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Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable
sti	ness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study,
the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the
hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the
expression of equivalent strain of composite plate was derived. �en, the analytical model of hard-coating composite plate was
created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphsonmethod to solve
the vibration response and resonant frequencies of composite plate and a speci
c calculation procedure was also proposed. Finally,
a cantilever plate coated withMgO +Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies
of composite plate were calculated using the proposed method. �e calculation results were compared with the experiment and
general linear calculation, and the correctness of the created model was veri
ed. �e study shows the proposed method can still
maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

1. Introduction

In recent years, vibration control using hard coating which is
prepared by the metal, ceramic, or their mixture is receiving
a reasonable amount of attention. Compared with traditional
surface treatments, such as viscoelastic dampers, the biggest
technical advantage is that the hard coating can maintain the
consistent damping characteristics in the high temperature
or high corrosion environment. �us, this vibration control
technology is expected to apply in the power equipment, such
as the turbine engine. From the characterizing test studies
[1, 2] about the coated composite structure, some interesting
phenomenon has been found; for example, the resonant
frequency decreasedwith the increase of excitation amplitude
and the force response of frequency were not symmetric
about the resonant frequency. But for the uncoated structure,
the above-mentioned phenomenon did not happen, which

proves that the hard coating makes the composite structure
have the nonlinear vibration phenomenon. Further studies
show that this nonlinearity comes from the strain dependent
characteristic of coatingmaterial, that is, the storagemodulus
(or Young’s modulus) and loss modulus of hard coating
change with the strain response amplitude of structure, and
belongs to the material nonlinear behavior.

To e	ectively implement the hard-coating damping tech-
nology, the reliable analysis model, which can reproduce
the nonlinear dynamic phenomenon observed in the exper-
iment, need be created. However, to the authors’ opinions,
there is much bigger gap away from this goal. As far
as the current research status is concerned, the modeling
about hard-coating composite structure is mainly based
on the micro material science. For example, Tassini et
al. [3] created a phenomenological model to characterize
the nonlinear mesoscopic elastic behaviors of hard-coating
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Figure 1: Iwan model.

material. Torvik [4] developed a slip damping model to
describe the idealized microstructure characteristic of hard
coatings. Al-Rub and Palazotto [5] proposed a representative
volume element-based micromechanical model to observe
the nonlinear damping in plasma sprayed hard ceramic
coatings. All the above studies show that the internal friction
in the coating creates the energy dissipation of composite
structure, being very important to understand the nonlinear
dynamics mechanism or vibration reduction mechanism of
hard coating. However, for the hard-coating damping design,
it is not realistic that entirely depending on these micro
material models and developing the dynamics model based
on the macro vibration science are necessary. Furthermore,
the challenge of developing this model comes from how to
consider the material nonlinearity of hard coating.

To introduce the material nonlinearity of hard coating
into the analysis model, the researchers have proposed
several methods. Considering the hard-coating dissipate
energy by the internal friction of coating particles, then,
some researchers attempt to use the Iwan model (shown in
Figure 1) to simulate the strain dependent characteristic of
hard coating.

In this model, the storage and loss modulus of hard
coating are expressed as spring sti	ness, ��, ��, and friction

forces, �̂�, � = 1, 2, . . . �, and both of them are the functions
of strain amplitude. �(�) is the externally applied force, 	0
is the mass of the system, and 
(�) is the displacement of
the mass. Some typical examples show as follows. Green
and Patsias [6] applied the Iwan model to describe the
response of a coated beam and analyzed the dissipation
mechanism of hard coating. Reed [7] did a similar research
and used the single-freedom nonlinear adjusted Iwan model
to analyze the free response and forced response of hard-
coating beam and veri
ed the rationality of relative damping
identi
cation method. To e	ectively use the Iwan model,
some key parameters, such as spring sti	ness, friction forces,
mass, and applied force, should be determined 
rstly. But it
is not easy and the above studies did not show yet how these
parameters were selected. Anothermethod is using the stored
energy per unit volume,�(��), and dissipated energy per unit

volume, 
(��), to describe the material nonlinearity of hard
coating, which is given by

�cR (��) = 2� (��)�2� ,
�cI (��) = 
 (��)(��2� ) ,

(1)

where �cR(��) and �cI(��) are the storage modulus and the
loss modulus of hard coating, respectively, and �� is the
equivalent strain. �e original intention of this expression is
to satisfy the need of deducing the identi
cation formula of
the material parameters with strain dependent characteristic.
For example, Torvik andHansel [8, 9] utilized this expression
and obtained the identi
cation formula ofmaterial properties
of a ceramic coating. �e last characterizing idea is applying
the polynomial to describe the material parameters of hard
coating and this characterizing method is also adopted
in this study, which will be introduced in the following
section. �e bene
ts of using a polynomial to characterize
the material parameters of hard coating are mainly re�ected
in two aspects. On the one hand, the polynomial can more
accurately describe the material parameters of hard coating
obtained by experiment. For example, all the discrete point
values of hard-coating material parameters gotten by Patsias
et al. [10], Reed et al. [11], and Tassini et al. [12] can be
described by the polynomial. Furthermore, it is found that
high order polynomial should be chosen to 
t these discrete
point values. On the other hand, the material parameters
expressed by polynomial can be easily introduced into
the analytical model during the macro vibration analysis.
Recently, using the 
nite element method (FEM) to solve the
dynamics of hard-coating composite structure introducing
the polynomial expression of hard-coating material param-
eters has been able to achieve. For example, Filippi and
Torvik [13] adopted the linear polynomial to simulate the
hard-coating parameters with strain dependent characteristic
and analyzed the vibration of compressor blade coated hard
coating. However, to the authors’ knowledge, the analyti-
cal modeling of hard-coating composite structure with the
polynomial expression of hard-coating material parameters
cannot be found.

