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Abstract

In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic
devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio,
their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used
effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good
and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in
the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule
by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high
accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for
glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function
of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus
between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can
be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.
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Background
The advent of nanotechnology provides a new perspective
for the development of nanosensors and nanoprobes with
nanometer dimensions and is appropriate for biological and
biomolecular measurements [1]. The use of tools capable
of detecting and monitoring the biomolecular process can
create enormous advances in the detection and treatment
of diseases and thereby revolutionize cell biology and med-
ical science [2]. A biosensor is an electronic device which
has a biological probe and a transducer that is connected to
a monitor. The demand for a wide variety of applications
for a biosensor in industrial, environmental and biomedical
diagnostics is dramatically increasing [1-3]. Biomedical ap-
plications, such as blood glucose detection, demand a great
deal of research activities. Glucose oxide (GOx)-based en-
zyme sensors have been immensely used for the diagnosis
and monitoring of blood glucose level because of the ability
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of GOx to identify glucose target molecules quickly and ac-
curately [4-6]. Because of the constraints of other ap-
proaches, such as ultralow detection, large detection range,
high cost, and knowledge complexity, the implementation
of effective approaches using carbon-based materials is
vital. Carbon nanotubes (CNTs) with superior electrical
performance are essential in designing modern biosensors
[7-10]. CNT-based biosensors have an economical produc-
tion process, rapid response, high sensitivity, and good se-
lectivity and are easily available in the market. Hence, a
great deal of research has been conducted to study the per-
formance of CNT-based field-effect transistor (FET) bio-
sensors [11-14]. Due to their excellent mechanical stability,
high conductivity, and antifouling properties, CNTs have
been widely employed for GOx immobilization in biosen-
sors [15]. Moreover, the CNT platform provides a more ap-
propriate environment for immobilized GOx and therefore
provides a quick shuttling of electrons with the surface of
an electrode [15,16]. In sensor technology, analytical mod-
eling based on experimental finding is still ongoing. This
study proposes an analytical glucose biosensor model of
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single-wall carbon nanotube field-effect transistor (SWCNT
FET) to predict the drain current versus drain voltage (I-V)
performance. For the first time, the effects of glucose ad-
sorption on CNT electrical properties, namely gate voltage,
are studied and formulated versus a wide range of glucose
concentration.

Methods
Sensing mechanism
In this section, the methods of immobilization will be de-
scribed to explain the sensing mechanism of a biosensor.
Immobilization is a process to integrate a biocatalyst with a
matrix that it is not soluble in aqueous media. A wide var-
iety of approaches can be applied for the immobilization of
enzymes or cells on a variety of natural and synthetic sup-
ports. Both of the immobilization approach and support
are dependent on the type of enzyme and substrate [17,18].
Enzymes are very instable and sensitive to their environ-
ment [19]. When no special precaution is required, some
common approaches, such as deactivation on an adsorp-
tion and chemical or thermal inactivation, are adopted
(b) 

(a) 

Figure 1 Schematic fabrication process and a field-effect sensor. (a) S
combination of metal electrodes made of chromium or gold, a layer of GO
[19,20]. The important techniques that maintain the en-
zyme activity of immobilization are encapsulation, covalent
immobilization, and site-specific mutagenesis [15,21]. Ul-
timately, the application of the new materials will generally
affect the quality of the sensing mechanism. Because of the
high surface area-to-volume ratio, CNTs demonstrate good
device performance [22] when they are used as a semicon-
ducting channel in biosensors [23]. The CNT application
on glucose detection has been experimentally reported in
[24] where GOx is utilized as an enzyme. The fabrication
process of the SWCNT-based (1 to 2 nm in diameter, 50
μm in length) [25,26] electrochemical glucose biosensors
using GOx [24] is depicted in Figure 1a,b. Polyelectro-
lytes, such as poly(diallyldimethylammonium chloride)
(PDDA) and polystyrenesulfonate (PSS) are implemented
[24]. Figure 1a shows the assembly of PDDA/SWCNT on
polyethylene terephthalate (PET) polyester flexible sub-
strate, and GOx biomolecular assembly is depicted in
Figure 1b.
To produce stable negative charges, GOx is dissolved into

a phosphate-buffered saline (PBS) with a concentration of
chematic fabrication process of glucose sensor [24]. (b) Proposed
x biomolecular assembly, and SWCNT channel in the form of FET.
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1 mg/mL. Phosphate monobasic (NaH2PO4) and dibasic
(Na2HPO4) are employed as a standard pH buffer solution.
The standard D-glucose solutions have been used in the glu-
cose concentration test, and the results are shown in terms of
drain current versus drain voltage (I-V) characteristics [24].

