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SUMMARY 
A study is made of the dependence of the effective permeability of sand-shale 
reservoirs on the geometry of the shale inclusions. Numerical simulations are 
described in which factors such as the orientation and the degree of anisotropy of 
the shales, their volume fraction and the permeability contrast ratio between the 
shale and the sandstone were varied. Two different reservoir models were used in 
the simulations: one in which the shales were in the form of random, overlapping 
spheroidal inclusions, and one in which the shales were generated by a geostatistical 
technique. The computed effective permeability data are compared with a variety of 
analytical models in an attempt to discover ‘rules of thumb’ for the estimation of the 
effective permeability of sand-shale reservoirs for use in a range of practical 
situations. The main technical way in which this study advances on previous work is 
in its use of a computationally efficient, random walk algorithm for calculating the 
effective permeability, which has enabled larger volumes to be simulated and, 
hence, a thorough investigation of finite-size effects to be made. Another advantage 
of the work reported here is the general nature of the sand-shale geometries used in 
the numerical simulations and the extensive comparisons with analytical models. 

Key words: effective permeability, heterogeneity, random walks, sand-shale 
reservoirs. 

1 INTRODUCTION 

Simulators used to study fluid flow in reservoirs are 
generally based on a finite-difference scheme. The user must 
provide input for the simulator in the form of a 
parametrized model of the reservoir. This involves making 
a suitable decomposition of the reservoir volume into 
gridblocks and assigning gridblock values for the reservoir 
parameters (e.g. absolute and relative permeabilities and 
porosities). It is implicitly assumed that the reservoir rock 
properties are homogeneous on the scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the gridblocks 
used; whereas, in fact, it is known that reservoirs contain 
heterogeneities on all scales and that it is impossible in 
practical simulations to use a grid which is fine enough to 
resolve all their effects. Hence, it becomes necessary to 
estimate ‘effective’ gridblock values for reservoir 
parameters. 

It is problematic to estimate effective values for transport 
properties, such as permeability, because the correct values 
depend on unknown factors such as the orientation of 
heterogeneities with respect to the direction of fluid flow. 
Taking an arithmetic mean of the constituent permeability 
values in a sample volume is generally inadequate. The 

arithmetic mean gives the correct measure of the effective 
permeability in the case when the sample volume is layered 
and the direction of flow is parallel to the layers. However, 
when the direction of flow is perpendicular to the layers, the 
effective permeability is given by the harmonic mean. In 
general, the value of the effective permeability lies 
somewhere between these two extremes and it is often 
approximated by the geometric mean of the constituent 
permeabilities. [Note: perturbation theory has shown the 
geometric mean approximation to be valid in the case when 
the variance of the permeability distribution is small. See 
e.g. King (1987) and Drummond zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Horgan (1987)l. 

It is important to consider how heterogeneity on different 
scales affects the results of reservoir simulations. Small-scale 
heterogeneity (i.e. variability due to the transition from one 
rock-type to another and to factors such as grain-size, 
‘muddiness’ and carbonation) can be accounted for by 
means of a straight-forward averaging procedure, while 
large-scale heterogeneity (i.e. variability due to the 
geological layers deposited by the sedimentary process) can 
be dealt with by including extra layers in the simulation. It is 
heterogeneities on intermediate scales which cause the most 
problems. A common cause of intermediate-scale heteroge- 
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neity is the presence of low-permeability barriers or 
‘discontinuous’ shale inclusions. (‘Discontinuous’ in the 
sense of being uncorrelatable between wells. The term 
‘stochastic’ is often used.) Thus; considerable research effort 
has been directed towards calculating the effective 
permeability of sandstone reservoirs with discontinuous 
shale inclusions. In simulations of ‘sand-shale’ reservoirs it 
is usual to make a rough division of the reservoir into 
homogeneous regions of high and low permeability. Of 
course, in real reservoirs, the sandstone and shale phases 
themselves consist of rocks of varying permeability, but the 
permeability variations within each phase are not nearly as 
important as the contrast between phases, which may be as 
much as five to seven orders of magnitude. Numerical work 
by Desbarats (1987a and b) supports the validity of the 
bimodal approximation for the permeability distribution. 
The use of the bimodal approximation allows us to apply 
results from the theory of two-component composite 
materials. 

Two recent publications demonstrate the advantages of 
including a sophisticated approach to the treatment of 
discontinuous shales in reservoir simulations as follows. 

(i) Begg, Carter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dranfield (1989) were able to assign 
appropriate values for the effective permeability parameters 
to simulator gridblocks in simulations of the Sherwood 
Reservoir in Dorset, UK, which is a heterogeneous 
sandstone reservoir. As a result, a good match between the 
simulator predictions and observed production data was 
achieved with minimal fine tuning of the model parameters. 

(ii) In another British Petroleum project, Haldorsen 
(1989) was able to improve predictions of the production 
rates of oil, water and gas flowing from a single well in a 
North Sea Reservoir. The reservoir contained a thin oil 
column sandwiched between a gas cap and an active 
acquifer. In this project, the accurate description of 
discontinuous shales around the well was very important for 
an understanding of the gas/water coning mechanism. 

The particular problem which is addressed in this paper is 
the dependence of the effective permeability of sand-shale 
reservoirs on the geometry of the shale inclusions. 
Numerical simulations were carried out, varying such factors 
as the orientation and the degree of anisotropy of the shales, 
their volume fraction and the permeability contrast ratio 
between the shale and the sandstone. Two different 
reservoir models were used: one in which the shales were in 
the form of random, overlapping spheroidal inclusions, as 
has previously been considered by several researchers 
including Deutsch (1989), and one in which the shales were 
generated by a geostatistical technique, following the 
approach of Desbarats (1987a). The numerical data are 
displayed in the form of graphs of effective permeability 
versus shale volume fraction. The numerical effective 
permeability curves are compared with a variety of 
analytical models in an attempt to discover ‘rules of thumb’ 
for the estimation of the effective permeability of 
sand-shale reservoirs for use in a range of practical 
situations. 

The analytical models which have been considered are 
described in detail in Section 2. They fall into two major 
categories: 

(i) dilute suspensions, bounds and effective medium 

theories; and 

Approach (i) gives explicit formulae which depend only on 
the volume fraction and the anisotropy ratio of the shale 
inclusions, while (ii) provides a model with one or two 
parameters which must be fitted to the numerical data. The 
results of this paper show that dilute suspensions, bounds 
and effective medium theories are relevant and that their 
predictions are quantitatively useful in some cases. 
However, they cannot provide an acceptable estimate of the 
effective permeability for all possible geometries consistent 
with a given shale volume fraction and anisotropy ratio. On 
the other hand, the generalized percolation model approach 
leads to an easily applicable method for estimating the 
effective permeability. For a given anisotropy ratio, a range 
of parameters for the model can be specified which include 
the results for a range of sand-shale geometries. This 
determines empirical bounds for the effective permeability 
curve which can be narrowed down by making inferences 
about factors such as the degree of alignment of the shale 
inclusions. 

