
− b3z

a31z
= 0, (120)

as a function of the shortest distance from the point source to the end plate of the cylinder
(η) at a given ξ. It should be noted that f (kz) is independent of Ξ and Σ. Figure 2 shows
the η dependence of three roots (n = 1–3) of Equation (120) for r0 = 0

(
x0i = x0j = 0 m

)
and 0.25

(
x0i = 0, x0j = 0.25 m

)
. In the simulation, we selected the first root (n = 1) at the

given r0 and z0 values.
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and (b) r0 = 0.25 m

(
x0i = 0, x0j = 0.25, z0 = 1 m

)
.

Next, we determined P0 and b in Equation (107). The envelope of a given wave was
evaluated by fitting its normalized form to determine b. As shown in Figure 3, when
b = 6.0 × 104 s−1, the duration (∆τ) of the wave was approximately 1 ms. By increasing
the b value, the duration of the envelope decreased exponentially at b = 4.0 × 105 s−1 with
∆τ ∼= 25 µs. In the simulation, the force exerted by the point source was fixed to 1 N with
P0 = 1.0 × 1010 N s−1 and b = 1.0 × 105 s−1.

In the simulation two positions of the point source of 1 N were considered, with
coordinates of (0 m, 0 m, 1 m) and (0 m, 0.25 m, 1 m). Figure 4a shows the displacements,
and their wave properties, at the (0.5 m, 45◦, 1 m) position, generated by the Pf point
source located at the center of the cylinder (0 m, 0 m, 1 m). The Pj excitation produces an
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axial displacement that is stronger than the radial and tangential displacements. These
displacements result in the P wave being the main wave, with a minor SH wave and very
weak SV wave (Figure 4b). As shown in Figure 4c, the displacement features generated
by the Pz excitation differ significantly from those generated by the Pj excitation. For the
Pj excitation, the maximum values of urj and uzj at the (0.5 m, 45◦, 1 m) position were
0.29 and 0.71 nm, respectively, whereas for the Pz excitation, they were 28.1 and 5.0 nm,
respectively. The amplitudes of the displacements due to the Pz excitation were much
stronger than those due to the Pj excitation. It should be noted that the Pz excitation
produces only the P wave (Figure 4d). The angular dependence of the displacement was
also calculated (Figure 5). When the point source is located at the center of the circular
plane, the angular dependences of urj, uzj and utj arise from only Ξ and Σ as defined in
Equations (72) and (78), respectively. For Pz excitation, the displacements of urz and uzz are
free from these factors. When the distances from the point source to the circumference are
not equivalent, the angular dependences of the radial and axial displacements are highly
significant. These effects are due not only to Ξ and Σ but also the superposition of the
Bessel functions involved in the displacement equations. At a certain angle, some aij values
in Equation (105) become too small to cause the sudden increase in displacement.
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5. Conclusions

In this paper, we present a mathematical model for AE generated by a point source in
a TIC. The point source as the CF vector is a model for an initiation state of crack formation
in a solid medium. In the cylindrical system, the displacement field vector is very complex:
compressional (P), and vertical and horizontal shear (SV and SH) wave potentials are cou-
pled. Introducing CFIPs into the NL equation leads to the solutions of the radial, tangential,
and axial displacements in the cylindrical system. The solutions obtained in this study
can be used for analyzing experimental data for the NDT of cylinders. In the near future,
similar mathematical models will be developed for shells and multilayered cylinders.
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Appendix A

