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Analytical Nonlinear Reluctance Model of a Single
Phase Saturated Core Fault Current Limiter

Philip A. Commins, Jeffrey W. Moscrop Member, IEEE

Abstract—A saturated core Fault Current Limiter (FCL) is a
device that is designed to limit the fault currents in electrical
energy networks and consequently, protect existing network
equipment from damage. Due to complex nonlinear magnetic
properties, the performance of saturated core FCLs has largely
been characterised through experimentation and Finite Element
Analysis (FEA) simulations. Although both of these techniques
are quite accurate, they are time consuming and do not describe
the behaviour of FCLs in actual electrical networks. This has led
to increasing demand for an accurate analytical model that is
suitable for transient network analyses. This paper presents the
development of an analytical model of a single-phase open-core
FCL, which accurately describes the nonlinear magnetic prop-
erties of the FCL through a reduced reluctance approach. The
extension of this model to other saturated core FCL arrangements
(such as closed-core) is also discussed.

Index Terms—Analytical models, fault current limiters, mag-
netic circuits, magnetic flux, nonlinear magnetics, power system
protection

I. INTRODUCTION

THE increasing demands placed on modern power sys-
tems [1] have not only led to increased occurrences

of fault currents in networks, but also to increases in both
fault current levels and equipment sensitivity to fault currents.
Although new technologies and improvements in infrastructure
continue to emerge, Fault Current Limiting (FCL) devices
are becoming an increasingly necessary technology to pro-
tect existing infrastructure and improve network availability
for consumers. There are several different FCL technologies
that are currently attracting worldwide attention from both
researchers and commercial engineering companies. This paper
focuses on one particular technology, the saturated core FCL.

The saturated core FCL utilises the change in permeability
between saturated and unsaturated states of the core material
to provide both a low steady-state insertion impedance (so
as not to load the network during normal operation) and a
high transient impedance during fault conditions (for current
limiting). The major advantages of this technology are that
it provides instantaneous reaction to a fault event and instan-
taneous recovery. A DC current carrying winding is used to
initially drive the cores into saturation, with separate windings
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used to carry the AC load current of the circuit to be protected.
Under normal steady-state load conditions the AC current is
not large enough to drive the cores out of saturation, hence
the AC coils behave like standard air core reactors. However,
during a fault event the high AC fault currents drive the
cores out of saturation, resulting in a significant increase in
impedance that effectively limits the current. In a single-
phase device, two AC coils and cores are necessary to limit
both the positive and negative half cycles of the current. A
more thorough description of the principles of operation of a
saturated core FCL is given in [2].

As FCL technology becomes more viable for electrical
utilities, there is an increasing demand for accurate simula-
tions that can demonstrate the effects an FCL has on other
network equipment. Although there have already been several
experimental and Finite Element Analysis (FEA) studies on
the performance characteristics of saturated core FCLs [2]–
[5], network simulation packages (such as PSCAD and other
ElectroMagnetic Transient Programs) cannot easily be coupled
to an electromagnetic FEA simulator. Hence, there is growing
need for an accurate analytical model of the FCL, which
can be easily incorporated into transient network simulation
packages. The development of an accurate analytical model has
already received some attention [6], [7]; however, the models
developed to date do not include the AC to DC coupling
effects of the device. It has been found that a “transformer”
coupling effect exists between the AC and DC windings
during a fault [5], which can have a significant impact on the
performance of the FCL.

This paper presents the development of an analytical “reluc-
tance” model of a saturated core FCL that describes the full
nonlinear range of magnetic operation as well as the AC to
DC coupling effects of the device. The model is based on the
magnetic circuit concept [8], with the geometry of the FCL
represented by an equivalent magnetic circuit that includes all
significant flux paths. A simple single-phase air-core geometry
is initially examined, with the concept then extended to an
open-core arrangement (i.e. the AC coils enclose separate iron
cores that do not have a return path). Further extension of
the model to other arrangements, such as closed-core, is also
discussed. The model is validated against FEA simulations and
shown to provide an accurate representation of a saturated core
FCL, which with further development can be integrated with
transient network simulation packages.