A great deal of research has already been done on the 
problem of calculating the effective permeability of 
sand-shale reservoirs, notably by Begg et al. (Begg & King 
1985; Begg, Chang & Haldorsen 1985), Desbarats (1987a 
and b) and Deutsch (1989). The main technical way in which 
this paper advances on previous work is in its use of a 
computationally efficient, random walk algorithm 
(McCarthy 1990a and b) for calculating the effective 
Permeability, which has enabled larger volumes to be 
simulated and, hence, a thorough investigation of finite-size 
effects to be made. Random walk algorithms are commonly 
used in studies of diffusion and percolation theory (e.g. 
Haus & Kehr 1987; Havlin & Ben-Avraham 1989) and in 
calculating effective conductivities of composite materials 
(e.g. Schwartz & Banavar 1989). They are discussed in 
detail in Section 3. Another advantage of the work reported 
here is the general nature of the sand-shale geometries used 
in numerical simulations. A wealth of numerical data have 
been generated and compared with what is, to the best of 
the author’s knowledge, a comprehensive list of relevant 
analytical models. Thus; it is intended that this paper should 
provide both a review and an extension of previous work. 
(Note added in proof: of course, it is too ambitious to 
suggest that the analytical models considered in this paper 
constitute a ‘comprehensive’ list and the author is indebted 
to the referee for drawing attention to the work of R. M. 
Christensen, 1990, J. Mech. Phys. Solidr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA38, on the 
elasticity problem.) 

The arrangement of this paper is as follows. In Section 2, 
a discussion of analytical models is given. In Section 3, 
numerical methods are discussed. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 contains a 
description of simulations and results and Section 5 contains 
conclusions and general discussion. 

(ii) generalized percolation models. 

2 ANALYTICAL MODELS 
The analytical models discussed fall into two main 
categories: 

(i) dilute suspensions, bounds and effective medium 
theories; and 

(ii) generalized percolation models. 
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is the mean shale length. Expression (2.4) only holds for 
impermeable shales and for small shale volume fractions. 

The dilute suspension method can be improved by taking 
a self-consistent, or ‘effective medium’, approach in which 
one considers the inclusion to be surrounded by a 
homogeneous medium of conductivity E *  (e.g. Hale 1976). 
The effective-medium relation for spheres is 

To understand what follows it should be noted that the 
effective permeability, K*, of a material is defined by 
Darcy’s Law, which gives the relationship between the 
averagLfluid flow rate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, and the average piezometric 
head, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV@, across a cross-section of the material, i.e. 

(2.1) q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= K * E .  

Effective permeability is one example of a ‘transport 
coefficient’. Other transport coefficients include electrical 
conductivity, dielectric constant and thermal conductivity. 
These transport coefficients are defined in relation to the 
flow of other physical quantities, such as electrical charge 
and heat. The mathematical equations which describe the 
flow of these quantities are equivalent to the fluid flow 
equations (2.1). Thus; the literature relating to electrical 
and thermal conduction is directly applicable to the effective 
permeability problem. In the following, results will often be 
given in terms of the effective conductivity of material 
composites since this is the area in which most of the 
relevant theoretical work has been done. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 Dilute suspensions, bounds and effective-medium 
theories 
The effective conductivity of two-component composites is 
determined by the conductivities of the constituent phases, 
their volume fractions and the composite geometry. Exact 
relations are available for very dilute suspensions of 
randomly oriented inclusions in a continuous matrix (see the 
excellent review by Batchelor 1974). For example, the 
effective conductivity, E * ,  of a dilute suspension of spheres 
(conductivity E , ,  volume fraction fl) in a continuous matrix 
(conductivity eZ, volume fraction f2) is given by: 

(2.2) €* = E 2  + 
This relation was first derived by Maxwell (1873). Polder 
and Van Santen (1946) generalized the expression to give 
the effective conductivity of a dilute suspension of ellipsoids 
with a random distribution of orientations: 

- 

3 f 1 ~ 2 ( ~ I  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2) 
2E2 + €1 

where Ai are the depolarizing factors along the ellipsoid 
axes 1, 2 and 3. 

Strictly speaking, dilute suspension relations are only 
valid in the case in which the inclusions are so far apart that 
the field lines near one inclusion are approximately the same 
as though that inclusion were alone in an infinite matrix. 
The volume fraction at which one can no longer consider the 
inclusions to be non-interacting depends on their shape. For 
spheres, experiments indicate that corrections to the dilute 
approximation must be made for volume fractions over 
about 0.05 and the condition will be even more restrictive 
for general ellipsoids (Sen & Torquato 1989). 

Begg & King (1985) used the dilute suspension method to 
derive a simple, approximate expression for the effective 
vertical permeability, K*, of a sandstone reservoir 
containing aligned rectangular shale inclusions: 

where K,, is the sandstone permeability, fsh is the volume 
fraction of shale, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is the number of shales per metre, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 

This relation is symmetric in components 1 and 2. It has 
been derived in a variety of contexts as an approximation 
for the effective transport properties of random, uncorre- 
lated two-component mixtures (in which the two phases are 
symmetric but have no particular geometry). Thus; it was 
derived by Bottcher (1945), in the context of dielectrics, by 
Kirkpatrick (1973), in the context of effective conductivities 
of random resistor networks above the percolation 
threshold, and by Dagan (1979), in the context of effective 
permeabilities. Desbarats (1987a) showed that equation 
(2.5) is a good approximation for the effective permeability 
of sand-shale reservoirs calculated in numerical simulations 
at low shale volume fractions when the permeability of each 
grid block is assigned at random to be either Ksh(=O) or 

More sophisticated, generalized self-consistent schemes 
can be developed. For example, one can consider a sphere 
of conductivity coated by a material of conductivity in 
the proportion determined by the specified volume fraction, 
and all surrounded by a homogeneous medium of 
conductivity E * .  The effective conductivity relation derived 
using this scheme becomes exact for the case of the 
‘composite spheres assemblage’, which is a material 
completely filled by coated spheres of different sizes. This 
relation is (e.g. Hale 1976) 

Kss(=l). 

This relation is asymmetric in components 1 and 2, as a 
consequence of the fact that one of the components is 
completely surrounded by the other. 

Willis (1977) derived effective-medium relations for the 
transport properties of bodies containing aligned ellipsoidal 
inclusions. His work was explicated upon by Bergman 
(1982) in studies of a composite of coated ellipsoids, 
analogous to the composite spheres assemblage described 
above. In this paper we will use Bergman’s notation and 
give the results of his generalized self-consistent analysis. 
These results are used in comparisons with numerical data in 
Section 4. 