Proposed model
Figure 1b shows the structure of the SWCNT FET with
PET polyester as a back gate and chromium (Cr) or
aurum (Au) as the source and drain, respectively. A
SWCNT is employed as a channel to connect the source
and drain. According to the proposed structure, two
main modeling approaches in the carbon nanotube field-
effect transistor (CNTFET) analytical modeling can be
utilized. The first approach is derived from the charge-
based framework, and the second modeling approach is
a noncharge-based analytical model using the surface-
potential-based analysis method. The charge-based car-
rier velocity model is implemented in this work. The
drift velocity of carrier in the presence of an applied
electric field [27] is given as

vD ¼ μE

1þ E
Ec

ð1Þ

where μ is the mobility of the carriers, E is the electric
field, and Ec is the critical electric field under high ap-
plied bias. From Equation 1, the drain current as a func-
tion of gate voltage (VG) and drain voltage (VD) is
obtained as

ID ¼ β
2VGTVD−V 2

D

� �
1þ VD

V c

ð2Þ
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Figure 2 I-V characteristics of the SWCNT FET based on the proposed
where β = μCG/(2L), VGT =VG −VT, and critical applied
voltage as Vc = (vsat/μ)L, where vsat is the saturation vel-
ocity,VG is the gate to source voltage,VT is the threshold
voltage [28], CG is the gate capacitance per unit length,
and L is the effective channel length [29]. The unknown
nature of the quantum emission is not considered in this
calculation. Based on the geometry of CNTFET that is
proposed in Figure 1b, the gate capacitance (CG) can be
defined as

CG ¼ CECQ

CE þ CQ
ð3Þ

where CE and CQ are the electrostatic gate coupling cap-
acitance of the gate oxide and the quantum capacitance of
the gated SWCNT, respectively [30-33]. Figure 2 shows
the I-V characteristics of a bare SWCNT FET for different
gate voltages without any PBS and glucose concentration
that is based on Equation 2.
The electrostatic gate coupling capacitance CE for

Figure 1b is given as

CE ¼ 2πε
ln 4HPET=dð Þ L ð4Þ

where HPET is the PET polyester thickness, d is the diam-
eter of CNT and ε = 3.3ε0 is the dielectric permittivity of
PET. The existence of the quantum capacitance is due to
the displacement of the electron wave function at the
CNT insulator interface. CQ relates to the electron Fermi
velocity (vF) in the form of CQ = 2e/vF where vF ≈ 106 m/s
[34]. Numerically, the quantum capacitance is 76.5 aF/μm
and shows that both the electrostatic and quantum capaci-
tances have a high impact on CNT characteristics [35,36].
0.4 0.5 0.6 0.7

 (Volt)

model for various gate voltages.
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At saturation velocity, the electric field is very severe at
the early stage of current saturation at the drain end of the
channel.
In this research, the effect of glucose concentration (Fg)

on the I-V characteristics of the CNTFET is studied. First,
PBS should be added to the solution so that glucose is de-
tectable and the change in I-V can be observed. The I-V
change is due to the carrier concentration gradient of the
injected carriers from the PBS to the channel and vice
versa. The channel carrier concentration can be modeled
in the function of gate voltage variations as

VGS1 with PBSð Þ ¼ VGS without PBSð Þ þ V PBS ð5Þ

where VGS1(with PBS) is the gate voltage in the presence of
PBS, VPBS is the voltage due to the interaction of PBS
with CNT in the solution, and VGS(without PBS) indicates
the gate voltage in a bare channel. The effect of PBS in
the I-V characteristics is modeled as

ID ¼ 2 VGS without PBSð Þ þ V PBS−VT
� �

VD−V 2
D

� �
1þ VD

V c

: ð6Þ

Before glucose and PBS is added, VGS(without PBS) is set
to be 1.5 V. The VPBS is found to 0.6 V when the PBS
concentration, FPBS = 1 mg/mL, is added into the solu-
tion. Using Equations 5 and 6, the presented model pro-
vides a good consensus between the model and the
experimental data as shown in Figure 3.
In the glucose sensing mechanism reported in [24], β-D-

glucose oxidizes to D-glucono-δ-lactone and hydrogen
peroxide (H2O2) as a result of the catalyst reaction of
GOx. The hydrolyzation of D-glucose-δ-lactone and the
electrooxidation of H2O2 under an applied gate voltage
0 0.1 0.2 0.3
0

50

100

150

200

250

300

350

400

450

500

I D
 (

A
)

 

PBS Experimental Data
PBS Simulation Model

V
D

Figure 3 Comparison of the I-V simulation output and the experimen
and VPBS = 0.6 V.
produce two hydrogen ions and two electrons which con-
tribute to the additional carrier concentration in the
SWCNT channel. On the whole, the glucose sensing
mechanism can be summarized as follows:

β‐D‐glucose þO2 with GOx enzyme→D‐glucono‐δ‐lactone
þH2O2

ð7Þ

D‐glucono‐δ‐lactone þH2O → D‐gluconate− þHþ

ð8Þ
H2O2 → O2 þ 2Hþ þ 2e ð9Þ

The variation of the proximal ionic deposition and the
direct electron transfer to the electrode surface modify the
electrical conductance of the SWCNT. The direct electron
transfer leads to a variation of the drain current in the
SWCNT FET. Therefore, Equation 10 that incorporates
the gate voltage change due to the additional electrons
from the glucose interaction with PBS is given as

VGS2 with PBS and glucose detectionð Þ ¼ VGS without PBSð Þ
þV PBS þ VGlucose

ð10Þ
By incorporating Equation 10, Equation 6 then

becomes

ID ¼ 2 VGS without PBSð Þ þ V PBS þ VGlucose−V T
� �

VD−V 2
D

� �
1þ VD

V c

:

ð11Þ
VGlucose is the glucose-based controlling parameters

that highlight the effects of glucose concentration
against gate voltages. In the proposed model, Equation 12
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tal data [24]. PBS concentration FPBS = 1 mg/mL, VGS(without PBS) = 1.5,
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Figure 4 I-V comparison of the simulated output and measured data [24] for various glucose concentrations. Fg = 2, 4, 6, 8, 10, 20, and 50 mM.
The other parameters used in the simulation data are VGS(without PBS) = 1.5 V and VPBS = 0.6 V.

Table 1 Average RMS errors (absolute and normalized) in
drain current comparison to the simulated and measured
data for various glucose concentration

Glucose (mM) Absolute RMS errors Normalized RMS errors (%)

0 (with PBS) 19.24 5.66

2 57.55 12.22

4 49.05 9.75

6 59.47 11.23

8 53.99 9.80

10 55.60 9.53

20 69.18 11.17

50 75.07 11.60
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is obtained by analyzing the rise ID with gate voltages
versus glucose concentration. Based on the iteration
method demonstrated in [37], the concentration control
parameter as a function of glucose concentration in a
piecewise exponential model is expressed as

VGlucose Fg
� � ¼ 0 V if Fg ¼ 0 mM

1:42 V− exp −0:1� Fg
� �

if Fg > 0 mM :

�

ð12Þ

In other words, the I-V characteristics of the biosensor
can also be controlled by changing the glucose concen-
tration. To evaluate the proposed model, the drain volt-
age is varied from 0 to 0.7 V, which is similar to the
measurement work, and Fg is changed in the range of 2
to 50 mM [24].

Results and discussion
Glucose sensing and accuracy of sensor model
By increasing the glucose concentration in multiple steps
from 2 to 50 mM, a fairly good consensus between our
simulation model and experimental data particularly in
the linear region is illustrated in Figure 4. The results
show the accuracy of our predictive model against the
measurement data of the glucose biosensor for various
glucose concentrations up to 50 mM. It is observed that
the current in the CNTFET increases exponentially with
glucose concentration.
From Figure 4, the glucose sensor model shows a sen-

sitivity of 18.75 A/mM on a linear range of 2 to 10 mM
at VD = 0.7 V. The high sensitivity is due to the add-
itional electron per glucose molecule from the oxidation
of H2O2, and the high quality of polymer substrate that
are able to sustain immobilized GOx [24]. It is shown
that by increasing the concentration of glucose, the
current in CNTFET increases. It is also evident that gate
voltage increases with higher glucose concentrations.
Table 1 shows the relative difference in drain current
values in terms of the average root mean square (RMS) er-
rors (absolute and normalized) between the simulated and
measured data when the glucose is varied from 2 to 50
mM. The normalized RMS errors are given by the abso-
lute RMS divided by the mean of actual data. It also re-
vealed that the corresponding average RMS errors do not
exceed 13%. The discrepancy between simulation and ex-
perimental data is due to the onset of saturation effects of
the drain current at higher gate voltages and glucose con-
centration where enzyme reactions are limited.
Conclusions
The CNTs as carbon allotropes illustrate the amazing
mechanical, chemical, and electrical properties that are
preferable for use in biosensors. In this paper, the analytical
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modeling of SWCNT FET-based biosensors for glucose
detection is performed to predict sensor performance. To
validate the proposed model, a comparative study between
the model and the experimental data is prepared, and good
consensus is observed. The current of the biosensor is a
function of glucose concentration and therefore can be uti-
lized for a wide process variation such as length and diam-
eter of nanotube, capacitance of PET polymer, and PBS
voltage. The glucose sensing parameters with gate voltages
are also defined in exponential piecewise function. Based
on a good consensus between the analytical model and
the measured data, the predictive model can provide a
fairly accurate simulation based on the change in glu-
cose concentration.
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