On the basis of considering the material nonlinearity of
hard coating, the purpose of this study was to develop the
analytical modeling method for the hard-coating cantilever
thin plate structure. �is paper is organized as follows.
In Section 2, to relate the material parameters with strain
dependent characteristic of hard coating obtained by test
and the analytical modeling of hard-coating composite plate,
the expression of equivalent strain of composite plate was
derived. In Section 3, the analytical model of hard-coating
composite plate was created by energy method considering
the material nonlinearities of hard coating. In Section 4,
Newton-Raphson method was used to solve the vibration
response and resonant frequencies of composite plate and a
speci
c calculation procedure was proposed. In Section 5, a
cantilever plate coated with MgO + Al2O3 hard coating was
chosen as study case, and the vibration response and resonant
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Figure 2: Hard-coating composite plate under base excitation.

frequencies of composite plate were calculated using the
proposed analytical model and calculation procedures. �e
calculation results were compared with the experiment and
linear calculation, and the correctness of the created model
was veri
ed. Finally, some important conclusions about this
study were listed in Section 6.

2. Derivation of Equivalent Strain for
the Hard-Coating Thin Plate Structure

As above mentioned, during the study of identi
cation of
material parameters for the hard coating, the relative curve
between the strain amplitude and the storagemodulus or loss
modulus is determined. Furthermore, these relative curves
can be 
tted by polynomial, and then thematerial parameters
with strain dependent characteristic are described e	ectively.
Both the 
nite element modeling and analytical modeling
are needed to introduce these mechanical parameters with
polynomial expression correctly. For the beam structure,
only a unidirectional strain can characterize the dynamics
of beam, and corresponding to this unidirectional strain,
the material parameters expressed by polynomial can be
introduced easily. However, for the plate structure in this
study, even the classical plate theory is adopted, and at least
three kinds of strain still need to be adopted to describe the
dynamics of plate. �en, how to relate the material parame-
ters obtained by test and the analytical model? In this section,
the equivalent strain of hard-coating composite plate was
chosen to relate the measured material parameters expressed
by polynomial and the analytical model. In the following, a
brief introduction about the polynomial expression of hard-
coating material was given 
rstly, and then the equivalent
strain of hard-coating thin plate structure was derived.

�e elastic modulus of hard coating is expressed as
complex modulus �∗� and the following formula can be used
to describe strain dependent characteristic:

�∗� = �cR (��) + ��cI (��) , (2)

where ∗ refers to complex value.

When the complex modulus of hard coating is expressed
by polynomial, the storage and loss modulus in (2) change as

�cR (��) = �cR0 + ���cR1 + �2��cR2 + �3��cR3 + ⋅ ⋅ ⋅ ,�cI (��) = �cI0 + ���cI1 + �2��cI2 + �3��cI3 + ⋅ ⋅ ⋅ , (3)

where �cR0 and �cI0 are the storage and loss modulus without
considering the strain dependent characteristic of hard coat-
ing, and �cR�, �cI� (� = 1, 2, 3, . . .) are the speci
c coe�cients
of strain dependent storage modulus and loss modulus.
�erefore, integrating (2)-(3), the complex modulus of hard
coating can be also expressed as

�∗� = �∗�0 + �∗�1�� + �∗�2�2� + �∗�3�3� + ⋅ ⋅ ⋅ , (4)

where �∗�0 = �cR0 + ��cI0,�∗�� = �cR� + ��cI�, � = 1, 2, 3, . . . . (5)

In (4), the material parameters of hard coating can be

divided two parts: one is �∗�0, and the other is �∗�1�� + �∗�2�2� +�∗�3�3� + ⋅ ⋅ ⋅ . For �∗�0, it does not include the strain dependent
characteristic, so it can be named as linear part of hard-
coating materials. On the contrary, �∗�1�� +�∗�2�2� +�∗�3�3� + ⋅ ⋅ ⋅
can be called nonlinear part of hard-coating materials.

�e schematic diagram of hard-coating composite plate
is shown in Figure 2, and the thin plate is in cantilever status
and is excited by base. �e reason of choosing this boundary
condition is that the base excitation was adopted to test
the vibration characteristics in many studies [1, 2]. For the
most coating structures, of course including the hard-coating
composite plate structure of this study, all of them belong to
thin shell structure; that is, the thickness is far less than the
length and width or other geometry dimensions. So, herein
the hard-coating thin plate can be analyzed according to the
classic thin plate theory. Only the material nonlinearity of
hard coating should be introduced into the analytical model.
Since the classic thin plate theory is suitable to deal with this
problem, then the movement of any point in the composite
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plate can be described by the transverse displacement (or
de�ection) of neutral surface.

�e 
� coordinate plane is set to locate at the neutral
surface of composite plate; the length and width of plate are� and �, respectively. �e de�ection in the neutral surface of
composite plate is�(
, �, �).�e expression of base excitation

is ��(�) = �	��
�, where �	 is the level of base excitation and� is the angular frequency of excitation. Figure 2(b) shows
a small part of the plate section. Here, �� and �� represent
the thickness of the hard coating and the metal substrate,
respectively, and � is the distance between the interface of
coating-substrate and the neutral surface.

According to the classic thin plate theory, the strain of any
point in the composite plate can be expressed as

�
 = −��2��
2 ,
�� = −��2���2 ,
�
� = −2� �2��
�� ,

(6)

where �
, �� are the normal strain of 
 and � direction,
respectively, �
� is the shear strain in the 
� plane, and � is
the distance between the point of the cross section andneutral
surface.

