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ANALYTICAL MODELLING OF INFILLED 

FRAME STRUCTURES - A GENERAL REVIEW 

Francisco J. Crisafulli1, Athol J. Carr2, and Robert Park3 

ABSTRACT 

The analytical modelling of infilled frames is a complex issue because these structures exhibit a highly non­

linear inelastic behaviour resulting from the interaction of the masonry infill panel and the surrounding frame. 

This paper presents a general review of the different procedures used for the analysis of infilled frames, which 

can be grouped in local or micro-models and simplified or macro-models, depending on the degree of 

refinement used to represent the structure. The finite element formulation and the equivalent truss mechanism 

are the typical examples of each group. The advantages and disadvantages of each procedure are pointed out, 

and practical recommendations for the implementation of the different models are indicated. 

INTRODUCTION 

Infilled frame structures are used to provide lateral resistance in 

regions of high seismicity, especially in those places where 

masonry is still a convenient material, due to economical and 

traditional reasons. Furthermore, infilled frame buildings 

designed and constructed before the development of actual 

seismic codes constitute an impottant patt of the high-risk 

structures in different countries. The rehabilitation of these 

buildings to resist seismic actions implies, as a first step, the 

assessment of the structural behaviour. Consequently, the 

analytical modelling of this type of structure represents an 

important issue for engineers and researchers involved in 

seismic design. 

Structural engineers have largely ignored the influence of 

masonry panels when selecting the structural configuration, 

assuming that these panels are brittle elements when compared 

with the frame. The design practice of neglecting the infill 

during the formulation of the mathematical model leads to 

substantial inaccuracy in predicting the lateral stiffness, 

strength and ductility. The reluctance of numerous engineers to 

consider the contributions of the masonry infills has been due 

to the inadequate knowledge concerning the composite 

behaviour of infilled frames, and to the lack of practical 

methods for predicting the stiffness and strength. It is worth 

noting that most of the computer programs commonly used by 

designers are not provided with some rational and specific 

elements for modelling the behaviour of the masonry infills. 
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The aim of this paper is to review the approaches used for the 

analysis of infilled frame structures. The different techniques 

proposed in the literature for idealizing this structural type can 

be divided into two groups, namely, local or micro-models and 

simplified or macro-models. The first group involves the 

models, in which the structure is divided into numerous 

elements to take account of the local effects in detail, whereas 

the second group includes simplified models based on a 

physical understanding of the behaviour of the infill panel. In 

the later case, a few elements are used to represent the effect of 

the masonry infill as a whole. Both types of models will be 

discussed in the following sections. 

It is evident from experimental observations that [ l] these 

structures exhibit a highly non-linear inelastic behaviour. The 

most important factors contributing to the non-linear behaviour 

of infilled frames arise from material non-linearity. These 

factors can be summarized as follows: 

• Infill Panel: cracking and crushing of the masonry, 

stiffness and strength degradation. 

• Surrounding Frame: cracking of the concrete, yieldmg 

of the reinforcing bars, local bond slip. 

• Panel-Frame Interfaces: degradation of the bond-friction 

mechanism, variation of the contact length. 

Geometric non-linear effects can also occur in infilled frames, 

especially when the structure is able to resist large horizontal 

displacements. However, these effects do not present any 

patticularity and can be considered in the analysis using the 
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same methodologies applied to reinforced concrete or steel 

strnctures. 

The non-linear effects mentioned above introduce analytical 

complexities which required sophisticated computational 

techniques to be properly considered in the modelling. 

Furthermore, the material properties are difficult to define 

accurately, especially for masonry. These facts complicate the 

analysis of infilled frames and represent one of the main 

reasons to explain why infill panels have been considered as 

"non-strnctural elements", despite the strong influence on the 

global response. 

It is worth noting that infilled frame structures cannot be 

modelled as elasto-plastic systems due to the stiffness and 

strength degradation occurring under cyclic loading. More 

realistic models should be used to obtain valid results, 

particularly in the dynamic analysis of short period structures, 

where the energy dissipation capacity and shape of the 

hysteresis loops may have strong influence in the response. 

DIAGONAL STRUT MODEL 

General Description 

Polyakov (as repot1ed by Klinger and Bertero [2] and Mallick 

and Severn [3]) conducted one of the first analytical studies 

based on elastic theory. From his study, complemented with 

tests on masonry walls diagonally loaded in compression, he 

suggested that the effect of the masonry panels in infilled 

frames subjected to lateral loads could be equivalent to a 

diagonal strut (see Figure 1). Later, Holmes [4) took up this 

idea and proposed that the equivalent diagonal strut should 

have a width equal to one third of the length of the panel. 

Stafford Smith [5] refined the approach and started a series of 

tests to investigate more precisely the width of the equivalent 

strut. This task was continued by many other researchers. 

Nowadays, the diagonal strut model is widely accepted as a 

simple and rational way to describe the influence of the 

masonry panels on the infilled frame. 
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Figure 1: Diagonal strut model for infilled frames. 

When the structure is subjected to cyclic or dynamic loading, 
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the use of only one diagonal strut resisting compressive and 

tensile forces cannot describe properly the internal forces 

induced in the members of the frame. In this case, at least two 

struts following the diagonal directions of the panel must be 

considered to represent approximately the effect of the masonry 

infill. It is usually assumed that the diagonal struts are active 

when compressive forces develop in them. However, 

compression only elements are not available in common elastic 

computer programs. In this case, Flanagan et al. [6 J 

recommend the use of tension-compression truss members with 

half of the equivalent strut area in each diagonal direction. The 

use of this simplified model results in significant changes in the 

internal forces in the surrounding frame, especially the axial 

forces in the columns (tensile forces decrease, whereas 

compressive forces increase). 

The assumption of a compression only strut is acceptable on the 

basis that the bond strength at the panel-frame interfaces and 

the tensile strength of the masonry are very low. Tensile forces, 

therefore, can be transferred through the interfaces only for 

small levels of seismic excitation. This consideration may not 

be valid when either shear connectors are used at the interfaces 

or the masonry panel is reinforced with horizontal or vertical 

bars. Refined models, however, can consider the tensile 

behaviour, which usually does not affect significantly the 

results. 

Modified Diagonal Strut Model 

The single diagonal strut model is simple and capable of 

representing the influence of the masonry panel in a global 

sense. This model, however, cannot describe the local effects 

resulting from the interaction between the infill panel and the 

surrounding frame. As a result, the bending moments and shear 

forces in the frame members are not realistic and the location of 

potential plastic hinges cannot be adequately predicted. For 

these reasons the single diagonal strut model has been modified 

by different researchers, as illustrated in Figure 2. For 

simplicity, the struts acting just on one direction have been 

indicated in this figure. 