II. AIR-CORE EQUIVALENT MODEL

The initial development of the analytical reluctance model
was carried out on a simple single-phase air-core arrangement,
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as shown in Fig. 1. This arrangement consists of two AC
current carrying windings (AC coils) that are placed side
by side and encompassed by a single DC current carrying
winding (DC coil). Although this arrangement is not useful
as a saturated core FCL (i.e. the AC coils are equivalent to
air-core reactors and the DC coil serves no practical purpose),
it is beneficial for model development as the significant flux
paths are identical to the iron-core cases yet the associated
reluctances are constant. Hence, the magnetic circuit described
in this section can easily be extended to include the nonlinear
reluctances associated with other iron-core arrangements (as
shown in Section III).

Fig. 1. Single-Phase Air-Core Arrangement

The significant flux paths (and associated reluctances) for
the arrangement of Fig. 1 are identified in Fig. 2, where
�c represents the reluctance of the flux paths inside the AC
coils (i.e. the air-cores), �i represents the reluctance of the
remaining flux paths inside the DC coil (identical on each
side), �o represents the reluctance of the flux paths outside the
DC coil (identical on each side), �′

y represents the reluctance
of the flux paths between the two AC coils (top & bottom),
and �′

a represents the reluctance of the flux paths that link
the inner AC loop with the other paths (top and bottom and
identical on each side). The equivalent magnetic circuit for
this arrangement is shown in Fig. 3, where NIdc, NIac1 and
NIac2 represent mmf due to the DC coil and two AC coils
respectively. Note also that the �′

y and �′
a reluctances can be

lumped in the equivalent circuit (as shown in Fig. 3).
One important feature of the magnetic circuit shown in

Fig. 3 is that it is symmetrical, with �a, �i, �o and NIdc
identical on the left and right sides of the circuit. In particular,
NIdc on each side represents the same physical mmf. The rea-
son that both sides are required is so that the flux due to each
AC coil is accurately described – although the circuit elements
are the same on each side, the flux in each corresponding path
is only the same when NIac1 = NIac2 (which is not the case
during normal operation). Hence, the total flux linking the DC
coil is the sum of the flux through �o on the left side and the
flux through �o on the right side.

The values of the reluctances shown in Fig. 3 can be calcu-
lated using standard circuit analysis techniques. In general, all
of the reluctances can be determined via flux measurements
(using either FEA or experimentation) under three different

�o �i �c �c �i �o

�′
a

�′
y �′

a

�′
a�′

y�′
a

Fig. 2. Equivalent Reluctance Paths
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Fig. 3. Equivalent Magnetic Circuit

test conditions:

• Test 1: NIdc �= 0 and NIac1 = NIac2 = 0;
• Test 2: NIdc = 0 and NIac1 = NIac2 �= 0;
• Test 3: NIdc = 0 and NIac1 = −NIac2 �= 0.

Test 1 and Test 2 are used to determine the values of � i and
�o, along with the series combination of �c + �a (= �ca).
Test 3 is then used to determine the individual values of � c

and �a, along with �y .

A. Test 1

The only source of mmf in this test is NIdc, which results in
a completely balanced circuit. Hence, the flux paths between
the two AC coils are no longer significant and the equiva-
lent circuit reduces to two separate sides that have identical
reluctance and flux in each corresponding path (as shown in
Fig. 4). The nominal direction of each flux path is as indicated
in Fig. 4. The flux linkage of each coil is measured during the
test.

Through simple circuit analysis:

�i (φo1 − φc1) = NIdc −�oφo1 (1)

and �ca =
�i (φo1 − φc1)

φc1
(2)

Note also that φo1 is equal to one half of the measured flux
linkage of the DC coil and φc1 is equal to the measured flux
linkage of either AC coil.
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Fig. 4. Equivalent Circuit for Test 1

B. Test 2

In this test the sources of mmf are restricted to the AC
coils, with NIac1 = NIac2. The circuit is again completely
balanced, with the flux paths between the two AC coils no
longer significant. The equivalent circuit for the test is shown in
Fig. 5. The nominal direction of each flux path is as indicated
in Fig. 5. The flux linkage of each coil is again measured
during the test.

�o

φo2

�i

φi2

�a

�c

φc2

−+ NIac1 −+ NIac2

�c

φc2

�a

�i

φi2

�o

φo2

Fig. 5. Equivalent Circuit for Test 2

Through simple circuit analysis:

�i (φo2 − φc2) = −�oφo2 (3)

and �ca =
�i (φo2 − φc2) +NIac1

φc2
(4)

Again φo2 is equal to one half of the measured flux linkage
of the DC coil and φc2 is equal to the measured flux linkage
of either AC coil.