Furthermore, according to the physical equations, the
stress of any point in the composite plate can be given:

 
 = ��1 − !2� (�
 + !���)
= − ��1 − !2� �(�

2��
2 + !� �2���2 ) ,
(7a)

 � = ��1 − !2� (�� + !��
)
= − ��1 − !2� �(�

2���2 + !� �2��
2 ) ,
(7b)

&
� = '��
� = −2'�� �2��
�� , (7c)

where  
,  � are the normal stress of 
 and � direction,
respectively, &
� is the shear strain in the 
� plane, ��, !� are

equivalent Young’s modulus and Poisson’s ratio, respectively
(it should be noted that Poisson’s ratio in this work is thought
as independent with the strain amplitude), and '� is the
equivalent shear modulus and the relation with equivalent
Young’s modulus and Poisson’s ratio can be expressed as

'� = ��2 (1 + !�) . (8)

Here, the equivalent strain of hard-coating composite plate
was determined according to the principle of equal strain
energy density; the expression is

 
�
 +  ��� + &
��
� =  ���, (9)

where  � is the equivalent stress and satis
es

 � = ����. (10)

Equations (6), (7a), (7b), and (7c), and (10) can be
substituted into (9) and then yield

���21 − !2� [(�
2��
2 )2 + 2!� (�2��
2 )(�2���2 ) + (�2���2 )2

+ 2 (1 − !�) ( �2��
��)2] = ���2� .
(11)

�us, the equation of solution of equivalent strain can be
obtained and shown as

�2� = �21 − !2� [(�
2��
2 )2 + 2!� (�2��
2 )(�2���2 )

+ (�2���2 )2 + 2 (1 − !�) ( �2��
��)2] .
(12)

It should be noted that because of introducing the
complex response in the subsequent analytical modeling of
composite plate, the de�ection �(
, �, �) of composite plate
is also a complex. For simpli
cation of expression, only
material parameters were marked as complex in this study.
�e equivalent strain amplitude should be a real, so the
solution formula is changed as

�� = √ �21 − !2�
0000000000(�
2��
2 )2 + 2!� (�2��
2 )(�2���2 ) + (�2���2 )2 + 2 (1 − !�) ( �2��
��)2

0000000000, (13)

where the operator | ⋅ | refers to solving the modulus of
complex values.

�e calculation in (13) is very complex, which will reduce
the computational e�ciency obviously for the subsequent
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iterations, so a relatively simple expression of equivalent
strain amplitude is further given:

�� ≈ ��,max

= �√1 − !2� (
000000000 �
2��
2 000000000 +

000000000 �
2���2 000000000 + √2 (1 − !�)

000000000 �
2��
��000000000) . (14)

�e 
nal expression is corresponding to the maximum value
of equivalent strain amplitude in (13) and practice has shown
that this simpli
cation does not introduce big error but
improves the computational e�ciency greatly.

3. Analytical Modeling of Hard-Coating
Composite Plate

In the following, the energymethodwas adopted to create the
analytical model of the hard-coating composite plate (shown
in Figure 2) under the base excitation. Usually, the loss factor
of hard coating is higher than the common metals, but it
is much less than the viscoelastic materials, so the damping
of hard coating belongs to medium or low levels. �en,
the damping contribution of both hard coating and metal
substrate was considered in this study. Here, the complex
modulus model was used to describe both hard coating and
metal substrate. �e complex modulus expression of hard
coating can be seen from (2) to (5), and the modulus of metal
substrate is expressed as�∗� = �sR + ��sI, (15)

where �sR, �sI are the storage modulus and the loss modulus
of metal substrate, and both of them were set as constant in
this study.

�e distance � between the interface of coating-substrate
and the neutral surface can be determined as [14]

� = �sR�2� − �cR0�2�2 (�sR�� + �cR0��) . (16)

Due to undertaking the base excitation, the displacement6(
, �, �) of any point in the composite plate can be expressed
as 6 (
, �, �) = �� (�) + � (
, �, �) . (17)

It can be noted from (17) that if the de�ection �(
, �, �) of
any point is known, then the displacement 6(
, �, �) can be
determined.

�e energy in the hard-coating thin plate system should
include strain energy, kinetic energy, and damping dissi-
pation energy, and these energies will be solved below.
According to the classic thin plate theory, the strain energy
of hard-coating plate system can be given as

� = 12∭� ( 
�
 +  ��� + &
��
�) d8 = �� + �nl, (18)

where 8 refers to the volume of composite plate and �� and�nl are named as the linear and nonlinear strain energy,

respectively, which are corresponding to the linear and
nonlinear part of hard-coating material parameters.

Introducing the constitutivemodel of substrate and linear
part of hard coating, respectively, and integrating along �-
axis, the solution formula of linear strain energy can be
yielded:

�� = 12 ∬�{
1 [(�2��
2 )
2 + (�2���2 )2]

+ 2
2 �2��
2 �2���2 + 
3 ( �2��
��)2} d<, (19)

where < refers to the area of composite plate, and the
variables, such as
1,
2 and
3, can be expressed as


1 = �∗�>11 − !2� + �∗�0>21 − !2� , (20a)


2 = �∗�>1!�1 − !2� + �∗�0>2!�1 − !2� , (20b)


3 = 4'∗�>1 + 4'∗�0>2, (20c)

>1 = 13 [�3 + (�� − �)3] , (20d)

>2 = 13 [(�� + �)3 − �3] , (20e)

where !�, !� are Poisson’s ratios of metal substrate and hard
coating. Similarly, the strain dependent characteristics of
these Poisson ratios are not considered in the analytical
model. '∗� , '∗�0 are shear modulus of metal substrate and
hard coating corresponding to the linear part of hard-coating
material.