Consider a composite of coated ellipsoids, of different 
sizes but with a constant aspect ratio. The surfaces of the 
inclusions are given in ellipsoidal coordinates by 6 = const, 
where the 3-D ellipsoidal coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, q. 5 are defined by 

+ 2 ) ( q  + 2 ) ( 5  + 2) 
x = * ( ( 5  (b” - a ” ( 2  - a’) 
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These functions are the three solutions of the following 

cubic equation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu :  

y 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+-+-- 
a 2 + u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb2+u  c 2 + u  

and they satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2 
- 1, (2.7) 

The effective conductivity, E * ,  of the above composite is 
exactly the same as that which is derived using the 
generalized self-consistent method for an ellipsoidal core, 
surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = El,  of conductivity coated by an ellipsoidal 
shell, surface 5 = E2, of conductivity c2 and embedded in a 
homogeneous medium of conductivity E * .  The self- 
consistent relation is shown by Bergman to be 

wheref, is the volume fraction of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel core, and L(5,)  and 
L(&) are the depolarization factors of the core surface, 
E = El, and the outer shell surface, 5 = E 2 ,  respectively. 

Our objective is to obtain an estimate for the effective 
vertical permeability of sandstone reservoirs with aligned 
spheroidal shale inclusions, to be compared with data from 
numerical simulations. For this purpose we need to consider 
the case of oblate spheroidal surfaces whose symmetry axis 
points along the x axis, i.e. 6 = c > a .  The depolarization 
factor is then given by 

1 
L(E)  = (I + 3) (I - (2.9) 

(2.10) 

and el(= e L 1) is what we define as the anisotropy ratio of 
the spheroid, i.e. the ratio of the longer to the shorter 
semi-axis. E2 is determined from the relationship between 
the volumes of the spheroidal core and its shell: 

(2.11) 

So, given the anisotropy ratio e of the spheroidal core, El, 
L, ,  E, and L, can be found using equations (2.9)-(2.11). 
Then the self-consistent relation, equation (2.8), can be 
solved to find E* as a function of e and fi. 

The limiting case of aligned penny-shaped cracks, 
obtained by letting e + m  and E , + O ,  will be useful when 
considering highly anisotropic inclusions. The self-consistent 
relation for E *  then reduces to (Benveniste & Miloh 1989): 

(2.12) 

Fig. 1 shows a comparison between the effective 
permeability curves derived using the relation for oblate 
spheroids, equation (2.8), and the (simpler) crack 
approximation, equation (2.12), for a value of the 
anisotropy ratio of e = 5. The curves lie very close together 
at this value of e and it can be shown that they converge as 
e + m .  

In order to find an estimate for the effective horizontal 

Y 

0 0  0 2  0 4  0 6  0 8  1 0  

f -sh 

2 

Figure 1. Effective permeability curves derived using the 
generalized self-consistent relation for oblate spheroids [lower 
curve, see equation (2.8) in the text] and the crack approximation 
[upper curve, see equation (2.12) in the text] for a value of the 
anisotropy ratio of e = 5.  

permeability, we need to consider prolate spheroidal 
surfaces whose symmetry axis points along the x axis, i.e. 
b c < a. The depolarization factor is then given by 

where now 
n 

and E2 is determined from the relation 

(2.13) 

(2.14) 

(2.15) 

As before, El, E,, L, and L, can be found and the 
self-consistent relation, equation (2.8), solved to find E* as a 
function of e and fl. 

For prolate spheroids, the limiting case obtained by 
letting e-+ m corresponds to the case of aligned cylinders. 
The effective conductivity for current flow along the axis of 
the cylinders then reduces to the arithmetic mean: 

€* Z f l E 1  + f 2 E 2 .  

In practice, we found that the effective horizontal 
permeability obtained in numerical simulations could be 
well-approximated by the arithmetic mean for large 
anisotropy ratios. 

Complementary to the approximations obtained using the 
effective-medium approach are the rigorous upper and lower 
bounds on the effective conductivity of two-component 
composites derived by a variety of mathematical techniques 
including variational methods (e.g. Hashin & Shtrikman 
1962) and continued fractions (Milton 1987). Bounds 
become progressively closer together as more information 
about the structure of the material is included (usually, in 
the form of n-point correlation functions). If all that one 
knows about the material is the volume fractions of its 
constituents. then the most restrictive bounds which one can 
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stipulate are the Wiener bounds (Wiener 1912): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(2.16) 

This is the well-known result that the effective conductivity 
of a material is bounded by the arithmetic and harmonic 
means of the conductivities of its constituents. The Wiener 
bounds are achieved for layered materials: the upper bound 
(arithmetic mean) when current flows along the layers and 
the lower bound (harmonic mean) when current flows 
perpendicular to the layers (cf. resistors in parallel and in 
series). They are not very restrictive in the case of interest 
when << E ~ .  

Most of the mathematical derivations of higher order 
bounds (and their associated effective-medium relations) 
include the assumption of statistical isotropy. It is only 
recently that techniques have been developed for the more 
complicated case of macroscopically anisotropic composites 
(e.g. oriented ellipsoidal inclusions and layered media). 
Notable are the work of Milton & Kohn (1988) and Sen & 
Torquato (1989). Their work provides us with rigorous 
nth-order bounds for the effective conductivity of 
statistically anisotropic materials in terms of integrals over 
n-point correlation functions. The practical implementation 
of these bounds is limited by the degree of statistical 
information which can actually be determined for a 
particular material. In the case of sand-shale reservoirs, it 
would be unrealistic to expect to obtain information about 
correlation functions greater than second order. In that case 
the bounds derived by Sen & Torquato (1989) reduce to 
those derived by Willis (1977) in his work on the transport 
properties of bodies with aligned ellipsoidal inclusions, for 
which we have already discussed the associated effective- 
medium relations. 

2.2 Generalized percolation models 

In numerical simulations of the effective permeability of 
sand-shale reservoirs, the sand-shale sequence is generally 
modelled by a 3-D grid with each gridblock being either 
sandstone or shale. If the shale is taken to have zero 
permeability then such a model is exactly of the kind treated 
by percolation theory. In percolation theory, questions are 
asked about the nature of the clusters of sandstone blocks 
which form as the volume fraction of sandstone is increased. 
In particular, if the permeability of the blocks is assigned 
randomly, then there is a critical volume fraction called the 
'percolation threshold' at which a connecting cluster of 
sandstone blocks is first found across the medium, allowing 
percolation of fluid through the medium. The percolation 
threshold is known very accurately for cubic grids. It occurs 
at a critical shale volume fraction of 

fc(cubic) = 0.6883 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.0005. (2.17) 

For shale volume fractions above f, the effective 
permeability is zero, while below the threshold it rises in a 
way which can be predicted from symmetric effective 
medium theory: 

K * = K , ,  I - -  , ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3"" 
where m is an exponent. 