Solving (1) and (3) simultaneously results in:

�i =
NIdc

φo1 − φc1 − φo1

φo2
(φo2 − φc2)

(5)

�o =
NIdc

φo1 − φo2
φo1−φc1

φo2−φc2

(6)

Note that all of the elements in (5) and (6) are either
measured flux linkage values or an applied mmf. Hence, � i

and �o can be completely determined from Tests 1 and 2. The
series reluctance �ca can be calculated by substituting �i from
(5) into either (2) or (4).

C. Test 3

In Test 3 the sources of mmf are again restricted to the
AC coils; however, this time with NIac1 = −NIac2. For
this case the flux paths between the two AC coils, along with
the associated reluctance �y , are significant. Hence, the flux
between the two AC coils must also be measured, along with
the flux linkage of each coil. In FEA the flux through � y can
be determined by integrating the flux density across the entire
plane between the two coils. The equivalent circuit for this
test is shown in Fig. 6. The nominal direction of each flux
path is as indicated in Fig. 6. Note that the directions of the
corresponding flux paths (on each side of the circuit) are now
opposite to each other. This is important when considering
the flux linkage of the DC coil, as the net flux linkage will
be zero; however, the flux linking each side of the coil is
non-zero, but equal and opposite (i.e. |φo3l| = |φo3r| and
φdc = φo3l + φo3r = 0).

�o

φo3l

�i

φi3

�a

φa3

�c

φc3

−+ NIac1

�′
y �′

y

φy

�c

φc3

−
+ NIac2

�a

φa3

�i

φi3

�o

φo3r

Fig. 6. Equivalent circuit for Test 3

To simplify the circuit of Fig. 6, �y has been split into
two equal reluctances in series (each denoted as � ′

y). Since
the circuit is symmetrical, this allows for the two sides of the
circuit to be separated – this is possible because the mid point
of �y is at the same potential as the common node between
NIac1 and NIac2 (as illustrated by the dashed line in Fig. 6).
Hence, the analysis can be confined to a single side of the
circuit (as was the case with Tests 1 and 2). A simplified
version of the left hand side of Fig. 6 is shown in Fig. 7.

�a + �p

φa3

�′
y

φy3

�c φc3

−+ NIac1

Fig. 7. Simplified Circuit for Test 3

Note that �p in Fig. 7 is the parallel combination of �i and
�o (which were both determined via Tests 1 and 2):

�p =
�i�o

�i + �o
(7)

Through simple circuit analysis:

�a =
NIac1 −�cφc3 −�p (φc3 − φy3)

(φc3 − φy3)
(8)
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Although all of the flux values in (8) are measured quanti-
ties, the equation still contains two unknowns in �a and �c.
However, (8) can be re-written in terms of �ca, which is the
series combination of �c+�a (determined via Tests 1 and 2):

�a =
�caφc3 + �p (φc3 − φy3)−NIac1

φy3
(9)

Hence, the two remaining unknowns �c and �′
y can be

calculated using (10) and (11) respectively:

�c = �ca −�a (10)

�′
y =

(φc3 − φy3)

φy3
(�a + �p) (11)

III. NONLINEAR OPEN-CORE MODEL

The open-core arrangement is a simple extension of the air-
core arrangement discussed in Section II, with each of the AC
coils now enclosing an iron core (as shown in Fig. 8). This
arrangement is considered to be open-core since the return flux
paths for both cores are through air. In contrast to the air-core
arrangement, this system represents a practical saturated core
FCL with the DC coil used to initially drive the cores into
saturation.

Fig. 8. Single-Phase Open-Core Arrangement

The significant flux paths (and associated reluctances) for
the arrangement of Fig. 8 are identified in Fig. 9. As can be
seen, these flux paths are identical to those of the air-core
arrangement, which were identified in Fig. 2. The principal
difference between the two models is that the reluctance of
the flux path through the iron cores is nonlinear. Hence, the
equivalent magnetic circuit of the open-core arrangement is
also identical to that of the air-core arrangement, with the
exception being that the core (�c) and yoke (�y) reluctances
are nonlinear variables (as shown in Fig. 10). Although the flux
path represented by �y is theoretically through air, it has been
found that this path is influenced by the extremities of the iron
core and consequently �y has a minor nonlinear component.