Furthermore, the nonlinear part of hard-coating material
is introduced into the solution of nonlinear strain energy
of hard-coating plate. To correspond to the polynomial
expression of hard-coating material, the equivalent strain is
adopted to calculate the nonlinear strain energy, and the
solution formula can be described as

�nl = 12∭�� (�∗�1�� + �∗�2�2� + �∗�3�3�) �2� d8
= 12 ∬� (
�1�eqB + 
�2�2eqB + 
�3�3eqB) d<,

(21)



6 Mathematical Problems in Engineering

where8� is the volume of hard coating and the expressions of
other parameters are shown as follows:


�1 = �∗�14 (1 − !2� )3/2 [(�� + �)4 − �4] , (22a)


�2 = �∗�25 (1 − !2� )2 [(�� + �)5 − �5] , (22b)


�3 = �∗�36 (1 − !2� )5/2 [(�� + �)6 − �6] , (22c)

�eq
= √Re2 (�2��
2 ) + Im2 (�2��
2 )
+ √Re2 (�2���2 ) + Im2 (�2���2 )
+ √2 (1 − !�)√Re2 ( �2��
��) + Im2 ( �2��
��),

(22d)

B
= (�2��
2 )2 + 2!� �2��
2 �2���2 + (�2���2 )2
+ 2 (1 − !�) ( �2��
��)2 ,

(22e)

where Re( ) and Im( ) refer to the function of extracting
real and imaginary part. It is worth noting that in (21)
the maximum order of the polynomial expression of hard-
coating materials is 3. �e practice has shown that for most
conditions the 3-order polynomial can describe the material
parameterswith strain dependent characteristic accurately. In
addition, it can be known from (18) to (22a), (22b), (22c),
(22d), and (22e) that the material damping of both hard
coating and metal substrate has included the above strain
energy expression.

�e kinemics energy F of hard-coating composite plate
can be described as

F = 12 (G��� + G���)∬� (���� + �̇�)2 d<, (23)

where G� and G� are density of substrate and hard-coating
material, respectively. Furthermore, one can de
ne 	 =G��� + G���, which presents the mass of the unit area.

For the hard-coating composite plate structure, besides
material damping of hard coating and substrate, the bound-
ary conditions damping and �uid damping in air also should
be contained and this damping can be equivalent to viscous
damping, named as the remaining equivalent viscous damp-
ing in this work. �e remaining equivalent viscous damping

can also dissipate the energy of composite system and the
expression is shown as follows:


 = K2 ∬� (���� + �̇�)2 d<, (24)

where c is the coe�cient of remaining equivalent viscous
damping of composite plate.

Because only steady-state response of composite plate
was considered in this study, Galerkin discrete method was
adopted to reduce the order of the above nonlinear problem.
In fact, in [13], similar method is also adopted to deal with
the nonlinearity of hard-coating composite structure. It is
assumed that the de�ection expression of composite plate is

� (
, �, �) = �∑
�=1
M� (
, �) N� (�) , (25)

where M�(
, �) is the �-order modal shape, which can be
assumed consistent with the modal shape of uncoated plate,N�(�) is the �-order modal participation factor, and > is the
number of considered orders.

Substituting (25) into (19), the expression of linear strain
energy can be changed as

�� = 12 ∬�{{{
1 [[(
�∑
�=1
M

� N� (�))2

+ ( �∑
�=1
M��� N� (�))2]] + 2
2( �∑

�=1
M

� N� (�))

⋅ ( �∑
�=1
M��� N� (�)) + 
3( �∑

�=1
M
�� N� (�))2}}} d<,

(26)

where the meanings of operators of M

� , M��� , and M
�� are�2M�(
, �)/�
2, �2M�(
, �)/��2, and �2M�(
, �)/�
��, respec-
tively.

Moreover, to obtain the newer expression of the nonlinear
strain energy, (25) is substituted into (21). It can be known
from (22a), (22b), (22c), (22d), and (22e) that only (22d)
and (22e) need be transformed. Because M�(
, �) is real, the
di	erential about it should be also real, so the imaginary part
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only exists in the N�(�), and then the expression of �eq and B
can be given as

�eq = √[[
�∑
�=1
M

� Re (N�)]]

2 + [[
�∑
�=1
M

� Im (N�)]]

2

+ √[[
�∑
�=1
M��� Re (N�)]]

2 + [[
�∑
�=1
M��� Im (N�)]]

2

+ √2 (1 − !�)√[[
�∑
�=1
M
�� Re (N�)]]

2 + [[
�∑
�=1
M
�� Im (N�)]]

2,

(27a)

B = ( �∑
�=1
M

� N� (�))2

+ 2!�( �∑
�=1
M

� N� (�))( �∑

�=1
M��� N� (�))

+ ( �∑
�=1
M��� N� (�))2 + 2 (1 − !�)( �∑

�=1
M
�� N� (�))2 .

(27b)

Similarly, substituting (25) into (23) and (24), the newer
expressions of kinemics energy and dissipation energy by
the remaining equivalent viscous damping can be listed as
follows:

F = 	2 ∬
�
( �∑
�=1
M� (
, �) ̇N� (�) + �̇� (�))2 d<,


 = K2 ∬�( �∑�=1M� (
, �) ̇N� (�) + �̇� (�))2 d<.
(28)

Arriving here, the expressions, such as strain energy �,
kinemics energy F, and dissipation energy 
 by the remain-
ing equivalent viscous damping, are obtained by Galerkin
discretion for the hard-coating plate structure. Substitute
the above-mentioned expression into the following Lagrange
equation:

d

d� ( �F� ̇N� (�)) + ���N� (�) + �
� ̇N� (�) = 0,
(^ = 1, . . . , >) , (29)

and the 
nal movement equation of hard-coating composite
plate will be gotten.