Zamic and Tomazevic (7, 8, 9] proposed the model illustrated 

in Fig. 2 (a) based on their experimental results. In these tests, 

the damage in the upper zone of the masonry panel occurred off 

the diagonal, probably due to pe11urbation introduced by the 

devices used to apply the lateral and vertical loads in the 

comers of the frame. Consequently, in the proposed model the 

upper end of the diagonal strut is not connected to the beam­

column joint. This model could be applied in those cases 

where a shear failure develops at the top of the columns, 

although it does not represent the mechanism usually observed 

in laboratory tests. 

Figures 2 (b), (c) and (d) show multiple struts models proposed 

by Schmidt (as reported by Konig [4]), Chrysostomou [ 1 OJ, 

and Crisafulli [l], respectively. The main advantage of these 

models, in spite of the increase of complexity, is the ability to 

represent the actions in the frame more accurately. Syrmakesis 

& Vratsanou (1 l] and San Bartolome [12] increased the 

number of struts and used in their analyses a model similar to 

that illustrated in Fig. 2 (c) with five and nine parallel struts, 

respectively, in each direction .. 
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Figure 2: Modification of the diagonal strut model and multiple struts models. 

A more complex model was developed by Thimvengadam [13) 

for the dynamic analysis of infilled frames. The model consists 

of a moment resisting frame with a number of pin joined 

diagonals and vertical struts uniformly distributed in the panel. 

1l1ese diagonals represent the shear and axial stiffness of the 

masonry infill. In order to take into account the partial 

separation at the panel-frame interfaces, the contact length is 

calculated and those ineffective struts are removed. In a similar 

way, the effect of openings can be considered by removing the 

struts crossing the opening area. Due to the complexity and 

refinement involved in this multiple strut model, it may be 

considered as an intermediate approach between the micro­

models and macro-models. 

The strut models presented above are not capable of describing 

the response of the infilled frame system when horizontal shear 

sliding occurs in the masonry panel. For this case, Fiorato et 

al. [ 14) proposed a "knee braced frame" to represent the 

behaviour, and Leuchars & Scrivener [ I 5] suggested the model 

illustrated in Figure 3. The double strut can depict the large 

bending moments and shear forces induced in the central zone 

of the columns. Furthermore, it is possible to consider the 

friction mechanism developing along the cracks, which mainly 

controls the strength of the system. According to the author's 

knowledge, this model was just a suggestion, which was never 

implemented to verify its accuracy. 

Andreaus et al. [16) generalized the idea of the diagonal strut 

and assumed that masonry can be represented using a truss-like 

system, in order to generate a sort of finite element mesh 

formed by "cells". Each of these cells represents a four-node 

clement, whose mechanical behaviour is defined by two truss 

members located along the diagonal directions of the element. 

This approach can be considered as a micro-model, due to the 

refinement involved in the representation of the structure. 

However, it is included here because the formulation of the 

model was based on the diagonal strut concept. D'Asdia e1 al. 

[ 17] applied this approach to model infilled frame structures. 

Figure 3: Model proposed to represent the response of the 

infilled frame subsequent to horizontal shear 

sliding [15]. 

Properties of the Diagonal Strut 

The use of the equivalent strut model is attractive from the 

practical point of view. Consequently, much experimental 

research has been directed to define the relationships between 

the characteristics of the infilled frame system and this 

simplified model. The properties required for defining the 

strut model depend on the type of analysis (linear elastic or 

non-linear) and the type qf loading (monotonic, cyclic or 

dynamic). For linear elastic analysis only the area and length 

of the strut, and the modulus of elasticity are needed to 

calculate the elastic stiffness. When non-linear behaviour of 

the material is considered, the complete axial force­

displacement relationship is required. Even more complex is 

the problem for cyclic or dynamic loading, because the 

hysteretic behaviour of the material must be established. In 

this section, only the evaluation of the elastic stiffness is 



discussed, whereas the hysteretic models are presented in the 

next section. 

It is usually assumed that the ends of the diagonal members 

coincide with the intersection of the centre lines of the beams 

and columns of the surrounding frame (see Fig. I). This 

implies that the diagonal length in the model is longer than the 

diagonal length of the masonry panels. The difference, 

however, is not significant in most cases. The thickness, t, and 

the elastic modulus, Em, of the strut are equal to those of the 

masonry infill. The value of Em adopted in the analysis 

obviously depends on the stress level expected in the panels, 

since the behaviour of masonry is non-linear. Two approaches 

have been used to calculate the equivalent width, w, of the 

equivalent strut (see Fig. 4). The first approach is based on 

measurements from tests of infilled frame structures, whereas in 

the second procedure analytical results (for example, from finite 

element analysis) are utilised. 

' ' ' ' ' ' ' )', 
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L 
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Figure 4: Effective width of the diagonal strut. 
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The first approximation to calculate the width of the equivalent 

strut was proposed by Holmes [4], in the lack of experimental 

data, assuming that: 

d 
W=-n_, 

3 
(I) 

where dm is the diagonal length of the masonry panel. Later, 

Stafford Smith [5, 18, 19, 20] conducted a large series of tests 

using infilled steel frames and proposed different charts to 

calculate the equivalent width, w. In the first investigations [5], 

it was found that the ratio w/dm varied from 0.10 to 0.25. 

Additional experimental information [19, 20] allowed a more 

refined evalution of w, considering the ratio hn/Lm, and a 

dimensionless parameter Ai, (which takes account of the relative 

stiffness of the masonry panel to the frame) defined by: 

4 

E,,,tsin 20 

4£Jchm 
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(2) 

In Equation 2, t and hm are the thickness and the height of the 

masonry panel, respectively, 0 is the inclination of the diagonal 

of the panel, Em and Ee are the modulus of elasticity of the 

masonry and of the concrete, respectively, and I0 is the moment 

of inertia of the columns. 

Paulay and Priestley [21] pointed out that a high value of w 

will result in a stiffer structure, and therefore potentially higher 

seismic response. They suggested a conservative value useful 

for design proposal, given by: 

w = O.25dm (3) 

This equation is recommended for a lateral force level of 50% 

of the ultimate capacity. 