Some gradient, divergence and curl operators on the potentials are as follows:
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the three potentials generated by the point source in the closed cylinder. Absolute values 
of the displacement fields were calculated by applying a fundamental set of boundary 
conditions in the cylinder to the solutions, in which two modes of CF along the radial and 
axial directions were considered. To our knowledge, no theoretical work on AE, excited 
by an internal point source in cylindrical geometries, has been presented in the literature. 
This paper establishes a mathematical model that provides insight into the overall process 
of the AE signal from generation and propagation to reception. These studies can be em-
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2. Green’s Function 
The body force arising from the point source located at  is mathematically formu-

lated in terms of an oscillating impulse with natural frequencies of the material in a given 
geometry, as follows: = ( ) ( − ) , (1)

where P(t) is the CF vector, ( − ) is the delta function, and ω is the predominant 
angular frequency ( = 2 ) of AE. Green’s function ( ; ), as the solution of the 
delta function, is defined as ( ; ) = ( − ). (2)

The force can be rewritten as = ( ; ) = ∙  ( ; ) − × × ( ; ) . (3)

In cylindrical coordinates, Equation (2) is expressed as ( , , ; , , ) = ( ) ( ) ( ).  (4)

If − ≠ 0, − ≠ 0, and − ≠ 0, ( ; ) = 0. (5)

Green’s function is separable in a cylindrical coordinate system as 

Φ =
∂Φ
∂r

r̂ +
1
r

∂Φ
∂θ

θ̂+
∂Φ
∂z

ẑ, (A1)
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× (Xêz) =
[

1
r

∂(Xêz)z
∂θ − ∂(Xêz)θ

∂z

]
r̂ +

[
∂(Xêz)r

∂z − ∂(Xêz)z
∂r

]
θ̂

+ 1
r

{
∂[r(Xêz)θ ]

∂r − ∂(Xêz)r
∂θ

}
ẑ = 1

r
∂X
∂θ r̂− ∂X

∂r θ̂,
(A2)
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×
(

1
r

∂Ψ
∂θ r̂− ∂Ψ

∂r θ̂
)

=

[
− ∂(− ∂Ψ

∂r )
∂z

]
r̂ +

[
∂( 1

r
∂Ψ
∂θ )

∂z

]
θ̂+ 1

r

[
∂[r(− ∂Ψ

∂r )]
∂r − ∂( 1

r
∂Ψ
∂θ )

∂θ

]
ẑ

=
(

∂2Ψ
∂r∂z

)
r̂ +

(
1
r

∂2Ψ
∂θ∂z

)
θ̂− 1

r

(
∂Ψ
∂r + r ∂2Ψ

∂r2 + 1
r

∂2Ψ
∂θ2

)
ẑ

(A3)

Substituting the above equations into Equation (44) gives

u =
(

∂Φ
∂r + 1

r
∂X
∂θ + a ∂2Ψ

∂r∂z

)
r̂ +

(
1
r

∂Φ
∂θ + ∂X

∂r + a 1
r

∂2Ψ
∂θ∂z

)
θ̂

+
[

∂Φ
∂z − a

(
∂2Ψ
∂r2 + 1

r
∂Ψ
∂r + 1

r2
∂2Ψ
∂θ2

)]
ẑ.

(A4)

From Equation (A5), we obtain the displacement components as

ur =
∂Φ
∂r

+
1
r

∂X
∂θ

+ a
∂2Ψ
∂r∂z

, (A5)

uθ =
1
r

∂Φ
∂θ

+
∂X
∂r

+ a
1
r

∂2Ψ
∂θ∂z

, (A6)

uz =
∂Φ
∂z
− a
(

∂2Ψ
∂r2 +

1
r

∂Ψ
∂r

+
1
r2

∂2Ψ
∂θ2

)
, (A7)

in which ur, uθ and uz denote the radial, tangential, and axial displacements, respectively.
The radial component can be obtained by substituting Equations (71), (77), and (79) into
Equation (A6) in the (ξ, ϑ, η) coordinates.

urj =
∂Φj
∂ξ + 1

ξ

∂Xj
∂ϑ + a

∂2Ψj
∂ξ∂η

= Pj

〈
Ξ

Am cos(mϑ)e−ikzη ∂2 Jm(αξ)
∂ξ2 −

(
k2

p
ρω2

)
G1

1

1−
[

r01
α(a−r0)