Next, the derivatives of various energies to time �, N�(�)
and ̇N�(�), are solved. It should be noted that the equivalent
strain �� is independent of time and the variable �eq in (26)
does not include the time item yet, so they can be thought
as constants during the di	erential calculation. Furthermore,
if only the fundamental frequency vibration is considered, it

can be assumed that N�(�) = N���
�, which is introduced in
the di	erential calculation.�en, by rearranging, the motion
equation of the following style can be yielded:[K� + � (C1 + �C2) − �2M]� = F. (30)

It can be noted that using this simple expression of solu-
tion the involved nonlinear problem has been transformed
into solving the response vector � independent of time. �e
other item in the above equation, K�, is a nonlinear sti	ness
matrix considering the material nonlinearity of hard coating,
C1 refers to the material damping matrix, C2 refers to the
remaining equivalent viscous damping matrix,M is the mass
matrix, and F is the excitation vector.

�e matrixes K�, C1, C2, and M are all >-order square
matrix and the vectors � and F are>-order vector. Addition-
ally, K� + �C1 can be considered as one item and expressed as

complex matrix K̃∗� , and it is also an>-order square matrix.
�e element of the ^-row and `-column of complex

matrix K̃∗� can be shown as

K̃
∗
� (^, `) = ∬

�
[
1 (M

� M

� + M��� M��� )

+ 
2 (M��� M

� + M��� M

� ) + 
3M
�� M
�� ] d<
+∬
�
{(
�1 + 
�2�eq + 
�3�2eq) �eqℎ} d<,

(31a)

ℎ = M

� M

� + M��� M��� + !� (M��� M

� + M��� M

� ) + 2 (1− !�) M
�� M
�� . (31b)

�e element of the ^-row and `-column of mass matrixM
is

M (^, `) = 	∬
�
M�M� d<. (32)

�e element of the ^-row and `-column of remaining
equivalent viscous damping matrix C2 is

C2 (^, `) = K∬
�
M�M� d<. (33)

�e damping coe�cient K can be simpli
ed; for the ^-
order, the damping coe�cient can be expressed byK� = 2	��d�, (34)

where �� is the ^-order natural frequency and d� is the ^-order
modal damping ratio which can be obtained by test.

For convenience, if ignoring the nondiagonal elements,
the equivalent viscous damping matrix C2 can be further
simpli
ed. �en the matrix C2 became an >-order diagonal
matrix and the element of the ^-row and ^-column ise2 (^, ^) = 2	��d�∬

�
M�M� d<. (35)

Here, it was assumed that the boundary damping and air
damping do not change before and a�er coating; then the
modal damping ratio d� can be introduced according to the
damping of uncoated plate; similarly, �� refers to the natural
frequency of uncoated plate.

�e element of the excitation vector F can be described as� (^) = 	�2�	∬
�
M� d< − �

⋅ 2���d��	 (G��� + G���)∬
�
M� d<. (36)
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In summary, the dynamics model of composite plate
considering the strain material nonlinearity of hard coating
was created. In thismodel, both thematerial damping and the
remaining equivalent viscous damping are considered. Based
on this model, the resonant frequencies of composite plate
with the material nonlinearity and the nonlinear vibration
response can be solved.

4. Solution of Vibration Response and
Resonant Frequency of Composite Plate

4.1. Solution of Vibration Response. Due to the material non-
linearity of hard coating, (30) became a nonlinear algebraic
equation. Here, theNewton-Raphsonmethodwas adopted to
solve the vibration response of hard-coating composite plate.
Equation (30) can be transformed as

r = [K� + � (C1 + �C2) − �2M]� − F. (37)

Because the residual value vector r contains the Re(N�) and
Im(N�) items, also, each element of vector � can be expressed
as Re(N�)+�Im(N�), so the Jacobimatrix J of vector r is needed
and easily separated into the real part and imaginary part,
which is shown as

J = [[[[[
Re( �r���) Re( �r���)
Im( �r���) Im( �r���)

]]]]]
, (38)

where �r/��� is an >-order square matrix, and the element
of ^-row and `-column is

�r��� (^, `) = ∬
�
[
1 (M

� M

� + M��� M��� )

+ 
2 (M��� M

� + M��� M

� ) + 
3M
�� M
�� ] d<
+ ��K∬

�
M�M� d< − �2	∬

�
M�M� d< + (
�1

+ 2
�2�eq + 3
�3�2eq) hi + (
�1 + 
�2�eq
+ 
�3�2eq) �eqℎ.

(39)

Here,

h = ∑��=1 M

� M

� Re (N�)√[∑��=1 M

� Re (N�)]2 + [∑��=1 M

� Im (N�)]2
+ ∑��=1 M��� M��� Re (N�)√[∑��=1 M��� Re (N�)]2 + [∑��=1 M��� Im (N�)]2
+ √2 (1 − !�)
⋅ ∑��=1 M
�� M
�� Re (N�)√[∑��=1 M
�� Re (N�)]2 + [∑��=1 M
�� Im (N�)]2 ,

(40a)

i = �∑
�=1
M

� M

� N� (�) + �∑

�=1
M��� M��� N� (�)

+ !� [[
�∑
�=1
M

� M��� N� (�) + �∑

�=1
M��� M

� N� (�)]]

+ 2 (1 − !�) �∑
�=1
M
�� M
�� N� (�) .