Mainstone [22] and Liauw and Kwan [23] proposed the 

following equations based on experimental and analytical data, 

respectively: 

w = 0.16l-0'd 
h m (4) 

O.95h cos0 
w= w 

.JI: 
(5) 

Figure 5 illustrates the variation of the ratio w/dm according to 

the previous expressions. Equations 1 and 3 are independent of 

the parameter Ai, and they represent just an approximation 

useful for simplified analysis. Equations 4 and 5 indicate that 

the ratio w/dm decreases when the parameter \ increases, 

because the stiffness of the masonry panel is large, when 

compared with the stiffness of the frame and the contact Jen "th 
is smaller. ' "' 

Based on results obtained from framed masonry walls (this is 

the case in which the masonry wall is built first and then the 

reinforced concrete frame is cast) tested under lateral forces, 

Decanini and Fantin [24] proposed two set of equations 

considering different states of the masonry infill: 

Uncracked panel: 

w=( 0·748 +0.085} A m 
h 

(6a) 

(
0.393 } 

W= --+Q.}30 
A "' 

h 

if Ah > 7.85 



34 

Cracked panel: 

w=[0.707 +0.010} 
A, m 

h 

w = [0.470 + 0.040} 
A, m 

h 

0.5 
e = so0 

(6b) 

if Ah > 7.85 

---Holmes, 
Eq. 1 

0.4 e = 2~0 ·-=-~-------~-----,,--------,-----j----------1 
Paulay and 
Priestley, 
Eq. 3 

. 
E 

0.3 --..- -- -· Ito - ••.• ···--·-"·- ' _______ .. ________ , ___ ---

"C -3: 0.2 "'--... --- ,--···--- .. _____ .,; ... -~ --- ----

---
- • - · Mainstone, 

Eq.4 
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Figure 5: Variation of the ratio wldmfor in filled frames as a function of the parameter J.,,, 
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Figure 6: Ratio wldm for framed masonry structures 

according to Decanini and Fantin [24]. 

The modulus Em to be used in the calculation of the parameter 

A.11 is the modulus corresponding to the considered state 

(uncracked or cracked masonry). These equations are plotted 

in Figure 6 as a function of the parameter lei,- The principal 

advantage of the approach proposed by Decanini and Fantin 

(24] is the distinction between the uncracked and cracked 

stages. The comparison of Eqs. 6a and 6b indicates that w 

reduces significantly after cracking to a value ranging from 

50% to 80% of the initial width. The higher reductions occur 

for large values of the parameter '"h, because the influence of 

the infill panel in the response of the system is greater in these 

cases. 

Bazan and Meli (12] proposed also an empirical expression to 

calculate the equivalent width w for framed masonry: 

w = (0.35 + 0.22/3 )h (7) 

where ~ = (E, Ac)/(G111 Am) is a dimensionless parameter. A, is 

the gross area of the column and Am = (Lm t) is the area of the 

masonry panel in the horizontal plane. Figure 7 illustrates the 

ratio w/dm according to Eq. 7. It is difficult to compare these 

results with previous expressions because they are related to 

two different parameters. Despite this fact, it is observed that 

Eq. 7 leads to higher ratios w/dm than Eqs. 6a and 6b in the case 

of stiffer masonry panels (A.11 and ~. in the range of 7 to IO and I 

to 3, respectively). 

It is also important to note that the equivalent width for framed 

masonry is usually higher than that for non-integral infilled 

frames, according to the empirical equations presented above. 

This conclusion is not surprising since framed masonry exhibits 

better conditions, bond strength and friction, at the panel-frame 

interfaces. 

The simplified expression proposed by Paulay and Priestley 

(22], Eq. 3, can be considered as an upper limit for the ratio 

w/dm. The expressions recommended for framed masonry (Eqs. 

5, 6 and 7) lead to higher results only when limit conditions are 

considered. 
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Figure 7: Ratio wld., for framed masonry structures 

(Bazan and Meli [121). 

Stafford Smith [ 18, 19] pointed out that the length of contact, z, 

between the frame and the panel (see Fig. 4) can be used as a 

reference parameter to evaluate either the stiffness or the 

strength of the infilled frame. They found that the contact 

length is governed by the relative stiffness parameter, Ai., and 

proposed that z can be approximated by the following 

expression: 

n 
z=-h 

2Ah 
(8) 

It is worth noting that Eq. 8 was developed from tests 

conducted on small specimens diagonally loaded in 

compression. The frames were built with mild steel flat bars of 

different sizes and the panels were made of mortar. The panel 

dimension were 150 x 150 x 19 mm. In the author's opinion, 

the validity of Eq. 8 for infilled frame structures should be 

verified considering more realistic experimental data. 

For the model illustrated in Fig. 2 (a), Zarnic [25] proposed an 

analytical procedure to calculate the area of the strut. It was 

assumed that the axial stiffness of the brace is equal to the 

stiffness of the triangular part of the masonry wall ( considering 

shear and flexural deformations). This triangular part forms in 

the wall after cracking of the masonry. Therefore, it is possible 

to obtain the area of the strut as a function of the geometric and 

mechanical properties of the masonry infill. The equation 

proposed by Zarnic [25], however, did not consider that both 

stiffnesses are related to different displacements (axial 

displacement of the strut and horizontal displacement at the top 

of the triangular part of the panel). As a result, one of the 

stiffnesses should be transformed as a function of the 

inclination of the strut. 

Chrysostomou [ 1 OJ used a different approach to calculate the 

stiffness of the strut elements of his model, represented in Fig. 

2 (c). The compressive force resisted by the masonry panel and 

their stiffness were calculated as a function of the storey drift, 

using a modification of the expression proposed by Soroushian 

et al. (26] for masonry shear walls. In order to define the 

properties of the three struts the following approach was 

implemented. The behaviour of the central strut was 

represented by expressions similar to those corresponding to 

the entire masonry panel. However, it was assumed that the 
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central part of the infill panel deteriorates faster than the other 

parts. The properties of the off-diagonal struts were evaluated 

by considering that the forces and stiffnesses of the three struts 

should be equal to the force and stiffness of the entire masonry 

wall. The principle of virtual work was used to derive these 

expressions, assuming one particular displacement field. 

Chrysostomou's procedure to evaluate the properties of the off­

diagonal struts implies that plastic hinges form only at the end 

of the columns or beams and that the internal work produced in 

these plastic hinges is negligible. The influence of these 

hypotheses should be checked to verify the validity of the 

model. 

Comparison of the Response of Different Strut Models 

A preliminary study was conducted to investigate the 

limitations of the single strut model, which is the simplest 

rational representation used for the analysis of infilled frames. 