The values of the reluctances shown in Fig. 10 can be
calculated using the same approach that was used for the

�o �i �c �c �i �o

�′
a

�′
y �′

a

�′
a�′

y�′
a

Fig. 9. Equivalent Open-Core Reluctance paths

−
+NIdc

�o

�i

�a

�c

−+ NIac1

�y

�c

−+ NIac2

�a

�i

�o

−
+ NIdc

Fig. 10. Equivalent Open-Core Magnetic Circuit

air-core model. In particular, the same three tests are used
to determine all of the reluctances. However, there is one
significant difference in that the flux measurements (using
either FEA or experimentation) need to be undertaken over
a range of applied mmf values, since the reluctances are no
longer all constant. Hence, the test conditions are:

• Test 1: NIdc is varied, while NIac1 = NIac2 = 0;
• Test 2: NIdc = 0, while NIac1 = NIac2 (varied);
• Test 3: NIdc = 0, while NIac1 = −NIac2 (varied).

During each of these tests the range of applied mmf must be
sufficient to saturate the cores.

Test 1 and Test 2 are again used to determine the values
of �i and �o. For each of these tests the equivalent circuit
is the same as for the corresponding air-core test, with the
exception that �c is nonlinear. Of particular significance is
the fact that the values of �i and �o are still constants. This
means that the method for determining � i and �o given in
Section II (which relied on the principle of superposition) is
still valid. Hence, �i and �o can be determined by (5) and (6)
respectively (given previously in Section II). Note also that (2)
and (4) from Section II also hold for the series reluctance � ca;
however, the resulting reluctance values are nonlinear since � c
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is nonlinear.
Test 3 is used to determine the individual values of �c and

�a, along with �y . The same circuit simplifications that were
made for the air-core test are again valid for the open-core
case, with the simplified equivalent circuit shown in Fig. 11.

�a + �p

φa3

�y

φy3

�c φc3

−+ NIac1

Fig. 11. Simplified Open-Core Circuit for Test 3

Again it can be seen that the simplified equivalent circuit
of Fig. 11 is the same as for the corresponding air-core test
(Fig. 7), with the exception that �c and �′

y are now nonlinear.
Although simple circuit analysis leads to the same expression
for �a as was previously given in (9), the open-core case is
complicated by the nonlinear relationship between � ca and
the mmf acting on it. In particular, since the mmf acting on
�ca is different in each of Tests 1, 2 and 3, care needs to be
taken when substituting previously determined values of � ca

(from Tests 1 or 2) into (9). It is however, still possible to
make such substitutions for very low values of applied mmf,
since �ca is constant below the saturation region. Once �a is
determined, �′

y can be calculated using (11) and curves for
�c can be determined for each of Tests 1, 2 and 3 using (10)
(see example curves in Fig. 16).

IV. MODEL VALIDATION

A. Air-Core Model

In order to validate the air-core equivalent model, an ex-
ample arrangement was simulated using the Magsoft Flux3D
FEA package. In this example each of the coils consisted of
120 turns. The AC coils had a cross-sectional area of 0.01m 2

and a length of 390mm. The DC coils had a cross-sectional
area of 0.2304m2 and a length of 200mm.

Magnetostatic simulations of Tests 1, 2 and 3 were initially
undertaken to determine the reluctance values of the equivalent
model – the resulting flux linkage values are given in Table I,
with the subsequently calculated reluctance values given in
Table II.

Table I
FLUX LINKAGE RESULTS FROM TESTS 1, 2 AND 3

Value Test 1 Test 2 Test 3

NIdc 6× 104 0 0

NIac1 0 6× 104 6× 104

NIac2 0 6× 104 −6× 104

φdc 4.08× 10−2 2.59× 10−3 0

φac1 1.29× 10−3 1.85× 10−3 1.99 × 10−3

φac2 1.29× 10−3 1.85× 10−3 −1.99× 10−3

φy 0 0 1.83 × 10−3

Table II
EQUIVALENT MODEL RELUCTANCE VALUES

Reluctance Value

�i 2143870

�o 930192

�c 29965839

�a 1732886

�y 407078

After determining the reluctance values, the performance of
the analytical air-core equivalent model was then compared
with FEA simulations under transient conditions. These tests
involved applying different currents to each of the coils and
comparing the resulting flux linkage of each coil. The numer-
ical computing environment Matlab was used to calculate the
resulting flux linkage values for the analytical model, while
a transient FEA solution of the example system was obtained
using Magsoft FLUX3D. The test conditions are summarised
in Table III, with the resulting flux transients shown in Fig. 12.