(40b)

Similarly, the element of ^-row and `-column of matrix�r/��� is�r��� (^, `) = (
�1 + 2
�2�eq + 3
�3�2eq)Ψi + � (
�1
+ 
�2�eq + 
�3�2eq) �eqℎ
+ � {∬

�
[
1 (M

� M

� + M��� M��� )

+ 
2 (M��� M

� + M��� M

� ) + 
3M
�� M
�� ] d<
+ ��K∬

�
M�M� d< − �2	∬

�
M�M� d<} .

(41)

Here,

Ψ = ∑��=1 M

� M

� Im (N�)
√[∑��=1 M

� Re (N�)]2 + [∑��=1 M

� Im (N�)]2

+ ∑��=1 M��� M��� Im (N�)
√[∑��=1 M��� Re (N�)]2 + [∑��=1 M��� Im (N�)]2

+ √2 (1 − !�)
⋅ ∑��=1 M
�� M
�� (
) Im (N�)
√[∑��=1 M
�� Re (N�)]2 + [∑��=1 M
�� Im (N�)]2 .

(42)
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Extract the real and imaginary part of the vectors r and �,
respectively, and form two new vectors, which are shown as
follows:

r̂ = [Re (r) Im (r)]� , (43a)

�̂ = [Re (�) Im (�)]� . (43b)

�en, the iterative formulas of Newton-Raphson method
for (37) can be gotten:

r̂
(�) + J

(�) ⋅ Δ�̂(�) = 0, (44a)

�̂(�+1) = �̂(�) + Δ�̂(�), (44b)

where n is the iteration number.
Using the iterative calculation of (44a) and (44b), the

solution with certain precision can be obtained and the
precision of solution can be controlled by setting the max-
imum norm value of vector r̂. When attaining termination
conditions, the vector �̂ should be transformed into the
complex solution�, and then the de�ection and strain of plate
can be solved by (25) and (6). Finally, the vibration response
of composite plate under base excitation is obtained by (17).
�e whole solution procedure is shown in Figure 3 and some
steps are explained in the same 
gure.

For step 1, it is necessary to con
rm the iterative initial
value �̃0, which can be obtained according to the following
equation:

[K + � (C1 + �C2) − �2M]� = F, (45)

where the sti	ness matrix K does not contain the strain
dependent characteristic of hard-coating material; that is,
the linear part of mechanical parameter of hard coating is
introduced in the model according to �∗�0 = �cR0 + ��cI0. �e
element of the l-row and p-column of sti	ness matrix K is

s(^, `) = ∬
�
[
1 (M

� M

� + M��� M��� )

+ 
2 (M��� M

� + M��� M

� ) + 
3M
�� M
�� ] d<. (46)

For step 8, the convergence condition is de
ned as norm
2 of vector r less than the set value, that is, ‖r‖2 ≤ TOL.

In the last step, the output values such as the de�ection,
strain, and displacement response of hard-coating composite
plate are obtained by calculating the modules of the relative
complex solution.

4.2. Solution of Resonant Frequency. When calculating reso-
nant frequency of hard-coating composite plate, the resonant
response of composite should be obtained in advance, so
the calculation method of vibration response was described

rstly at above section.

Neglecting the damping and excitation force items in
(30), the characteristic equation considering the material
nonlinearity of hard coating can be expressed as

(K� − �2�M)� = 0. (47)

Step 1, calculating the iterative initial value

�̃0 under a certain exciting frequency

Step 2, calculating the complex sti�ness

matrix K̃
∗

� = K� + iC1

Step 3, calculating the residual vector r

and transforming it into r̂

Step 4, calculating the Jacobi matrix J

Step 5, calculating Δ�̂, �̂

Step 6, transforming �̂ into �

Step 7, recalculating the residual vector r

Outputting w(x, t), �(x, t), d(x, t)

No

Yes

Step 8, verifying ‖r‖2 ≤ TOL

Figure 3: �e procedure of solving vibration response of hard-
coating composite plate.

Here, the iterative method is also adopted to solve the reso-
nant frequency of composite plate.�e calculating procedure
is shown in Figure 4.

For step 1, to obtain the initial value �̃� of natural
frequency, the material nonlinearity of hard coating is also
not considered; the solution expression is

(K − �2�M)� = 0. (48)

For step 2, corresponding to the initial value �̃�, the
calculation equation of resonant response �̃ is

[K + � (C1 + ��C2) − �2�M]� = F. (49)

Similar to the response calculation, in step 6, the con-
vergence condition is de
ned as norm 2 of the di	erence
between two adjacent frequencies; the expression is ‖Δ��‖2 ≤
TOL.

5. Study Case and Discuss

In the following, the titaniumplate coated withMgO+Al2O3
hard coating on one side was considered as a study case. �e
developed method was demonstrated to solve the dynamics
characteristics considering the material nonlinearity of hard
coating.
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Step 1, calculating the iterative initial value of �̃j

Step 2, calculating the j-order resonant response �̃

Step 3, con�rming the equivalent strain �e

Step 4, calculating the complex sti�ness matrix
K� + iC1

Step 5, calculating the resonant frequency �j

according to (47)

Step 7, outputting �j

Calculating the

resonant response �

Yes

No
Step 6, verifying ‖Δ�n‖2 ≤ TOL

Figure 4: �e procedure of solving resonant frequency of hard-
coating composite plate.

5.1. Characterizing the Material Parameters of MgO + Al2O3

Hard Coating by Polynomial. �e material parameters of
MgO + Al2O3 hard coating are not constants and have strain
dependent characteristic. In this study, the identi
cation
results of hard-coatingmaterial in [11] were introduced in the
developed model. �e storage modulus and loss modulus of
MgO + Al2O3 are shown in Figure 5.

It can be seen that these measured values cannot be

tted by linear function and have to be 
tted by high order
polynomial. Here, the cubic polynomial was chosen and the

tting curve is also shown in Figure 5.