]2

∂2 Jm

[
r01

α(a−r0)
ξ

]
∂ξ2


+mΣ

ξ

[
Bm

∂Jm(βξ)
∂ξ cos(mϑ)e−ikzη

]
+ a(ikz)ΣCm

[
∂2 Jm(βξ)

∂ξ2 cos(mϑ)
]
〉e−ikzηe−iωt,

(A8)

where ∂Ξ
∂ξ
∼= 0 and ∂Σ

∂ξ
∼= 0. By rearranging the above equation in terms of the Am, Bm and

Cm coupling constants, we obtain

urj = Pj

[
∞

∑
m=0

(
AmF1

rj + BmF2
rj + CmF3

rj

)
+ F4

rj

]
e−iωt, (A9)

where

F1
rj =

[
Ξ

∂2 Jm(αξ)

∂ξ2

]
cos(mϑ)e−ikzη , (A10)

F2
rj =

m
ξ

∂Jm(βξ)

∂ξ
Σ cos(mϑ)e−ikzη , (A11)

F3
rj= ikzaΣ

[
∂2 Jm(βξ)

∂ξ2 cos(mϑ)

]
e−ikzη , (A12)

F4
rj = −

(
k2

p

ρω2

)
Ξ

G1
1

1−
[

r01
α(a−r0)

]2

∂2 Jm

[
r01

α(a−r0)
ξ
]

∂r2

. (A13)
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For TIC, the stress-strain [18] and the strain-displacement [31] relations are given as

σrr
σθθ

σzz
σθz
σrz
σrθ

 =



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 (c11 − c12)/2





εrr
εθθ

εzz
2εθz
2εrz
2εrθ

,

and
εrr =

∂ur
∂r , εθθ = 1

r
∂uθ
∂θ + ur

r , εθz =
1
2

(
∂uθ
∂z + 1

r
∂uz
∂θ

)
εzz =

∂uz
∂z , εrθ = 1

2

(
1
r

∂ur
∂θ + ∂uθ

∂r −
∂uθ

r

)
, εrz =

1
2

(
∂uz
∂r + ∂ur

∂z

)
,

respectively. From these relations, one can obtain three stresses of σrr, σrφ and σrz as [18]:

σrr = c11

(
∂ur

∂r

)
+ c12

(
ur

r
+

1
r

∂uθ

∂θ

)
+ c13

(
∂uz

∂z

)
, (A14)

σrθ =
(c11 − c12)

2

(
∂uθ

∂r
− uθ

r
+

1
r

∂ur

∂θ

)
, (A15)

σrz = c44

(
∂uz

∂r
+

∂ur

∂z

)
(A16)

From urj, uθ j and uzj

σrrj = Pj
(
a11j Amj + a12jBmj + a12jCmj + b1j

)
e−iωt, (A17)

where

a11j = c11
∂F1

rj
∂ξ + c12

F1
rj
ξ + c12

1
ξ

∂F1
θ j

∂ϑ + c13

(
∂F1

zj
∂η

)
= Ξ

{
−
(

c12
m2

ξ2 + c13k2
z

)
∂Jm(αξ)

∂ξ + c12
1
ξ

∂2 Jm(αξ)
∂ξ2 + c11

∂3 Jm(αξ)
∂ξ3

}
cos(mϑ)e−ikzη ,

a12j = c11
∂F2

rj
∂ξ + c12

F2
rj
ξ + c12

1
ξ

∂F2
θ j

∂ϑ

= (−c11 + c12)
mΣ
ξ

[
1
ξ

∂Jm(βξ)
∂ξ − ∂2 Jm(βξ)

∂ξ2

]
cos(mϑ)e−ikzη ,

a13j = c11
∂F3

rj
∂r + c12

F3
rj
r + c12

1
r

∂F3
θ j

∂θ + c13
∂F3

zj
∂z

= ikzaΣ
{
(c12 + c13)