(2.18) 

Unfortunately, percolation theory is not as relevant to 
calculating the effective permeability of sand-shale reser- 
voirs as it might appear at first sight. Very little theoretical 
work has been done for the case when there are correlations 
between blocks or the material is not isotropic, [The 
exception is that some theoretical results have been 
obtained for king-correlated systems, e.g. Coniglio (1975), 
Evans (1987), and Kikuchi (1970).] There has been 
numerical work done on correlated percolation, notably the 
work of Pike & Seager (1974) on percolating systems of 
spheres, rods and other shapes. However, for the 
sand-shale reservoir problem, the only conclusions which 
can be drawn from such work are very general ones, such as 
that the introduction of correlations tends to increase the 
effective permeability [cf. the conclusion which was reached 
by Desbarats (1987a): 'Greater statistical continuity between 
adjacent grid block permeabilities enhances the ability of 
flow to bypass low permeability zones']. 

Nevertheless, percolation theory can be useful in a 
generalized form, if we treat the percolation equation, 
equation (2.18), as an empirical model, rather than an 
anlytical relation. McLachlan (1987) proposed that equation 
(2.18) should hold for both isotropic and anisotropic 
inclusions, and for symmetric and asymmetric geometries, 
with appropriate values of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfc. Note 
that for m = 1 and f , = 2 / 3  (corresponding to 'bond' 
percolation), equation (2.18) is equivalent to the symmetric 
self-consistent relation for spheres, equation (2 .5 ) ,  in the 
limiting case when = 0. Similarly, the asymmetric reltion, 
equation (2.6), in which one component is embedded in the 
other, can be expressed in the form of equation (2.18), 
correct to some order in a Taylor expansion, provided we 
take = 0, f, = 1 and m = 213. Clearly, the relation derived 
by Begg & King (1985) equation (2.4), can be treated in the 
same way. Kirkpatrick (1973) developed an approximate 
result for the 'site' percolation problem which can be fitted 
by equation (2.18) with m - 1.6 and f, = 213. Furthermore, 
McLachlan discusses how the self-consistent relations for 
randomly oriented and aligned spheroidal inclusions can be 
approximated by the generalized percolation model. For 
aligned spheroidal inclusions, he suggests that the 
parameters should be given by f, = 1 and m = (1 - L) ,  

where L is equivalent to the depolarization coefficient 
introduced before (see equations 2.9 and 2.13). He shows 
how the percolation model can be fitted to a variety of 
experimental data gathered from conductivity measurements 
on binary mixtures with both isotropic and anisotropic grain 
structures. 

Let us consider how the generalized percolation model 
can be used to estimate the effective permeability of 
sand-shale reservoirs with a given geometry. It requires two 
parameters to be specified. The first corresponds to the 
critical volume fraction at which a medium with 
impermeable shale inclusions and with the same characteris- 
tic geometry would reach a percolation threshold. The 
second is an exponent, m, which depends on a characteristic 
coefficient (analogous to the depolarization coefficient) for 
the inclusions. This coefficient depends on the shape of the 
inclusions and whether they are oriented, partially oriented 
or random. For the reservoir models considered in this 
paper, m is not known. The approach that has been taken is 
to give a range of m values which provide empirical bounds 
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for all the numerical permeability data compllted at a given 
anisotropy ratio. 

In practice, reservoir rocks do not show percolation 
threshold behaviour. Thus; we can take f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. Then the 
generalized percolation model only requires one parameter 
to be specified. In that case it is equivalent to the 
power-averaging approach which was used by Journel, 
Deutsch & Desbarats (1986) and Deutsch (1989). 
Power-averaging involves modelling the effective per- 
meability as a power average of the component per- 
meabilities via the equation: 

(2.19) 

where m is some averaging exponent. [Note: equation (2.19) 
includes the Wiener bounds as special cases: the upper 
bound when m = 1, and the lower bound when m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-11. 

Equation (2.19) reduces to equation (2.18) when the shale 
inclusions are impermeable, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,h = 0. It can also be used 
when the shale permeability if finite. In fact, the case of 
finite shale permeability was also discussed by McLachlan 
(1987) in a suggested extension to the generalized 
percolation model. He suggested that, provided K,, << K,,, 
one can use the empirical expression 

where X i =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKT.  However, we have not found this 
expression to be very useful in our work. The power- 
averaging model is simpler and just as comprehensive and, 
as discussed in the introduction, the assumption of 
impermeable shales is a good one when K,, << Kss. 

3 NUMERICAL METHODS 

In almost all previous numerical simulations, the effective 
permeability was calculated by first solving the flow 
equations using a finite-difference scheme, and then 
equating the integrated flux over any cross-section of the 
field with the flux corresponding to a field of uniform 
permeability, in accordance with Darcy’s Law. Deutsch 
(1989) used the commercial flow simulator ECLIPSE for 
this purpose. The problem with using a finite-difference 
scheme is that it becomes very time-consuming for ‘large’ 
grid-sizes (i.e. for grid-sizes larger than about 303). 

To the author’s knowledge, the only previously suggested 
alternative to the finite-difference scheme for calculating 
effective permeabilities is a streamline method introduced 
by Begg & King (1985). This method is based on estimating 
the increase in streamline tortuosity due to the presence of 
shale inclusions. It involves tracing approximate streamlines 
through the grid. The algorithm fails for dense and/or 
complex shale configurations. It does not provide a 
controllable discretization of the flow equations in the same 
sense that the finite-difference method does, because it is 
not possible to rigorously analyse the way in which the 
streamline approximation introduces errors into the 
calculation. 

Random walk algorithms provide a means of directly 
calculating the effective permeability of sand-shale reser- 
voirs without explicitly solving the flow equations. They 
have a sound mathematical basis (e.g. Haus & Kehr 1987) 

and for large grids are much more efficient than 
finite-difference methods. (Note: the numerical work in this 
paper was done using grids of size loo3 on an APOLLO 
work-station.) The constraints on the grid-size imposed by a 
given numerical method are a very important consideration 
in the calculation of effective permeability because it is the 
grid size that determines the range of scales of heterogeneity 
that can be solved. For example, if one wishes to simulate a 
medium which has an anisotropy ratio in the horizontal to 
vertical directions of 15 : 1 then a lattice of size at least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA453 
would be required to obtain statistically meaningful results 
(see Section 4.1 on finite-size effects). The effective 
permeability of a heterogeneous medium depends on the 
boundary conditions, which in turn depend on the volume 
being considered. The concept of effective permeability is 
only valid in the limit of the sampling volume being large 
with respect to the scale of the heterogeneities contained 
within it, in which case the condition of statistical 
homogeneity may be considered to apply. By using the 
random walk algorithm, it becomes possible to simulate 
shale inclusions of larger dimensions and larger anisotropy 
ratios than could previously have been considered. 