�e 
nal expressions of material parameters of MgO +
Al2O3 hard coating are

�cR (��) = 50.439 − 0.05386�� + 9.2396 × 10−5�2�− 5.4190 × 10−8�3� ,�cI (��) = 0.9122 + 0.01321�� − 3.2997 × 10−5�2�+ 2.2086 × 10−8�3� .
(50)

5.2. Vibration Experiment of Hard-Coating Composite Plate.
�eTi-6Al-4V cantilever platewas chosen as study object and
one side of plate was coated with MgO + Al2O3 hard coating.
�e method of preparing hard coating was Air Plasma
Spraying (APS) and the proportion of coating materials and
depositing technology were similar to the ones mentioned
in [1, 11]. �e geometry parameters of substrate and hard
coating are listed in Table 1 and the densities of substrate and

hard coating are 4420 kg/m3 and 2565 kg/m3, respectively.
�e material parameters of hard coating have the strain
dependent characteristic, which are considered according to
(50).

�e experimental system is shown in Figure 6. In the
system, the electromagnetic vibration shaker is base excita-
tion equipment and the Doppler laser vibrometer is vibration

Table 1: �e geometry parameters of hard-coating composite plate.

Material type
Length/
mm

Width/
mm

�ickness/
mm

Substrate Ti-6Al-4V 134 110 1.0

Hard coating MgO + Al2O3 134 110 0.02

Table 2: �e instruments used in this test.

Number Name

1 LMS SCADAS mobile front-end

2 KINGDESIGN EM-1000F shaker

3 Polytec PDV-100 laser vibrometer

4 BK 4514-001 acceleration sensor

5 High-performance notebook computers

picking equipment.�e vibration picking point locates at the
lower part of composite plate, and the coordinate values are
 = 26.8mm, � = 22mm, according to the coordinates
shown in Figure 6. Table 2 lists the instruments used in
this test in detail. It should be noted that an acceleration
sensor was placed in the 
xture and this sensor was used
to monitor the base excitation amplitude of 
xture. Another
acceleration sensor was used to control the amplitude of
vibration shaker. It has been found that the measurement
values are di	erent between the two accelerators. In this
study, the measurement value in the 
xture was chosen as
the base excitation amplitude. To ensure having consistent
boundary conditions for the uncoated and coated plate, the
torque wrench was chosen and the tightening torque of bolt
is 34N⋅m in the 
xture.

Herein, the 6-order resonant frequency and resonant
response calculation of hard-coating composite plate were
chosen to display the feasibility of the proposed method.
�e reason of choosing the 6-order vibration characteristic
was that the e	ect of boundary condition on the dynamics
characteristics of higher order of composite plate is small.
According to the needs of analytical calculation and verifying
the analytical calculation results, the 
rst 8-order modal
damping ratios of uncoated plate, the natural frequencies
of composite plate, and the 6-order resonant frequency and
resonant response under di	erent excitation levels (0.1 g,
0.3 g, 0.4 g, 0.5 g, 0.6 g, and 0.7 g) are tested. Among them,
the modal damping ratios of uncoated plate were obtained by
half-power bandwidth method from the sweeping response
of composite plate under 0.1 g. �e natural frequencies of
composite plate were gotten from the 3D waterfall 
gure of
sweeping response under 0.1 g. In this study, 0.1 g excitation
level was thought to be very low, which can not lead to the
appearance of material nonlinearity of hard coating, so the
natural frequencies obtained by experiment were thought as
linear natural frequencies. �e 6-order resonant frequency
and resonant response were also acquired by the 3D waterfall

gure of sweeping response and the sweeping direction was
from high frequency to low frequency. All the tested results
are listed in Table 3 to Table 5.
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Figure 5: Mechanical parameters of MgO + Al2O3 with strain dependent characteristics.

Vibration picking point

Accelerator

Vibration shaker

Fixture

Tabley

x

Direction of excitation 

Figure 6: Experimental system for hard-coating cantilever plate.

It can be seen from Table 5 that the 6-order resonant
frequency of composite plate decreases with the increase of
excitation levels. �e sweeping response in the considered
frequency range is shown in Figure 7. It should be explained
that the labels of excitation levels in Figure 7 were the setting
amplitude of vibration table, which are used to control the
vibration shaker. Also, it can be seen from Table 5 that the
excitation level in the 
xture was less than the excitation level
in the table. Maybe, the reason is that the energy is dissipated
when transferring from table to 
xture.

5.3. Analytical Calculation. �e strain dependent character-
istic of hard coating is considered for the proposed method,
so the solving process using the proposed method is named
as nonlinear calculation. In contrast, if not considering the
strain dependent characteristic, the solving process is named
as linear calculation. To compare with the proposed method,
the linear calculation was also done for the hard-coating
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Figure 7: �e 6-order sweeping response of composite plate under
di	erent excitation levels.

composite plate. For the linear calculation, the material
parameters of hard coating were taken as follows: storage
modulus 50.439GPa and loss modulus 0.918GPa, which
are corresponding to the 0 strains in Figure 5. �e picking
vibration point was consistent with experiment. Using these
parameters, the resonant frequencies and the 6-order reso-
nant response under di	erent excitation levels were solved.
For the nonlinear calculation, the convergence conditions of
both vibration response and resonant frequency calculation
were de
ned as TOL = 0.001. �e relative results are listed or
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Table 3: �e 
rst 8-order modal damping ratios of uncoated plate obtained by experiment.

Order 1 2 3 4 5 6 7 8

Damping ratio/% 0.7953 0.1937 0.03542 0.03413 0.04231 0.06831 0.05253 0.04324

Table 4: �e 
rst 8-order natural frequencies of composite plate obtained by experiment and linear calculation/Hz.