Furthermore, the influence of different multi-strut models on 

the structural response of the infilled frame was studied, with 

particular interest in the stiffness of the structure and in the 

actions induced in the surrounding frame. Numerical results 

obtained from three strut models were compared with those 

corresponding to an equivalent finite element model (a detailed 

description of this model can be found in reference [I]). Figure 

8 illustrates the strut models, which are referred as Model A, B 

and C, respectively. The total area of the equivalent masonry 

struts, Am,, was the same in all cases. It was assumed in Model 

C that the sectional area of the central strut was double of that 

corresponding to the off-diagonal struts. Several series of 

models were analysed considering a 2.5 m high masonry panel 

with a length of 3.6 or 5.0 m, and an elastic modulus for the 

masonry of 2 500 or IO 000 MPa. The dimensions of the frame 

members were 200 x 200 mm and the elastic modulus of 

concrete was 25 000 MPa. 

According to the objectives of the study, the analyses were 

conducted under static lateral loading assuming linear elastic 

behaviour, except for the finite clement model in which non­

linear effects were considered to represent the separation of the 

panel-frame interfaces. Results arc presented in the following 

paragraphs in qualitative terms. 

The stiffness of the infillcd frame was similar in all the cases 

considered, with smaller values for model B and C. It must be 

noted that for the multi-strut models, especially Model C, the 

stiffness may significantly change depending on the distance h1 

(see Fig. 8). This distance was evaluated as a fraction of the 

contact length, z, defined by Eq. 8 . When hz increases, the 

stiffness of the infilled frame reduces, being chict1y controlled 

by the mechanical properties of the columns. 

Figure 9 compares the bending moment diagrams obtained 

from one typical example according to the different models 

used in this study. Model A underestimates the bending 

moment because the lateral forces are primarily resisted by a 

truss mechanism. On the other hand, Model B leads to much 

larger values than those corresponding to the finite clement 

model. A better approximation is obtained from Model C, 

although some differences arise at the ends of both columns. 
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Figure 8: Different strut models considered in the study. 
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Figure 9: Comparison of the bending moments diagrams corresponding to different strut models. 

Similar conclusions can be drawn regarding the shear forces. 

The maximum axial forces in the frame members are 

approximately equal in all the models, even though the 

variation of the axial forces along the columns shows some 

discrepancy at the top end of the tension column and at the 

bottom end of the compression column. It can be concluded 

that the single strut model, despite its simplicity, can provide an 

adequate estimation of the stiffness of the infilled frame and the 

axial forces induced in the frame members by lateral forces. 

However, a more refined model, Model C, is required in order 

to obtain realistic values of the bending moments and shear 

forces in the frame. The results obtained here indicate that the 

single strut model represents an adequate tool when the 

analysis is focussed on the overall response of the structure. 



Hysteretic Behaviour of the Diagonal Struts 

In order to conduct non-linear cyclic or dynamic analysis, the 

force-displacement relationships corresponding to the 

equivalent strut must be adequately defined. The 

representation of the hysteretic behaviour increases not only the 

complexity of the analysis but also the uncertainties of the 

problem. 

Klingner and Bertero [2] developed three different hysteretic 

models to represent the diagonal strut, each of them involved a 

slight increase in the complexity. Figure l O illustrates the 

characteristics of the third model, in which the envelope was 

represented by a linear elastic ascending branch followed by an 

exponential descending curve. Unloading was assumed to be 

linear with stiffness equal to the initial stiffness, whereas the 

effect of stiffness degradation was considered for reloading. 

The comparison of the analytical results with experimental data 

showed poor agreement, although this model was the first 

approach to include the non-linear response of infilled frames 

and represented the basis for further developments. The 

strength envelope proposed by Klingner and Bertero has been 

also used for non-linear static analysis in order to represent the 

effect of strength degradation [27]. 

-­
Strength enve~e-

curve 

Tension cuive 

Axial deformation 

Reloading 

Elastic loading 

Figure 10: Hysteretic behaviour of the strut modd 

proposed by Klingner and Bertero [2}. 

The hysteretic model proposed by Doudoumis and 

Mitsopoulou [28] is shown in Figure 1 I. This model was 

developed for non-integral infilled frames, in which a gap 

normally fonns between the masonry panel and the surrounding 

frame. The envelope curve considered the effect of strength 

degradation. The hysteresis cycles were described in a very 

simplistic way assuming that reloading occurs following the 

elastic branch. 

Figure 12 shows the force-displacement relationship adopted 

by Andreaus et al. [ 16] for representing the mechanical 

behaviour of the diagonal struts. This model assumes that 

strength degradation starts immediately after the strength of the 

strut has been reached. Reloading occurs when the axial 

deformation is equal to the plastic deformation of the previous 

loop. 

The comparison of the three hysteretic models illustrated in 

Figures I 0, I I and 12 shows that the envelope curves are 

similar. The effect of strength degradation appears to be 

significant and has been considered in all the cases. The 
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representation of the hysteresis loops, however, exhibits 

important differences. Doudoumis and Mitsopoulou [281 (Fig. 

11) assumed that reloading occurs following the initial loading 

branch. This assumption leads to fat hysteresis loops with high 

energy dissipation capacity. On the contrary, Andreaus et al. 

[16] (Fig. 12) considered that unloading and subsequent 

reloading follow the same line, which reduces considerably the 

area of the loops. The model proposed by Klingner and 

Bertero [2] (Fig. 10) represents and intermediate situation. 

which includes also the effect of stiffness degradation. 

Unloading 

Strength 

degradation 

Initial gap 

Elastic loading 

and reloading 

Axial deformation 

Figure 11: Hysteretic model developed by Doudownis and 

Mitsopoulou [28]. 

~ 
J2 
ii 

Unloading ~ 
and reloading 

Strength 

degradation 

Axial deformation 

Elastic loading 

Figure 12: Force-displacement relationship assumed by 

Andreaus et al. [16]. 

A different approach was proposed by Soroushian et al. [26] 

for masonry walls, which was later modified by Chrysostomou 

[IO] for representing the behaviour of masonry infills. The 

hysteretic response is modelled by combining two equations. 

The first equation (a logarithm exponential function) defines 

the strength envelope, whereas the second equation (a quarlic 

polynomial function) represents the hysteretic loops, as shown 

in Figure 13. These expressions, which describe the 

mechanical behaviour of the infill, were used to derive the 

force-displacement relationships for the central and off­

diagonal struts of the model proposed by Chrysostomou [ I OJ 
(see Fig. 2 (c)). 