Random walk algorithms, or more general diffusion 
algorithms, have proven to be useful in studies of effective 
conductivity (e.g. Schwartz & Banavar 1989). It is 
well-known that one can replace the conductivity problem 
with a diffusion problem using Einstein’s relation which 
states that the diffusivity is proportional to the conductivity. 
Schwartz & Banavar (1989) used simulations based on 
Einstein’s relation to provide a description of electrical 
transport in homogeneous disordered continuum systems. 
Until recently, this type of simulation had been restricted to 
two-component systems in which one of the components had 
zero conductivity, using an algorithm called the ‘ant-in-a- 
labyrinth’ algorithm (e.g. Stauffer 1985). McCarthy (1990a) 
described how to extend the simulations to the case in which 
both components had finite conductivity and, also, to the 
many-component conductivity case (McCarthy 1990b). 

Let the sand-shale reservoir be modelled by a 3-D grid on 
which the blocks are designated to be either sandstone, of 
permeability K,,, or impermeable shale. Then the 
‘ant-in-a-labyrinth’ algorithm can be used to simulate an 
ensemble of random walks on the grid in the following way. 

Imagine that the walks are performed by an army of ants. 
Initially, an ant is placed on a randomly chosen gridblock. 
At each step of the algorithm, the ant chooses one of its 
neighbouring gridblocks at random and either moves there, 
if the block is permeable, or stays put, if it is impermeable. 
In either case, the simulation time is incremented by one 
unit. Periodic boundary conditions are imposed. The 
mean-square distance travelled by the ants, (R*( t ) ) ,  is 
directly related to the simulation time, t ,  for large t, via 

( R 2 ( t ) )  = Dt, (3.1) 

where ( ) denotes an average taken over the ensemble. The 
constant of proportionality, D, is a measure of the 
diffusivity of the composite, from which the permeability is 
calculated using an analogy of Eintein’s relation. 

The algorithm used in the numerical simulations described 
in this paper includes the ant-in-a-labyrinth algorithm as a 
special case and extends it to cover the case in which the 
shale blocks have finite permeability, K,h. The gridblock 
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F p r e  2. Effective permeability data computed in simulations of a random, uncorrelated, two-component system for four values of the 
permeability contrast ratio, cr = K,, /K,:  (a) cr = 0.001, (b) cr = 0.01, (c) cr = 0.1 and (d) cr = 0.5. Comparison between the random walk 
algorithm (circles) and the finite-difference method (squares). 

permeabilities are scaled to that K,, = 1 and K,, = Ksh/Kss. 
The ant at block i chooses one of its nearest neighbours, say 
j ,  at random and moves there with a probability given by 

2KiKi 

'I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKi -+ Ki 
n.. = 

or stays put with probability (1 - rI,,). In either case, the 
simulation time is incremented by one unit. Periodic 
boundary conditions are imposed. 

Equation (3.2) defines the jump probability n, to be 
given by the harmonic mean of the permeabilities of 
neighbouring blocks. This approximation ensures the 
conservation of mass flux across block boundaries but is by 
no means unique. It is analogous to the specification of 
transmissivity terms in the finite-difference method (see, e.g. 
Aziz & Settari 1979). 

The validity of the random walk algorithm has been 
verified by comparisons with results obtained using the 
finite-difference method. Fig. 2 compares the values 
obtained for effective permeability versus shale volume 
fraction using the random walk algorithm and a 
finite-difference algorithm for four values of the per- 
meability contrast ratio, a = K,,/K,, ,  i.e. a = 0.001, 0.01, 
0.1 and 0.5. Averages were taken over 10 realizations of the 
permeability distribution on a 303 lattice, with loo0 ants 
taking loo00 steps on each realization. The numerical 
results of the two algorithms are indistinguishable. 

It is necessary to take averages over an ensemble of 
realisations of the permeability distribution because effective 
permeability is a statistical concept. Each realization must 
have the statistical characteristics of the medium and be 
large compared with the scale of the heterogeneities 
contained in it. In the figures shown in this paper error bars 

have been omitted for clarity but the reader may assume 
that the spread in the data shown in Fig. 3 is representative. 

The random walk algorithm has some incidental 
advantages. For one thing, it is very easy to program. For 
another, the three (possibly different) values of the effective 
permeability in the three principle directions can be 
obtained in one simulation, rather than requiring separate 
simulations with the direction of flow changed, as is the case 
when using the finite-difference method. Fig. 4 shows the 
effective permeability results obtained in the x ,  y and z 

L W  
0 2 1  W E  

0 0  0 2  0 4  0 6  0 8  1 0  

f -sh 

Figure 3. The spread in the effective permeability data computed 
over 10 realizations of the permeability distribution in simulations 
of the spheroidal reservoir model with spheroids of dimension 
20 x 20 x 4. 
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Figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEffective permeability data computed in the x (circles), y 
(squares) and z (triangles) directions in a simulation of the 
spheroidal reservoir model with spheroids of dimensions 20 x 20 x 
4. 

directions in one simulation of the spheroidal reservoir 
model with spheroids of dimensions 20X20X 4. As 
expected, the results for the effective permeability in the x 
and y directions (i.e. effective horizontal permeability) lie 
very close together because this particular reservoir model is 
isotropic in the x-y plane. In addition, they lie above the 
results for the z direction (i.e. effective vertical per- 
meability), as expected. The random walk algorithm can be 
modified to deal with the case when local (block) 
permeability is not an isotropic scalar by giving different 
weights to the random walk in different directions. 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARESULTS 

4.1 Description of simulations 

As mentioned in the introduction, simulations were 
performed for two different reservoir model-ne in which 
the shales were in the form of randomly placed, overlapping 
spheroidal inclusions, and one in which the sand-shale 
geometry was generated by a geostatistical technique, 
following the approach of Desbarats (1987a). The 

Figure 5. Cross-sections of the sand-shale permeability distributions generated for both the spheroidal and geostatistical models: (a) vertical 
cross-section, fsh = 0.2, spheroidal model, (b) vertical cross-section, fsh = 0.5, spheroidal model, (c) vertical cross-section, fsh = 0.2, 
geostatistical model, (d) vertical cross-section, fsh = 0.5, geostatistical model, and (e) horizontal cross-section, fsh = 0.5, geostatistical model. 
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When discussing finite size effects there are two factors to 

(i) the size of A, relative to the corresponding linear 
dimension of the grid, Li; and 

(ii) the size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, relative to the simulation step size, Ar. 
(Note: in the case of the random walk algorithm Ar, is 
equivalent to the gridblock size.) 