Table III
TEST CONDITIONS FOR MODEL VALIDATION

Coil Current Test Value (A)

Idc 10

Iac1 100 sin(t)

Iac2 50 sin(2t)
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Fig. 12. Flux Comparison for Air-Core Model

The comparisons shown in Fig. 12 demonstrate that the
analytical air-core equivalent model produces results that are
practically identical to the FEA solution. Different AC coil
currents (i.e. Iac1 �= Iac2) were chosen for these tests in order
to highlight the AC to DC coupling. It is clear from Fig. 12 that
this coupling is effectively predicted by the analytical model.

B. Open-Core Model

In a similar manner to the air-core case, an example open-
core arrangement was simulated using the Magsoft Flux3D
FEA package. The iron cores in this example had a cross-
sectional area of 0.0064m2 and a length of 600mm. All of the
coils were the same as described in Section IV-A.
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Again, magnetostatic simulations of Tests 1, 2 and 3 were
initially undertaken to determine the reluctance values of the
equivalent model. Unlike the air-core case though, each test
required multiple static solutions as the applied mmf was
varied. The resulting flux linkage values for Tests 1, 2 and
3 are shown in Figures 13, 14 and 15 respectively, with the
subsequently calculated reluctance values shown in Fig. 16.

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 

0.1 

0 20000 40000 60000 80000 100000 120000

Fl
ux

 (W
b)

   

Magnetising force NIdc (AT) 

1c�

Fig. 13. Flux Linkage - Test 1
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Fig. 14. Flux Linkage - Test 2
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Fig. 15. Flux Linkage - Test 3

In Fig. 16 the calculated reluctance values are plotted against
the source mmf of each test. As can be seen, �a, �i and
�o are practically constant (as expected). In contrast, �c

and �y are constant at low values of applied mmf and then
increase as the iron becomes saturated. The change in �y as
the iron saturates is quite small (and in some cases can be
approximated as a constant reluctance), whereas �c increases
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Fig. 16. Reluctance vs Source mmf

rapidly (approaching the equivalent air-core reluctance). Note
also that since each reluctance in Fig. 16 is plotted against
the source mmf of each test, the plots of �c appear to show
different saturation points for each of the tests. If �c is instead
plotted against the component of mmf directly acting on the
associated flux path (i.e. through the cores), the resulting values
for each test are uniform as shown in Fig. 17.
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Fig. 17. Reluctance vs mmf of Relevant Flux Path

After determining the reluctance values, the performance
of the analytical open-core model was also compared with
FEA simulations under transient conditions. In this test the
simulated AC coils were wound in opposite directions and
connected in series (as is normally the case in a saturated core
FCL). Also, the current applied to the DC coil was chosen to
be sufficient to saturate the coils, while the current applied to
the AC coils was chosen to replicate the core de-magnetisation
during a fault event. Matlab was again used to calculate the
resulting flux linkage values for the analytical model, while
a transient FEA solution of the system was obtained using
Magsoft FLUX3D. The actual test conditions are summarised
in Table IV.

Table IV
TEST CONDITIONS FOR OPEN-CORE VALIDATION

Coil Current Test Value (A)

Idc 330

Iac 400 sin(t)

When using Matlab with the analytical model, the flux link-
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age calculations can be simplified through circuit reductions
via Thévenin’s theorem. Although the circuit is nonlinear, the
Matlab calculations are performed at discrete time instances
with single values of �c calculated for each instance. Hence,
the Thévenin approach remains valid at each time instant. It
should also be noted that the mmf acting on the cores (NI core)
must be known at each time instant, in order to accurately
calculate the relevant values of �c in each core. However,
since �c must also be known to determine NIcore, the value
of NIcore from the previous time instant is used to determine
�c. As long as the chosen time-step is sufficiently small,
this approach produces a relatively accurate approximation of
circuit flux.

The first circuit reduction can be obtained by considering
NIdc as the only source and the entire central core section of
Fig. 10 as the load. Hence, via Thévenin’s theorem Fig. 10
can be reduced to the circuit shown in Fig. 18.

−
+NITh1

�Th1

�c1

φcl

−+ NIac1

�y

�c2

φcr

−+ NIac2

�Th1

−
+ NITh1

Fig. 18. Initial Open-Core Circuit Reduction

where:

�Th1 =
�a (�o + �i) + �o�i

�o + �i
(12)

and

NITh1 =
�i

�i + �o
NIdc (13)

If �c1 is then considered as the load, further successive
reductions can be made as shown in Fig. 19 and Fig. 20.