Order 1 2 3 4 5 6 7 8

Experiment �� 47.0 132.10 287.5 460.4 509.1 813.4 909.3 989.2

Linear calculation �� 46.7 132.6 289.4 463.4 505.4 820.9 901.1 995.3

Di	erence |�� − ��|/�� 0.64% 0.37% 0.66% 0.65% 0.72% 0.92% 0.90% 0.62%

Table 5: �e 6-order resonant frequency and resonant response under di	erent excitation levels obtained by experiment.

Excitation level in the table/g 0.3 0.4 0.5 0.6 0.7

Excitation level in the 
xture/g 0.23 0.30 0.38 0.47 0.54

Resonant frequency/Hz 813.35 813.15 813.00 812.90 812.80

Resonant response/(mm/s) 46.684 63.366 72.571 90.105 98.518

Table 6:�e 6-order resonant frequency and resonant response under di	erent excitation levels obtained by linear and nonlinear calculation.

Excitation levels/g Calculation type Resonant frequency/Hz Resonant response/(mm/s)

0.3
Linear 820.89 50.183

Nonlinear 820.64 47.574

0.4
Linear 820.89 65.457

Nonlinear 820.58 61.171

0.5
Linear 820.89 82.912

Nonlinear 820.50 76.319

0.6
Linear 820.89 102.549

Nonlinear 820.42 92.928

0.7
Linear 820.89 117.822

Nonlinear 820.37 105.570

shown in Tables 4 and 6 and Figure 8, and so forth. It can be
noted fromTable 4 that themaximumdi	erence of the 
rst 8-
order natural frequencies between the experiment and linear
calculation is less than 1%, and the discussion about the other
results can be seen in the following section.

5.4. Results Comparison and Di
erence Analysis. In this
section, the linear and nonlinear calculation results for the
6-order resonant frequency and resonant response were
compared with the experimental values. �e comparison of
resonant response is listed in Table 7 and the comparison of
resonant frequency is listed in Table 8.

From Table 7, a general rule can be still drawn; that is,
the di	erence between linear calculation of resonant response
and experiment values becomes bigger with the increase
of excitation levels, although there are exception conditions
when the excitation levels are 0.3 g and 0.6 g. For example,
when the excitation level is less than 0.4 g, the maximum
di	erence is 7.49%, and when the excitation level is bigger

than this value, the di	erence increases obviously and the
maximum value has achieved 19.59% during this calculation.
Compared with the linear calculation, the nonlinear calcula-
tion proposed in this study can alwaysmaintain an acceptable
precision and themaximumdi	erencewith experiment value
is less than 7.5%. For the resonant frequency calculation listed
in Table 8, similar conclusion can be drawn; that is, when
the excitation level is bigger, the nonlinear calculation should
be adopted, although for this case the precisions of both
the linear and nonlinear calculation are acceptable. By the
above comparison, the rationality of the calculation method
considering the material nonlinearity of hard coating was
veri
ed.

6. Conclusions

On the basis of considering the material nonlinearity of hard
coating, the dynamics modeling and analysis for a hard-
coating composite plate were studied, and some important
conclusions are listed as follows.
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Figure 8: Frequency domain response of hard-coating composite plate near the 6-order resonance region.

Table 7: �e comparison of resonant response/mm/s.

Item
Excitation level/g

0.3 0.4 0.5 0.6 0.7

Experiment <� 46.684 63.366 72.571 90.105 98.518

Linear calculation<� 50.183 65.457 82.912 102.549 117.822

Di	erence|<� − <�|/<� 7.49% 3.3% 14.25% 13.81% 19.59%

Nonlinear
calculation <nl 47.574 61.171 76.319 92.928 105.570

Di	erence|<nl − <�|/<� 1.90% 3.46% 5.16% 3.13% 7.15%

(1) Using the high order polynomial to characterize the
material parameters of hard coating is an e	ective
method. On the one hand, the high order polynomial
can describe the change of mechanical parameter
with the strain amplitude; on the other hand, the
mechanical parameters expressed by polynomial can
be easily introduced into the analytical model.

(2) �e created analytical model and solving method in
this study can correctly solve the dynamics character-
istics.�e practice for the 6-order calculation of hard-
coating composite plate shows that the maximum
di	erence of the resonant response calculation is
less than 7.5% and the maximum di	erence of the
resonant frequency calculation is less than 0.93%.

Table 8: �e comparison of resonant frequency/Hz.

Item
Excitation level/g

0.3 0.4 0.5 0.6 0.7

Experiment �� 813.35 813.15 813.00 812.90 812.80

Linear calculation�� 820.89 820.89 820.89 820.89 820.89

Di	erence|�� − ��|/�� 0.93% 0.95% 0.97% 0.98% 0.99%

Nonlinear
calculation �nl 820.64 820.58 820.50 820.42 820.37

Di	erence|�nl − ��|/�� 0.89% 0.91% 0.92% 0.92% 0.93%

(3) �e resonant response values between linear andnon-
linear calculation are signi
cantly di	erent and the
di	erence between linear calculation and experiment
values becomes bigger with the increase of excitation
levels. So, when the excitation level is bigger, the
material nonlinearity of hard coating must be con-
sidered; using the nonlinear calculation is needed to
acquire the dynamics characteristics of hard-coating
composite structure.

(4) By comparison of the resonant responses obtained by
linear and nonlinear calculation for the hard-coating
composite plate, it can be found that the resonant
response obtained by nonlinear calculation is less
than the result of linear calculation, which maybe
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means that the material nonlinearity of hard coating
is good to the vibration reduction e	ect.
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