Reinhom et al. [29] developed a hysteretic model which 

combines two mathematical ti.mctions Lo provide a smooth 

force-displacement relationship. Strength degradation, stiffness 

decay and pinching of the hysteresis loops can be considered by 

selecting the proper values of the nine parameters included in 

the model. Some of these parameters are empirical, whereas 
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the others depend on energy considerations. The 

implementation of this model is not straightforward and the 

solution requires the numerical integration of a differential 

equation. 

(a) Strength envelope 

VNmax 

(b) Hysteretic loop 

Figure 13: Hysteretic model proposed by Soroushian et al. [26Jfor masonry shear walls and adopted by Chrysostomou [JO] for 

the diagonal strut. 

Crisafulli [I] proposed an analytical formulation to simulate the 

hysteretic axial response of masonry (stress-strain relationship), 

and used it to defined the response of the equivalent strut. This 

model takes into account the nonlinear response of masonry in 

compression, contact effects in the cracked material, and small 

cyclic hysteresis, as illustrated in Figure 14. The comparison 

between experimental and analytical results indicated that a 

good agreement can be obtained. However, several empirical 

parameters need to be defined in order to represent adequately 

the hysteretic response. This model has been implemented in 

the computer program RUAUMOKO [30] for dynamic 

inelastic analysis of structures. 

It is worth noting that most of the pinching of the hysteresis 

response, observed in the inelastic models, results from the 

nonlinear behaviour of the masonry struts, whereas in real 

structures the influence of sliding shear in the masonry panel 

and in the columns of the surrounding frame is also important. 

The representation of this phenomenon with a macro-model is 

very complex and requires the use of a refined formulation, 

which is not usually available in most of the existing computer 

programs. Further research is required to incorporate shear 

failure mechanisms of reinforced concrete members in the 

analytical modelling, considering their effect on the structural 

response can be significant. 

STOREY MECHANISM MODEL 

The storey mechanism model is a simplified approach 

developed to investigate the global response of infilled frame 

structures. According to this approach, the response of a 

complete storey, or even the entire structure, is represented 

using a non-linear relationship between the lateral force and the 

storey drift (or lateral displacement). The model does not 

consider any distinction between the frame and the masonry 

panel. 

Moroni et al. [31] used the storey mechanism model to conduct 

non-linear static analysis with the objective of comparing the 

displacement capacity of infilled frames with that required by 

major earthquakes. Flores and Alcocer [32] proposed a 

hysteretic rule, which was calibrated from experimental results 

obtained from infilled frames with and without horizontal 

reinforcement into the masonry panel. The model was used for 

non-linear dynamic analyses aimed at investigating the 

influence of several parameters in the response of infilled 

frames. Panagiotakos and Fardis (33] proposed a shear force­

storey drift relationship which has a multi-linear envelope to 

represent the most important characteristics of the response 

(cracking, ultimate strength, post-ultimate falling branch and 

residual strength). The hysteretic response is controlled by three 

empirical parameters which define the unloading and reloading 

branches. These parameters were calibrated to model the 

pinching effect observed during tests of infilled frames. The 

general characteristics of the proposed hysteretic model are 

illustrated in Figure 15. 

OTHER MACRO-MODELS 

Despite the advantages of the diagonal strut model, other 

approaches have been used to analyse infilled frame structures. 

Most of these models were developed to evaluate the stiffness 

of the structure assuming elastic behaviour, consequently, their 

applicability is very limited. 



The initial uncracked behaviour of infilled frames, providing 

that there is no gap between the frame and the masonry panel, 

can be evaluated by assuming that the total system behaves as a 

Axial displacement 

(a) Sinusoidal ground acceleration 

39 

Axial displacement 

(b) El Centro 1940 earthquake 

Figure 14: Axial force-displacement relationship for the masonry strut proposed by Crisafulli [l]. 

single monolithic member [14, 15]. Therefore, the structure 

can be analysed using standard elastic theory considering the 

contribution of the flexural and shear deformations of the 

system to evaluate the horizontal displacements. The validity 

of this model, usually called "the beam analogy", depends on 

the bond strength developed at the panel-frame interface. 

Leuchars & Scrivener [15] reported that the initial uncracked 

mode can resist forces up to 50% of the ultimate force. Using 

the same concept of the beam analogy, Thiruvengadam [13] 

applied a shear-flexure cantilever model to evaluate the natural 

periods of infilled frames. 

Smolira [34] developed an approximate method for analysing 

infilled frame structures, assuming that the materials obey 

Hooke's law. The indeterminate variables were the bending 

moments at the ends of the columns, the diagonal force in the 

masonry infill and the horizontal displacement. These values 

were evaluated using a set of equations obtained from 

conditions of compatibility of deformations and equilibrium of 

forces. 

The equivalent frame method was proposed by Liauw and Lee 

[35) for infilled frames with openings and shear connectors at 

the panel-frame interfaces. They assumed that an analogous 

model can be set up by representing the structure with an 

equivalent frame. Using the ratio of the elastic modulus of the 

two materials (masonry and concrete), the actual members are 

transformed into equivalent sections of infill material. The 

dimensions of the equivalent frame are obtained from the 

centroidal axes of the actual infilled frames. The validity of the 

method depends on the capacity of the shear connectors to 

sustain the composite action without allowing the separation of 

the infill. 

An approximate substructuring technique, called the constraint 

approach, was developed by Axley and Bertero [36] to 

investigate the influence of masonry infills in reinforced 

concrete frames. Three steps were considered in the 

formulation of the constraint approach. Firstly, the system is 

modelled separately, using finite elements for the frame and the 

panel, and the stiffness matrixes are formed. Then, the stiffness 

of the masonry infill is reduced to the boundary degrees of 

freedom by applying static condensation. In the final step, a 

new transformation is conducted to obtain the stiffness matrix 

of the panel related to the degrees of freedom of the four 

corners, which are also the degrees of freedom of the frame. 

The method was applied to conduct linear elastic analyses and 

was implemented as a four node element in a computer 

program for structural analysis. Even though this technique 

was formulated on the basis of the finite element method, it can 

be considered as a macro-model from a practical point of view. 

Pires et al. [37] idealised the infilled frames using a parallel 

association between frame and the masonry infills (represented 

by a shear cantilever beam). Both parts of the model were 

connected with rigid links. Non-linear behaviour was 

considered for the reinforced concrete frame and masonry infill. 