For an accurate calculation of effective permeability it is 
required that A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< L,. The simulations of Desbarats (1987a), 
Deutsch (1989) and others (e.g. Smith & Freeze 1979) show 
that, in practice, the calculated effective permeability ceases 
to depend on the averaging volume when A, < LJ3. The 
present work confirms this conclusion. Fig. 6 shows the 
results obtained in simulations of the aligned spheroidal 
reservoir model in which the spheroidal shale inclusions had 
dimensions 30 x 30 x 1. The simulations were all performed 
on a loo3 grid but the sample volume was effectively vaned 
by varying the length of the random walks in accordance 
with equation (3.1). The different curves in Fig. 6 show the 
results obtained for walks of length t = lo2, lo3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo4 and lo5. 
As can be seen, the results begin to converge for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 lo4 
which is equivalent to a sample volume of the order of loo3. 
A similar analysis for shale inclusions of dimensions 
15 x 15 X 1 showed the results beginning to converge for 
t lo3. Our general procedure was to use walks of length 
t = lo3 when the anisotropy ratio, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, was less than 15 and to 
use t = lo4 for e z 15. 

Consideration of factor (ii) mentioned above, leads to the 
stipulation that one should choose the gridblock size, hi,, 
such that Ar, <A,/3. This is illustrated in Fig. 7 which 
compares the results obtained in simulations in which the 
anisotropy ratio was kept constant but the dimensions of the 
spheroidal inclusions were proportionately vaned. Fig. 7(a) 
shows the results obtained for spheres of diameter d = 1, 2, 
3, 5 and 10. Also shown are the analytical curves derived 
from Kirkpatrick’s site percolation approximation (see 
Section 2.2) and asymmetric effective medium theory, 

be considered: 
geostatistical simulations were quite realistic since they were 
designed to reproduce the first- and second-order statistics 
of the experimental sand-shale data gathered from an 
outcrop of the Assakao sandstone in the Tassili region of the 
Central Sahara [note: the Assakao data were first presented 
in Dupuy & Lefebvre du Prey (1968)l. The objective was to 
reproduce the arrangement of sands and shales with respect 
to one another, rather than simply modelling the observed 
geometry of individual shale lenses. Fig. 5 compares 
cross-sections of the sand-shale geometry generated for 
both the spheroidal and geostatistical models. As illustrated 
in Fig. 5(e), the simulations were isotropic in the horizontal 
( x - y )  plane. The vertical cross-sections look very similar. 
Allowing overlapping of the spheroidal inclusions seems to 
have the effect of introducing a range of shale lengths into 
the spheroidal model which mimic the output of the much 
more involved geostatistical model. 

The simulation results are presented as graphs of effective 
permeability versus shale volume fraction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn the spheroidal 
case, a grid of size loo3 was used. The effective permeability 
was calculated as an average over an ensemble of 10 
realizations of the permeability distribution, with lo3 
random walkers on each realization and walks of length 
varying from lo3 to lo5 depending on the dimensions of the 
spheroids in the sample. In the geostatistical case, the 
grid-size used was 303 and averages were taken over an 
ensemble of five realizations. 

Simulations were performed for different values of the 
permeability contrast ratio, CY = K,,,/K,,. Detailed results 
are shown for CY = O.OOO1 and CY = 0.1. Previous work (e.g. 
Desbarats 1987a) has shown that when LY 5 0.01 the results 
obtained for the effective permeability are approximately 
the same as if the shale had been assumed to be 
impermeable (i.e. most of the flow occurs in the sandstone 
phase and the shale regions are bypassed). This is illustrated 
in Fig. 2 introduced previously. 

The effect on the permeability of changing the orientation 
of the shale inclusions was studied by performing 
simulations in which a certain percentage of the inclusions in 
the spheroidal model were randomly oriented. 

The horizontal to vertical anisotropy ratio used in the 
simulations was vaned between 1: l  and 30: l .  In the 
geostatistical case, since a grid of size 303 was used, the 
maximum anisotropy ratio which could be simulated and 
give statistically meaningful results was 10: 1 (see Section 4.2 
for an explanation of this). 

4.2 Finite-size effects 

In the simulations described, the fundamental length-scale 
in each direction i is given by the practical length, Ai,  over 
which scales are correlated. In the spheroidal reservoir 
model, Ai is simply given by the ith dimension of the 
spheroidal inclusions. In the geostatistical simulations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAi is 
specified by explicitly giving the correlation function, C(ri), 
of the shale indicator random function. In our simulations, 
following the work of Desbarats (1987a), C(ri)  is defined to 
be 

where A, = A, and e = A,/Az is the 6nisotropy ratio. 

Y 

I 1 0  A I 
CI 

0 . 0 ,  . I . I - - 
0.0 0.2 0.4 0.6 0 . 8  1 . o  

t-s h 

Figure 6. Effective permeability data computed in simulations of 
the spheroidal reservoir model with spheroids of dimensions 
30 x 30 x 1 using the random walk algorithm with walks of length 
t = 10’ (triangles), t = I d  (diamonds), t = lo4 (circles) and t = 16 
(squares). 
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(a) e=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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0 0  0 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 4  0 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 8  1.0 

f - s h  

Y 

(b) e=2 
1.0, 
(b) e=2 

1.0, 

0.8; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m v  

0.4 - 
0.2 - 

0.0 0.2 0.0 0.2 0.4 0.6 0.8 1.0 

f-s h 

(C) e=5 

1.0 , 
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0.0 0.2 0.4 0.6 0.8 

f -s h 
0 

Figure 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEffective permeability data computed in simulations in which the anisotropy ratio, e, was kept constant but the dimensions of the 
spheroidal inclusions were proportionately varied: (a) e = 1 : 1 (squarks), e = 2: 2 (crosses), e = 3:3 (triangles), e = 5: 5 (diamonds) and 
e = 10: 10 (circles), (b) e = 2: 1 (squares), e = 4:2 (crosses), e = 6: 3 (triangles), e = 10:5 (diamonds) and e = 20: 10 (circles), and (c)  e = 5: 1 
(squares), e = 10: 2 (crosses), e = 15 : 3 (diamonds) and e = 20: 4 (circles). (a) also shows the analytical curves derived from the site percolation 
approximation, Section 2.2 in the text, and from asymmetric effective medium theory, equation (2.6) in the text. 

equation (2.6). In the case d = 1, a sphere is represented in 
our simulations by a single gridblock. Hence; this case is 
equivalent to the site percolation problem, in which a given 
fraction of gridblocks are randomly assigned to be shale. 
The computed results are well-fitted by Kirkpatrick’s theory. 
As the diameter, d, of the spheres in the simulations is 
increased, the results show that the effective permeability 
also increases, as might have been expected from correlated 
percolation theory. The computed effective permeability 
curve approaches that derived from asymmetric effective 
medium theory, but always lies below it because we have 
allowed overlapping in our simulations. The curves begin to 
converge for d > 3 .  A similar observation can be made for 
the spheroidal results shown in Fig. 7(b), e = 2 and Fig. 
7(c), e = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 

The question of what the gridblock size should be relative 
to the correlation length seems to have been given less 
consideration in the literature than that of what the 
dimensions of the sample volume should be. However, it is 
equally important. In determining the gridblock size one is 
setting the minimum length-scale which can be resolved in 
the simulation. For example, by setting Ari = Ai one is 
stipulating that two non-overlapping shale inclusions will be 
at least a distance A, apart in the ith direction. In the case of 
spheres this corresponds to non-overlapping spheres being 
at least one diameter apart. Another way of looking at this 
case is to note that one is effectively setting the sandstone 
correlation length to be li; thus making the geometry 
symmetric in the sandstone and shale phases whereas it is 
desired to simulate an asymmetric, inclusion-type geometry. 