1
ξ

[
−m2

ξ
∂Jm(βξ)

∂ξ + ∂2 Jm(βξ)
∂ξ2

]
+ (c11 + c13)

∂3 Jm(βξ)
∂ξ3

}
e−ikzη ,

b1j = c11
∂F4

rj
∂r + c12

F4
rj
r + c13

∂F4
zj

∂η

= −
(

k2
p

ρω2

)
Ξ 1

1−
[

r01
α(a−r0)

]2

c11G1

∂3 J0

[
r01

α(a−r0)
ξ

]
∂ξ3 + c12

1
ξ G1

∂2 J0

[
r01

α(a−r0)
ξ

]
∂ξ2 +c13

∂2Gn
∂η2

∂J0

[
r01

α(a−r0)
ξ

]
∂ξ

,

σrθ j = Pj
(
a21j Amj + a22jBmj + a23jCmj + b2j

)
e−iωt, (A18)

where

a21j =
(c11−c12)

2

(
∂F1

θ j
∂ξ −

F1
θ j
ξ + 1

ξ

∂F1
rj

∂ϑ

)
= (c11−c12)

2 (2mΞ)
[

1
ξ2

∂Jm(αξ)
∂ξ − 1

ξ
∂2 Jm(αξ)

∂ξ2

]
sin(mϑ)e−ikzη ,
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a22j =
(c11−c12)

2

(
∂F2

θ j
∂r −

F2
θ j
r + 1

r
∂F2

rj
∂θ

)
= − (c11−c12)

2 Σ
[

m2

ξ
∂Jm(βξ)

∂ξ +
(

2− 1
ξ

)
∂2 Jm(βξ)

∂ξ2 + ∂3 Jm(βξ)
∂ξ3

]
sin(mϑ)e−ikzη ,

a23j =
(c11−c12)

2

(
∂F3

θ j
∂r −

F3
θ j
r + 1

r
∂F3

rj
∂θ

)
= (c11−c12)

2

(
ikzamΣ

ξ

)[
2
ξ

∂2 Jm(βξ)
∂ξ2 − ∂2 Jm(βξ)

∂ξ2

]
sin(mϑ)e−ikzη ,

b2j =
(c11−c12)

2

(
∂F4

ϑj
∂ξ −

F4
ϑj
ξ + 1

ξ

∂F4
rj

∂ϑ

)
= (c11−c12)

2

(
− k2

s
ρω2

)
Σ G1

1−
[

r01
β(a−r0)

]2

− 1
ξ

∂2 Jm

[
r01

β(a−r0)
ξ

]
∂ξ2 +

∂3 Jm

[
r01

β(a−r0)
ξ

]
∂ξ3

,

and
σrzj =

(
a31j Amj + a32jBmj + a33jCmj + b3j

)
e−iωt, (A19)

where

a31j = c44

(
∂F1

zj
∂ξ +

∂F1
rj

∂η

)
= −2c44(ikzΞ) ∂2 Jm(αξ)

∂ξ2 cos(mϑ)e−ikzz,

a32j = c44

(
∂F2

rj
∂η

)
= −c44

(
ikzmΣ

ξ

)
∂Jm(βξ)

∂ξ cos(mϑ)e−ikzη ,

a33j = c44

(
∂F3

zj
∂ξ +

∂F3
rj

∂η

)
= c44aΣ

[(
m2

ξ2

)(
1− 2

ξ − ikz

)
∂Jm(βξ)

∂ξ + 1
ξ

(
1+m2

ξ + ikz

)
∂2 Jm(βξ)

∂ξ2

−
(

1
ξ − ikz

)
∂3 Jm(βξ)

∂ξ3 − ∂4 Jm(βξ)
∂ξ4

]
cos(mϑ)e−ikzη ,

b3j = c44

(
∂F4

zj
∂ξ +

∂F4
rj

∂η

)
= −c44

(
k2

p
ρω2

)
Ξ

 1
1−( r0n

αa )
2

 ∂G1
∂η

∂2 Jm

[
r01

α(a−r0)
ξ

]
∂ξ2 + ∂2Gn

∂η2

∂Jm

[
r01

α(a−r0)
ξ

]
∂ξ

.