This model, however, does not consider that separation 

between the frame and the panel occurs when the lateral load 

increases. It is believed that this factor may completely distort 

the behaviour of the model when compared with the real 

structure. Furthermore, the complexity of the model increases 

significantly for large infilled frames. 

Valiasis et al. [38] developed a phenomenological model in 

which the relationship between the average shear stress in the 
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panel and the angular deformation was defined. The envelope 

was represented by two linear ascending branches and one 

exponential descending branch. The hysteresis rules 

incorporated the effects of stiffness degradation and pinching 

using linear branches to approximate the unloading-reloading 

curves. It was assumed that the contribution of the infill panel 

is equal to the difference of the response of the infilled and bare 

frame for each level of lateral displacement. V aliasis et al. [38] 

pointed out that this model includes the influence of the 

interaction between the masonry panel and the frame and is 

strongly dependent on the geometric and mechanical 

characteristics of both the surrounding frame and the infill 

panel. Later, Michailidis et al. [39] implemented this model 

into a general program for the analysis of plane structures. The 

entire masonry panel was represented by a four-node 

isoparametric element with two degrees of freedom at each 

node. 

Strength envelope 

/ curve 

Elastic loading 

Figure 15: Shear force-storey drift hysteretic model proposed by Panagiotakos and Fardis [33Jfor infilledframe structures. 

FINITE ELEMENT MODELS 

Introduction 

The finite element method has been extensively used for 

modelling infilled frame structures, since Mallick and Severn 

[3] applied this approach in 1967. Due to the composite 

characteristics of infilled frames, different elements are required 

in the model: beam or continuum elements for the surrounding 

frame, continuum elements for the masonry panel and interface 

elements for representing the interaction between the frame and 

the panel. Finite element models exhibit obvious advantages 

for describing the behaviour of infilled frames and the local 

effects related to cracking, crushing and contact interaction. 

This implies a greater computational effort and more time in 

preparing the input data and in analysing the results. For the 

model to be realistic, the constitutive relationships of the 

different elements should be properly defined and the non­

linear phenomena which occur in the masonry infill and in the 

panel-frame interfaces must be adequately considered. 

Otherwise, the validity of the results is jeopardised, despite the 

great computational effort involved in the analysis. 

Even though three-dimensional continuum elements are 

available for the analysis, it is commonly considered that the 

use of two-dimensional continuum elements leads to acceptable 

results. In this case, a state of plane stress is a reasonable 

assumption for most of the cases of in-plane loading [ 40]. 

The modelling of the frame and the masonry panel with finite 

elements has been amply investigated. Only a brief description 

of these models is presented here. More attention is given to 

the modelling of the panel-frame interfaces, which represents a 

particular characteristic of infilled frame structures. 

Modelling of the Masonry Panel 

The analytical model used for the masonry panel should reflect 

the non-linear nature of this material and the influence of the 

mortar joints. Different approaches have been implemented for 

representing the masonry panel, which are primarily based on 

the modelling techniques developed for concrete and rock 

mechanics [41]. Nevertheless, the behaviour of masonry is 

more complex due to the planes of weakness introduced by the 

mortar joints. These approaches can be grouped according to 

the level of refinement involved in the model [42, 43]. 

The first approach is the least refined, in which the masonry is 

represented as a homogeneous material. Consequently, the 

effect of the mortar joint is considered in an average sense. This 

approach is suitable for modelling large masonry structures, 

where a detail stress analysis is not required. The material 

model should represent the mechanical behaviour of masonry 

by adequately defining the stress-strain relationship and the 

failure criterion. Several failure criteria has been specifically 

developed for masonry structures, although, other ciiteria have 

also been used, for example, the Von Mises criterion with 



tension cut-off [43] or the Drucker-Prager criterion [44]. 

In the second approach, masonry is represented as a two-phase 

material. Both masonry units and mortar joints are modelled 

with continuum elements [40, 45]. The model usually requires 

a large number of elements and the mechanical behaviour of 

masonry units and mortar is separately defined. Interface 

elements should be used to represent the mortar-brick 

interfaces, where debonding, slip or separation can occur. The 

model is capable of capturing the different modes of failure, if 

it is adequately implemented and calibrated. Analyses with 

such level of refinement require a great computational effort. 

Consequently, this approach is mainly applied to small 

strnctures, usually as a research tool. 

The third approach used for modelling masonry panels 

represents an intermediate situation between the two previous 

approaches. In this case, masonry units are represented with 

continuum elements, while the mortar joints are modelled with 

interface elements [ 42, 46, 47]. The interface elements not only 

represent the behaviour of the mortar-brick interfaces, but they 

also take into account the elastic and plastic deformations 

occurring in the mortar. In the initial implementation of this 

approach, conducted by Page [47], the masonry units were 

assumed to behave elastically. Later developments of the 

methodology allow the consideration of a more realistic 

behaviour for the masonry units, including cracking. 

Cracking is an important feature that should be also considered 

in the analysis, independent of the approach used in the 

discretization of the panel (masonry as homogeneous material 

or as two-phase material). The smeared crack model is 

commonly implemented for considering the effect of cracking 

[ 4, 44, 46]. This model does not track each individual crack. 

Instead, the overall cracking within an area is simulated by 

changing the stress and the material stiffness associated with 

the integration points. Schnobrich [ 48] pointed out that there 

are some doubts about the independence of the solution relative 

to the grid size used in the analysis (mesh sensitivity). 

Furthermore, the use of low order finite elements (for example, 

constant strain triangles) may confuse the cracking situation, 

due to the inadequate characteristics of these elements to 

respond to steep stress gradients. It is worth noting that the 

smeared crack model is a valid tool only for those structures 

where multiple cracks occur and the response is not sensitive to 

the precise geometry of cracking. l11is model should not be 

used in problems where a few isolated cracks control the 

behaviour. Furthermore, Shing et al. [41] pointed out that the 

smeared crack approach alone is not able to capture the brittle 

shear failure of masonry panels and to account for the int1uence 

of the mortar joints. 

Modelling of the Surrounding Frame 

The analytical representation of the frame can be done either 

with beam elements [3, 49, 50, 51, 52, 53] or with a more 

refined discretization using continuum elements (two or three­

dimensional elements) [ 4, 44, 46]. The use of these different 

representations implies increasing levels of complexity in the 

analysis, resulting in a better accuracy when the model is 

properly implemented. The main advantage of the beam 

elements is that they are geometrically simple and have few 
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degrees of freedom. The effect of the steel bars, in reinforced 

concrete members, is implicitly considered in the definition of 

the flexural and axial relationships assumed in the analysis. 