Many of the results quoted in this paper are for 
simulations in which the correlation length in the vertical (z) 

direction was set equal to the gridblock-size, in order to be 
able to study larger anisotropy ratios and for ease of 
comparison with published results of Desbarats (1987a) and 
Deutsch (1989). This is true of the geostatistical simulations 
and also of the simulations with spheroidal inclusions of 
dimensions N X N x 1. Of course, these are perfectly valid 
geometries and comparisons can be made between the 
computed results to derive qualitative conclusions about 
questions such as the effect of varying the anisotropy ratio. 
However, one should not imagine that the results are 
quantitively correct for a generic sand-shale geometry of 
anisotropy ratio e = N. For that, a complete study of the 
finite-size effects would have to be carried out (cf. Fig. 7 for 
spheroidal shale inclusions of dimensions kN X kN x k). 

4.3 Results for KJK, = a = O.OOO1 (= 0) 

Figure 8 shows the effective permeability results computed 
in simulations of the spheroidal reservoir model with 
spheroids of anisotropy ratio e = l : l ,  2:1, 5:1, l O : l ,  15:l 
and 30:1, respectively. Also included in the figure are the 
analytical curves obtained from the generalized self- 
consistent relations for a composite of aligned oblate 
spheroids (see equation 2.8). For e = 10, the analytical 
curve provides an excellent fit to the simulation data. For 
e > 10 the curves have the correct shape but lie below the 
data points, while for e< lO  the curves lie above the data 
points. These results are qualitatively explained by 
considering the following two competing effects to do with 
overlapping. 

(i) The percolation effect, which is absent in the 
host-inclusion geometry assumed in the derivation of the 
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1 0  

0 8  

0 6  

0 4  

0 2  

0 0  
0 0  0 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 4  0 6  0 8  

1-sh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Effective permeability data computed in simulations of 
the spheroidal reservoir model with spheroids of anisotropy ratio 
e = 1 : 1 (circles), e = 2: 1 (triangles), e = 5: 1 (diamonds), e = 10: 1 
(plusses), e = 15: 1 (crosses) and e = 30: 1 (squares). The analytical 
curves are obtained from the generalized self-consistent relations 
for a composite of aligned oblate spheroids, equation (2.8) in the 
text. 

generalized self-consistent relations (cf. symmetric versus 
asymmetric effective medium results for spheres). The 
percolation effect is most significant for small anisotropy 
ratios and tends to lower the effective permeability data 
relative to the analytical curves. Although it is true that the 
analytical curves do not achieve a percolation threshold for 
any value of e, they approximate percolation behaviour for 
e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 10. 

(ii) Allowing overlapping effectively increases the 
correlation length of the shales, tending to increase the 
values of the simulation data relative to the analytical 
curves. This effect is most prominent at large anisotropy 
ratios. 

1.0 . 

Y 

0.8 

0.6 

0.4 

0.2 

0.0 

0 0  0 2  0 4  0 6  0 8  1 0  

(I = 0.1 

f-oh 

Figure 9. The data are as in Fig. 8. The solid curves are the 
generalized percolation model fits to the data. 

Table 1. Values of the parameter rn [see 
equation (2.18) in the text] which were 
fitted to the numerical effective per- 
meability curves computed in simulations 
of the spheroidal reservoir model with 
spheroidal inclusions of varying anisotropy 
ratio, e ,  and for two different values of the 
permeability contrast ratio, a. 

e = x : z  m 

(I = 0.0001 1:l 0.4 

2:l 0.30 

5.1 0.23 

101 0.14 

15:l 0.11 

30:l 0.07 

3:3 0.56 

6:3 0.45 

15:3 0.37 

30:3 0.25 

2.1 -0.1 

5.1 -0.3 

1O: l  -0.5 

15:l -0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30: 1 -0.8 

Fig. 9 shows the curves which have been fitted to the 
simulation data of Fig. 8 using the generalized percolation 
model. Table 1 gives the values of the parameters m and f, 
(see equation 2.18) fitted to the data for various values of 
the anisotropy ratio, e. Except for e = 1 : 1, it was found that 
it was acceptable to setf, = 1, and to use a one-parameter fit 
for the exponent m, corresponding to the power-averaging 
method. When e = 1 : 1 percolation theory is known to apply 
and gives the percolation threshold to be f, = 0.6883 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 
O.OOO5. Even in this case, however, power-averaging gives 
an acceptable fit to the computed data for fsh<0.5. 
Anyway, this is an artificial geometry. In practical cases it is 
expected that it will always be acceptable to set f, = 1 (no 
percolation threshold behaviour) and to use a one- 
parameter fit as required by the power-averaging method. 
For e 2 10 it is no longer possible to choose one value of rn 
to fit both the dilute (low fsh) and concentrated (high fsh) 

effective permeability data as the analytical power-averaging 
curve has the wrong shape. We have chosen to fit the dilute 
results in Fig. 9. 

Fig. 10 shows the results of geostatistical simulations 
compared with the previous data from the spheroidal model 
(Fig. 8). The geostatistical results are in close agreement 
with the spheroidal results for the entire range of anisotropy 
ratios simulated, which is remarkable considering that the 
permeability realizations were generated in completely 
different ways in the two models. The geostatistical 
realizations were generated using quite sophisticated 
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Q 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 
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(d) e=10 
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Figure 10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEffective permeability data computed in simulations of the geptatistical model (squares) and the spheroidal model (diamonds): (a) 
e = 1 : 1, (b) e = 2: 1, (c) e = 5 : 1 and (d) e = 10: 1. 

techniques modelling the first- and second-order moments of 
a real sand-shale outcrop. They have shales of varying 
dimensions, resulting from a specified exponential fall-off of 
correlations. The spheroidal realizations contain shale 
inclusions of constant dimensions and can only mimic the 
statistical characteristics of a real sand-shale geometry 
through the randomizing effects of overlapping and 
periodicity (see Fig. 5). The similarity of the results for the 

(a) e=5 

Y 

two models is reassuring in the sense that it means that one 
can use relatively simple models, such as overlapping 
spheroids of a constant dimensions, to reproduce the main 
features of the effective permeability curve of an inherently 
much more complex sand-shale geometry. Factors such as 
the exact form of the shale correlations are not important 
relative to factors such as the degree of anisotropy. 