In Fig. 19:

�Th2 =
�y (�Th1 + �c2) + �Th1�c2

�Th1 + �c2
(14)

and

NITh2 =
�Th1NIac2 −�c2NITh1

�Th1 + �c2
(15)

In Fig. 20:

�Th3 =
�Th1�Th2

�Th1 + �Th2
(16)

and

NITh3 = NIac1 +
�Th2NITh1 −�Th1NITh2

�Th1 + �Th2
(17)

Hence, the flux linkage of AC coil 1 is:

−
+NITh1

�Th1

�c1

φcl

−+ NIac1

�Th2

−+ NITh2

Fig. 19. Open-Core Circuit Reduction with �c1 as load

−+NITh3

�Th3

�c1

φcl

Fig. 20. Final Open-Core Circuit Reduction with �c1 as load

φcl =
NITh3

�Th3 + �c1
(18)

The same approach can be taken when considering � c2 as
the load, which leads to:

�Th4 =
�y (�Th1 + �c1) + �Th1�c1

�Th1 + �c1
(19)

NITh4 =
�Th1NIac1 −�c1NITh1

�Th1 + �c1
(20)

�Th5 =
�Th1�Th4

�Th1 + �Th4
(21)

NITh5 = NIac2 − �Th1NITh4

�Th1 + �Th2
+

�Th2NITh1

�Th1 + �Th2
(22)

And the flux linkage of AC coil 2 is:

φcr =
NITh5

�Th5 + �c2
(23)

The flux linkage of the DC coil is:

φdc = φol + φor (24)

where:

φol =
�i (NIac1 +NITh1 − φac1�c1)

�Th1 (�i + �o)
+

NIdc
�i + �o

(25)

φor =
�i (NIac2 +NITh1 − φac2�c2)

�Th1 (�i + �o)
+

NIdc
�i + �o

(26)

The resulting flux transients from both the analytical model
and the FEA simulation (for the test conditions summarised in
Table IV) are compared in Fig. 21. The results show that the
output of the analytical model is practically identical to that
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of the FEA solution. Notice also that during the positive half
AC cycle one core de-saturates while the other core remains
in saturation. During the negative half AC cycle, the second
core de-saturates as the first remains in saturation. The results
also show the analytical model effectively predicted the AC to
DC coupling in the system.
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Fig. 21. Comparison of Analytical and FEA

V. CONCLUSIONS

A nonlinear reluctance model of a saturated core FCL has
been presented in this paper. This model is based on the
magnetic circuit concept, with the FCL geometry represented
by an equivalent circuit that includes all significant flux paths.
This model allows for the nonlinear magnetic behaviour of the
FCL to be calculated in an analytical manner, which reduces
reliance on the time consuming and complex FEA approach.
The model of a linear single-phase air-core arrangement was
presented first in Section II, with the approach extended to an
open-core FCL arrangement in Section III.

The models for both the air-core arrangement and the open-
core FCL arrangement were validated in Section IV. In both
cases the analytical models were used to calculate the flux
linkage of each coil under transient current conditions. The
calculated flux linkage in each case was then compared with
FEA simulations under the same conditions. As shown in
Sections IV-A and IV-B the outputs of the analytical models
were practically identical to each of the corresponding FEA
solutions. The results presented in Sections IV-A and IV-B
also demonstrated that this modelling approach inherently
accounted for the AC to DC coupling effect present in both
systems.

One important aspect of the presented modelling approach,
is that the basic magnetic circuit is the same for both the air-
core arrangement and the open-core FCL arrangement. The
only significant difference is that the reluctance of the flux
path through the cores is constant in the air-core model and
nonlinear in the open-core FCL model. This approach can
be further extended to closed-core FCL arrangements. Again,
the basic magnetic circuit is the same for a closed-core FCL;
however, additional reluctances (primarily �a and �o) are non-
linear. These additional non-linearities add complexity to the
determination of the reluctance values of the analytical model.
Further research is currently underway to evaluate whether
the three tests identified in Section II are still sufficient to
determine all of the reluctance values in the closed-core case.

The results presented in this paper covered the analytical
calculation of magnetic flux in a saturated core FCL. Further
development of coupling the magnetics to the electric circuit
will allow the reluctance model to be integrated into network
simulation packages, to analytically determine the electrical
characteristics of saturated core FCLs. Currently, the model
is being integrated with the PSCAD simulation package to
provide a complete network solution.
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