When non-linear analysis is conducted, the effect of slip of the 

reinforcing bars can be also taken into consideration using 

rotational springs located at the ends of the member [ 54]. On 

the other hand, the use of continuum elements for modelling 

the frame allows a better description of its behaviour, although 

many more elements are needed in the discretization. 

Reinforced concrete members require additional elements to 

represent the effect of the reinforcing bars. This can be done by 

using a smeared overlay or discrete bar elements, assuming a 

hypothesis for the strain compatibility between the steel and the 

concrete [4, 44, 46]. 

Modelling of the Interfaces 

The structural interfaces between the surrounding frame and the 

infill panel have been represented in the analytical models by 

using tie-link or interface elements. The function of these 

elements is to represent the interaction between deformable 

structures, along surfaces, where separation and sliding may 

arise. They allow for geometric discontinuity to occur in the 

structure. The adequate description of the contact effects 

developing at the panel-frame interfaces is very important to 

obtain a realistic response of the model. 

The first attempt to take into account the behaviour of the 

interfaces was developed by Mallick and Severn 13]. They 

implemented an iterative scheme using a finite element model, 

in which additional contact forces were introduced in those 

zones where the panel-frame interfaces were closed. Several 

researchers [49, 50, 55,] used tie-link elements to connect the 

boundary nodes of the panel with the surrounding frame. These 

elements enable two adjacent nodes to be held together or 

released according to specified conditions. Each node of the 

element has two translational degrees of freedom. The element 

is able to transfer compressive and bond forces, but incapable 

of resisting tensile forces. Large values of the normal and 

tangential stiffnesses are adopted when the link is acti vc. 

Conversely, the link is released by setting these values to zero. 

Figure 16 illustrates schematically the characteristics of the tie­

link model. 

Frame 
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Figure 16: Tie-link element used to represent the 

behaviour of panel-frame inte,faces. 
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A more accurate description of the interaction between the 

panel and the frame can be achieved by using interface 

clements [4, 44, 50, 56]. These elements were introduced by 

Ngo and Scordelis in the area of concrete mechanics and by 

Goodman et al. in the area of rock mechanics (as reported by 

Lofti and Shing [42]). Each element requires at least four 

(a) 

nodes to represent two adjacent surfaces, as schematically 

illustrated in Figure 17 (a). The degrees of freedom are related 

to the normal and shear stresses developed between the 

surfaces, t~ and v, respectively. The traction transmitted 

between the surfaces and the relative displacement can be 

I 

Frame 

(b) 

Figure 17: Inte,face elements: (a) General element, (b) Modified element developed by King and Pandey [15]. 

represented using different constitutive relationships. However, 

the friction theory proposed by Coulomb is usually 

implemented. King and Pandey [50] developed a modified 

interface element in which one of the surfaces presents two 

perpendicular, rigid links to represent the depth of the frame 

member (see Fig. 17 (b)). TI1e nodes related to the rigid links 

have also a rotational degree of freedom. This modification is 

useful when the surrounding frame is modelled with beam 

elements. A similar approach was implemented by Liaum & 

Kwan [57]. Mosalam et al. [44] pointed out that interface 

elements may be sensitive to the mesh implemented in the 

analysis. Consequently, the characteristics of the finite element 

mesh must be carefully selected. A preliminary study with 

different mesh configurations is recommended. 

The constitutive model implemented in the interface element 

must assure the impenetrability condition, when the surfaces 

are in contact. The normal stress is usually defined with a linear 

elastic model. However, the finite value of the normal stiffness 

violates the impenetrability requirement. By taking a large 

value of the nonnal stiffness (in relation to other stiffnesses in 

the model), this violation is not significant [44]. 

The friction theory proposed by Coulomb in 1781 is commonly 

accepted to represent the behaviour of the interfaces. This 

theory asserts that "relative sliding between two bodies in 

contact along plane surfaces will occur when the net shear force 

parallel to the plane reaches a critical value proportional to the 

net normal force pressing the bodies together. The constant of 

proportionality is called the coefficient of friction" [58]. Oden 

and Pires [58] pointed out that the Coulomb's theory is capable 

of describing only friction effects between rigid bodies. They 

also considered that is very important to represent adequately 

the non-local character of the mechanism by which normal 

stresses are distributed along the surfaces. The stresses are 

transmitted over junctions formed by asperities on the contact 

surface. Small tangential displacements occur due to the elastic 

and inelastic deformation of these junctions. They indicated 

that, from the mathematical point of view, Coulomb's theory 

introduced problems in the formulation of the model and 

formulated a non-local friction law, which includes an 

additional parameter introduced to consider a small, but non­

zero, elastic tangential displacement for shear stresses below 

the sliding limit. 

According to Coulomb's theory, the adequate modelling or the 

behaviour of structural interfaces requires the consideration or 

three different stages: 

• Firm contact and no slip: when the surfaces arc in 

contact, a compressive normal stress, f.,, develops at the 

interface. It is considered that slip docs not occur if the 

shear stresses, v, satisfies: 

lvl<µf,, (9) 

whereµ is the coefficient of friction of the interface and t;, 

is positive when the surfaces are compressed. The 

condition of no slip is usually approximated by elastic 

behaviour and the friction theory is implemented with the 

stiffness method. Consequently, some relative motion (an 

"elastic slip") can occur between both surfaces. Permitting 

a relative motion when the surfaces are stuck makes 

convergence of the solution more rapid, at the expense of 

solution accuracy. It must be pointed out that no shear 

deformation should occur when the surfaces are in contact 

and Eq. 9 holds, since the interface has no thickness. This 

fact indicates that, in a strict sense, the shear stiffness or 

the interface should be infinite. 

Different approaches have been implemented to define 

the shear stiffness of the interface. 111e non-local friction 

models assume that impeding motion at a point of contact 



between deformable bodies will occur when the shear 

stress at a point reaches a value proportional to a 

weighted measure of the normal stresses in a 

neighbourhood of the point [58]. In the model 

implemented in the program ABAQUS [56], the shear 

stiffness is chosen in order that the elastic slip ( when v = 
µ t;1) is limited to an allowable value. This value is 

selected as a small fraction (for example, 0.005) of the 

length of the interface element. The shear stiffness will 

change during the analysis because it depends on the 

normal stress f11 • It can be shown that this implementation 

represents a non-local friction model. 