From urz, uθz and uzz

σrrz = Pz
(
a11z Amz + a12zBmz + a12jCmz + b1z

)
e−iωt, (A20)

where

a11z = ikz

[(
c12

m2

ξ2 + c13k2
z

)
Jm(αξ)− c12

∂Jm(αξ)
∂ξ −c11

∂2 Jm(αξ)
∂ξ2

]
cos(mϑ)e−ikzη ,

a12z = 0,

a13z = 0,

b1z = −
(

k2
p

ρω2

)
〈 1

1−
[

r01
α(a−r0)

]2

c11
∂G1
∂η

∂2 Jm

[
r01

α(a−r0)
ξ

]
∂ξ2 + c12

1
ξ

∂G1
∂η

∂Jm

[
r01

α(a−r0)
ξ

]
∂r

+c13
∂3G1
∂η3 J0

[
r01

α(a−r0)
ξ
]}
〉,

σrθz = Pz(a21z Am + a22zBm + a23zCm + b2z)e−iωt, (A21)
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where
a21z =

(c11−c12)
2

[
− ikzm

ξ2 Jm(αξ) + ikzm
ξ

∂Jm(αξ)
∂ξ − ikzm

ξ2 Jm(αξ)

+ ikzm
ξ

∂Jm(αξ)
∂ξ

]
cos(mϑ)e−ikzη ,

a22z = 0,

a23z = 0,

b2z = 0,

and
σrzz =

(
a31z Amz + a32zBmz + a33zCmj + b3z

)
e−iωt, (A22)

where

a31z = −c44k2
z

∂Jm(αξ)

∂ξ
cos(mθ)e−ikzz,

a32z = 0,

a33z = 0,

b3z = −c44

(
k2

p

ρω2

)∂2G1

∂η2
1

1−
[

r01
α(a−r0)

]2 2
∂Jm

[
r01

α(a−r0)
ξ
]

∂ξ

.
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cos(𝑚𝜃)𝑒−𝑖𝑘𝑧𝑧,  

𝑎32𝑧 = 0,  

𝑎33𝑧 = 0,  

𝑏3𝑧 = −𝑐44 (
𝑘𝑝

2

𝜌𝜔2) {
𝜕2𝐺1

𝜕𝜂2

1

1−[
𝑟01

𝛼(𝑎−𝑟0)
]
2 2

𝜕𝐽𝑚[
𝑟01

𝛼(𝑎−𝑟0)
𝜉]

𝜕𝜉
}.  
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Figure A1. Distribution of resolved frequency components and the 5 groups selected using a 10 kHz 

wide window. The experimental data are obtained from a tensile test using AISI 316 austenitic stain-

less steel (KS D 3698 standard). 

Table A1. Resolved frequency components (ν’s) and their relative weights of 316 stainless steel. 

Group Elements a ν/kHz b 

1 20(0.07) 103.2(2.62) 

2 58(0.21) 127.6(5.59) 

3 114(0.41) 155.4(5.37) 

4 36(0.13) 173.6(3.28) 

5 51(0.18) 190.6(4.72) 
a Value in parenthesis represents the fraction. b Value in parenthesis represents the standard devia-

tion. 
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Figure A1. Distribution of resolved frequency components and the 5 groups selected using a 10
kHz wide window. The experimental data are obtained from a tensile test using AISI 316 austenitic
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Table A1. Resolved frequency components (ν’s) and their relative weights of 316 stainless steel.

Group Elements a ν/kHz b

1 20(0.07) 103.2(2.62)

2 58(0.21) 127.6(5.59)

3 114(0.41) 155.4(5.37)

4 36(0.13) 173.6(3.28)
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