Figs 11 and 12 show the results of randomly orienting a 

(b) e=10 
1.0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
08!! 0.6 

0 0  0 2  0 4  0 6  0 8  1 0  0 0  0 2  0 4  0 6  0 8  1 0  

f -sh f-s h 

( c )  e=15 

0 0  0 2  0 4  0 6  0 8  1 0  

f -sh 

Figure 11. Effective permeability data computed in the simulations of the spheroidal reservoir model with completely aligned spheroidal 
inclusions (squares), half randomly oriented (crosses), and completely randomly oriented (triangles): (a) e = 5 :  1, (b) e = 10: 1 and (c) 
e = 15: 1. The solid curves are the generalized percolation model fits to the data for completely randomly oriented spheroids. 
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0.6 - 

0 0  0 2  0 4  0 6  0 8  1 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f - s h  

Figure 12. (a), (b) and (c) show the effective horizontal 
permeability data corresponding to the simulations described for 
Fig. 11. (d) shows the effective horizontal permeability data 
computed in simulations with spheroids of anisotropy ratio e = 1 : 1 
(squares), e = 2:  1 (crosses), e = 5 :  1 (plusses), e = 10: 1 (triangles), 
e = 15 : 1 (diamonds) and e = 30: 1 (circles). The solid curve is the 
arithmetic mean. 

certain percentage of the aligned spheroidal inclusions. As 
intuitively expected, the effect of randomizing their 
orientation is to increase the effective vertical permeability 
and decrease the effective horizontal permeability. This 
effect becomes more important as the anisotropy ratio is 
increased. The results of simulations in which all of the 
spheroidal inclusions were randomly oriented are well-fitted 
by a power-averaging curve, as shown in Fig. 11. 

Fig. 12(d) shows the effective horizontal permeability 
calculated in simulations of the aligned spheroidal reservoir 
model. As the anisotropy ratio increases, the effective 
horizontal permeability tends towards the arithmetic mean, 
which is the exact result for a medium with aligned 
cylindrical inclusions. Hence; for strongly anisotropic media 
it is reasonable to use the arithmetic mean as an estimate of 
the effective horizontal permeability. However, it has been 
demonstrated in this paper that it is not possible to use the 
(corresponding) harmonic mean estimate for the effective 
vertical permeability when the permeability contrast ratio is 
close to zero. It is clearly the case that even small horizontal 
variations significantly enhance vertical flow. 

4.4 Results for K,,/K, = a = 0.1 

Fig. 13 shows the results obtained for the effective 
permeability of the spheroidal reservoir model when the 
permeability contrast ratio, a, was set to a = 0.1. The 
analytical curves shown in the figure are those derived from 
the generalized self-consistent scheme for aligned oblate 
spheroids, equation (2.8). The self-consistent curves provide 
an acceptable fit to the data for anisotropy ratios e 2 5 .  
Alternatively, a one-parameter, power-averaging fit to the 
data can be made. The values which were found for the 
fitted parameter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn, are given in Table 1. Note that for 
strongly anisotropic systems the effective permeability curve 
approaches the harmonic mean, corresponding to rn = -1. 

0 0 1  . , . , . , . I .  

0.0 0.2 0.4 0.6 0.8 1 .I 

f - s h  

Figure 13. Effective permeability data computed in simulations of 
the spheroidal reservoir model with a value of the permeability 
contrast ratio of (Y = 0.1 and with spheroids of anisotropy ratio 
e = 1 : 1 (circles), e = 2: 1 (diamonds), e = 5: 1 (triangles), e = 10: 1 
(plusses), e = 15 : 1 (crosses) and e = 30: 1 (squares). The solid 
curves are obtained from the generalized self-consistent relation for 
aligned oblate spheroids, equation (2.8) in the text. 

5 CONCLUSIONS 

The numerical data generated in the simulations described 
in this paper have been used to estimate upper and lower 
bounds for the effective vertical permeability curve of a 
sand-shale reservoir with a given anisotropy ratio, e, and 
with a permeability contrast ratio, a 5 0.01. The bounds are 
in the form of the generalized percolation model, equation 
(2.18), and the corresponding values of the exponent rn for 
different values of e are shown in Table 2. Also shown are 
the exponents predicted by dilute suspension theory for 
aligned spheroidal inclusions, rndilute = 1 - L (see Section 
2.2). It is expected that effective permeability data will lie 
between the bounds specified in Table 2 and that the 
following relative statements about their dependence on 
geometrical factors will hold: 

(i) greater variance in the length of the shale inclusions 
will lead to higher effective permeability values; 

Table 2. Values of the exponent m [see equation (2.18) in the text] 
which give empirical lower, rnlowr and upper, mup, bounds for the 
effective permeability data generated in the simulations described in 
this paper for different values of the anisotropy ratio, e. The 
exponent mdilute is predicted from the dilute suspension theory (see 
Section 2.1 in the text). 
e mlaul muP I l ld i lu t e  

1 0.33 0.67 0.67 

2 0.33 0.50 0.48 

5 0.22 0.40 0.25 

10 0.14 0.25 0.14 

15 0.10 0.20 0.10 

30 0.05 0.13 0.05 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
5
/2

/5
1
3
/7

0
7
5
5
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



526 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  F. McCarthy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
REFERENCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
08- 

06- 

04- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 2 -  

00- 
0 0  0 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.4 0 6  0.8 1 0  

t -oh 

Figure 14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEffective permeability data computed in simulations of 
the spheroidal reservoir model with spheroids of anisotropy ratio 
e = 5: 1 (squares), e = 10:2 (crosses), e = 15:3 (diamonds), 
e = 20: 4 (circles) and completely randomly oriented spheroids of 
anisotropy ratio e = 5 :  1 (plusses). The solid curves are the 
suggested empirical bounds. 

(ii) greater randomness in the orientation of the shale 
inclusions will lead to  higher effective permeability values; 
and 

(iii) a symmetric-type geometry with a percolation effect 
will lead to lower effective permeability values. 

Fig. 14 shows the empirical bounds of Table 2 together with 
all the effective permeability data computed in simulations 
of reservoir models with an anisotropy ratio of e = 5. 

In this paper a study has been made of the dependence of 
the effective permeability of sand-shale reservoirs on the 
geometry of the shale inclusions. Numerical simulations 
have been described in which factors such as the orientation 
and the degree of anisotropy of the shales, their volume 
fraction and the permeability contrast ratio between the 
shale and the sandstone were varied. Two different reservoir 
models were used in the simulations: one in which the shales 
were in the form of random, overlapping spheroidal 
inclusions, and one in which the shales were generated by a 
geostatistical technique. The numerical data have been 
compared with a variety of analytical models. As a result of 
the study, it has been possible to give empirical bounds for 
the vertical effective permeability curve of a sand-shale 
reservoir with a given anisotropy ratio, and to  make 
inferences about the influence of various geometrical factors 
on where actual effective permeability data values will lie 
within those bounds. 
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