King and Pandey [50] suggested the use of experimental 

data to define the shear stress of the interface. They 

reported values of the shear stiffness, which were 

obtained from tests of square specimens sliding on steel 

or concrete surfaces. However, it is not clear what 

method was used for the evaluation of the shear stiffness. 

Consequently, the validity of these results cannot be 

discussed. 

Other formulations can be implemented, instead of the 

stiffness metho_d, to assure that zero relative slip will 

occur at this stage. For example, it is possible, using by a 

Lagrange multiplier method, to impose constraints or to 

prescribe relationships between degrees of freedom in the 

mathematical formulation of the model [56]. 

• Firm contact with slip: the surfaces remain in contact, 

although slip occurs because the shear stress is equal to 

the friction strength of the interface: 

lvl=µfn (10) 

It is usually assumed that the shear stress remains constant 

(for a constant level of normal stress) as the surfaces slip. 

However, there is experimental evidence that the 

coefficient of friction for mortar-brick interfaces decreases 

after the strength has been achieved [I]. Similar 

behaviour could be exhibited by other materials as 

concrete or steel. The decrease of the shear stress after 

slip occurs could be more significant for those interfaces 

which exhibit shear bond strength. 

• No contact: in this stage the surfaces are separated. 

Neither normal nor shear stresses develop at the interface. 

It is usually assumed that separation occurs when tensile 

stresses develop in the normal direction [3, 52]. Other 

models [56] consider that tensile stresses can be resisted 

without separation up to some allowable level. In this 

way, it is possible to represent the effect of tensile bond 

strength between both surfaces. 

It is worth noting that Coulomb's theory does not consider any 

shear bond between the surfaces in the shear friction 

mechanism. This effect is not significant in the case of steel 

infilled frames. However, the effect of the shear bond strength 

could be important for mortar-concrete or brick-concrete 

interfaces, especially in framed masonry. Despite this problem, 

Coulomb's theory has been widely used in the implementation 
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of interface models. 

The models described in this section indicate that adequate 

analytical tools have been developed for represerning the 

behaviour of the interfaces. Unfortunately, this effort has not 

been accompanied by a similar improvement in the knowledge 

of the mechanical properties of panel-frame interfaces. ln the 

author's knowledge, there is no data on the tensile and shear 

bond strength of the interfaces. Only one report has been found 

with experimental values of the coefficient of friction. These 

values, obtained by King and Pandey [50], are presented in 

Table 1. It is believed that some of these results should be 

revised. For example, the coefficient of friction for concrete on 

concrete is significantly smaller than that for brick on concrete, 

which seems to be unrealistic. 

The modelling of panel-frame interfaces with shear connectors 

is more complex. It has been suggested [49. 52] that the tie­

link elements can be used to simulate the effect of shear 

connectors or steel reinforcement connecting the masonry panel 

and the frame. 

Table 1. Coefficient of friction for different materials [50]. 

Materials Coefficient of friction, µ 

Brick on steel 0.50 

Mortar on steel 0.44 

Concrete on steel 0.41 

Brick on concrete 0.62 

Mortar on concrete 0.42 

Concrete on concrete 0.44 

OTHER MICRO-MODELS 

The early analytical investigations related to the behaviour of 

infilled frames were based on the application of the theory of 

elasticity. For example, Statlord Smith [5] used a finite 

difference approximation to solve the stress function for the 

masonry panel. Polyakov [59] found the stress distribution 

inside the panel by using variational methods. With the 

improvement of computer capabilities and the development of 

the finite element method these types of model have been 

discarded. 

Other researchers [60, 61, 62] have applied the distinct element 

method, originally developed for fractured rocks, to the 

analyses of masonry walls. This method allows the study of 

jointed media subjected to static or dynamic loads. The media 

is simulated as an assemblage of discrete blocks, which interact 

through edge contacts. The mathematical model is established 

by considering two set of equations. The first group of 

equations is formed by constitutive relationships between the 

force in the blocks and the relative displacement. The second 
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group represents the kinematic equations which define the 

motion of the blocks [62]. This numerical method is capable of 

following the complete process of fracture. 

• 

CONCLUSIONS 

Different analytical models have been used to describe the 

behaviour of infilled frames. These models can be 

divided into two groups: micro-models and macro­

models. The finite element formulation and the 

equivalent truss mechanism are the typical examples of 

the first and second group, respectively. 

• Macro-models exhibit obvious advantages in terms of 

computational simplicity and efficiency. Their 

formulation is based on a physically reasonable 

representation of the structural behaviour of the infilled 

frame. 

• The single strut model is a simple representation, but it is 

not able to describe the local effects occurring in the 

surrounding frame. The use of multi-strut models can 

overcome this problem without a significant increase in 

the complexity of the analysis. 

• Micro-models can simulate the structural behaviour with 

great detail, providing that adequate constitutive models 

are used. However, they are computational intensive and 

difficult to apply in the analysis of large structures. 

• The accurate analysis of infilled frames with finite 

element models requires the use of at least three types of 

elements to represent the surrounding frame, the masonry 

panels and the panel-frame interfaces. In a more refined 

analysis, the masonry panels can be considered as a two­

phase material, in which the masonry units and the mortar 

joints are modelled separately. 

• There is not enough experimental information on the 

mechanical properties of panel-frame interfaces. More 

research is required to evaluate these properties, in order 

to obtain realistic results from finite element models. 
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APPENDIX A: NOTATION 

Ac = area of a column section 

Am = area of a masonry panel in the horizontal plane = t 
Lm 

d111 diagonal length of the masonry panel 

Ee = modulus of elasticity of the concrete 

E111 modulus of elasticity of the masonry 

C, normal stress at the bed joint 

Gm shear modulus of the masonry 

h storey height 

h01 height of masonry panel 

hz = vertical separation between diagonal struts 

le = second moment of area (moment of inertia) of a 

column section 

L span of beam between centre lines of supporting 

columns 

L111 length of masonry panel between adjacent columns 

t = thickness of masonry infill 

V shear force 

V,ll:lx = maximum shear resistance in a given cycle 

Vu ultimate shear resistance 

v shear stress 

w = effective width of the equivalent diagonal strut 

z vertical contact length between the masonry panel 

and the column 

B dimensionless parameter expressing the relative 

stiffness of the frame to the panel 

8 storey drift 

,Smax = storey drift corresponding to the shear force V max 

•\ storey drift corresponding to the ultimate shear 

resistance, Vu 

A.11 dimensionless parameter expressing the relative 

stiffness of the infill to the frame 

µ coefficient of friction 

0 inclination of the diagonal of masonry panel 

respect to the horizontal axis 
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