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In this study, the design of a directional cloaking based on the Luneburg lens system is proposed and its

operating principle is experimentally verified. The cloaking concept is analytically investigated via geometrical

optics and numerically realized with the help of the finite-difference time-domain method. In order to benefit

from its unique focusing and/or collimating characteristics of light, the Luneburg lens is used. We show that by

the proper combination of Luneburg lenses in an array form, incident light bypasses the region between junctions

of the lenses, i.e., the “dark zone.” Hence, direct interaction of an object with propagating light is prevented if

one places the object to be cloaked inside that dark zone. This effect is used for hiding an object which is made

of a perfectly electric conductor material. In order to design an implementable cloaking device, the Luneburg

lens is discretized into a photonic crystal structure having gradually varying air cylindrical holes in a dielectric

material by using Maxwell Garnett effective medium approximations. Experimental verifications of the designed

cloaking structure are performed at microwave frequencies of around 8 GHz. The proposed structure is fabricated

by three-dimensional printing of dielectric polylactide material and a brass metallic alloy is utilized in place of

the perfectly electric conductor material in microwave experiments. Good agreement between numerical and

experimental results is found.
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I. INTRODUCTION

In the field of optics, realization of the optical cloaking
effect has been an attractive topic that was initiated by the
pioneering works based on transformation optics (TO) [1–3].
Here, TO simply bends the coordinate system to efficiently
manipulate the direction of light propagation [4–7]. Since
optical cloaking can be defined as the concealment of an
object from an incident wave by bending and stretching the
coordinate structures, it is not a feasible procedure because it
requires unnatural materials with anisotropic, spatially vary-
ing permittivity and permeability values [8]. Nevertheless,
metamaterials can provide this feature [9], but the realization
of these structures is a challenging issue due to dimensions
much smaller than the wavelength. In addition, the cloaking
effect obtained by using the TO approach is narrowband and
inherently lossy which is undesirable for optical applications.
Hence, these listed difficulties force researchers to look for
alternative solutions for the cloaking phenomenon.

In this regard, along with TO, several methods have been
introduced to obtain the optical invisibility effect. Carpet
cloaking, also known as the ground-plane cloak, is an ap-
proach for hiding objects under a specified refractive index
layer made of isotropic, low-loss, and dielectric material
[10–14]. Another approach is suppression of scatterings due
to cloaked objects by using generalized Hilbert transforms
to adapt the scattering response of the hiding object [15,16].
Moreover, Kramers-Kronig relations have been presented to
minimize backscattering of waves which leads to optical
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cloaking [17]. Recently, an interesting approach based on
metamaterials and optical neutrality was proposed to provide
invisibility without evoking cloaking [18]. Last, but not least,
the idea of using the optimization approach to obtain the
cloaking effect shows promising results [19–22]. Here, the
optimization methods search for possible designs of cloaking
structures in accordance with a specific objective function.
Furthermore, experimental verifications at the microwave fre-
quency regime of cloaking designs based on optimization
methods were reported in Refs. [23,24].

In addition to these studies, the focusing effect is also used
for creating invisible regions both in ray and wave optics
[25–27]. Moreover, the graded index (GRIN) optics can be
considered as a powerful tool for efficient light manipulation.
The GRIN medium efficiently bends the light to follow curved
trajectories because of the gradual change in refractive index
along the radial or axial directions [28–30]. For this reason,
the GRIN medium provides an opportunity to obtain curved
light without curved interfaces for the optical phenomena such
as focusing and/or collecting, and diverging and/or spreading
[31]. In this regard, conceptual studies on optical cloaking by
using GRIN optics have been reported recently in [32–34].

In this study, we proposed the idea of using the GRIN
optics concept to cloak a highly scattering cylindrical object
made of a perfectly electric conductor (PEC) material. In
particular, the combination of GRIN Luneburg lenses is used
for the optical hiding purpose. The ray transfer analysis of
Luneburg lenses as a cloaking system is analytically derived
via geometrical optics. Next, in order to design a realizable
cloaking device, the continuous GRIN Luneburg lens is dis-
cretized as a GRIN photonic crystal (PC) structure having
varying radii of air cylindrical holes in a dielectric slab by
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FIG. 1. (a) Schematic representation of the Luneburg lens. (b) Luneburg lens refractive index profile with respect to radius. Ray tracing of

a parallel rays through (c) a single Luneburg lens, (d) double Luneburg lens system, and (e) quadruple Luneburg lens system. [Rays in (c,d)

are depicted with different colors and line patterns (solid, dotted, dashed, and dash-dotted) to show image inverting (flipping upside-down)

behavior of the Luneburg lens].

using Maxwell Garnett approximations, i.e., effective medium
theory (EMT). As a dielectric host material, polylactide (PLA)
thermoplastic having effective permittivity of εPLA = 2.4025
is employed. The numerical analysis of the optical cloaking
effect is conducted by the three-dimensional (3D) finite-
difference time-domain (FDTD) method. Moreover, the de-
signed GRIN PC Luneburg cloaking system is fabricated by
using 3D printing technology and experimental verification
of numerical results is performed at microwave frequencies.
It should be noted that the preliminary data of this study
without analytical and experimental proof were presented at
an international conference [35].

II. RAY-THEORY MODEL OF THE CLOAKING

BY LUNEBURG LENS

In this section, geometrical optics is used to examine

the mathematical explanation of the light behavior in the

Luneburg lens which is a spherical GRIN medium, where

the refractive index varies radially starting from the center

to the outer boundary of the lens [36]. The general index

distribution of the Luneburg lens can be defined as follows:

n(r) = n0

√

2 −
(

r

R

)2

, (1)

where n0 is the refractive index of the surrounding space of

the lens (in our case the surrounding space is considered to

be air, so n0 = 1), R is the radius of the lens, and r is the

radial polar coordinate within the lens region. In Figs. 1(a)

and 1(b), schematic representation of a Luneburg lens and

corresponding refractive index distribution along the polar

axis [the cross section through the lens is shown by a dashed

line as an inset in Fig. 1(a)] are given, respectively. Due

to the radial symmetry and Luneburg lens refractive index

distribution characteristic, incoming parallel rays are focused

to the point at the opposite side. Also, the rays diverging from

a single point located on the lens surface are collimated into

parallel rays on its back surface. This special characteristic

of the Luneburg lens can be analyzed by using geometrical

optics based on Fermat’s principle [37]. For this purpose,

a quasi-two-dimensional (2D) ray solution is conducted by

using the 2D medium which has the same index distribution

characteristic as Luneburg lenses [38]. By combining Fer-

mat’s principle with the Lagrangian optics, the ray tracing

equation for a single Luneburg lens can be represented as

follows [39–41]:

y(x) =
[2x0y0 + R2 sin(2θ )]x

2x2
0 + R2[1 + cos(2θ )]

+

√
2R

√

R2[1 + cos(2θ )] + 2x2
0 − 2x2[y0 cos(θ ) − x0 sin(θ )]

2x2
0 + R2[1 + cos(2θ )]

, (2)

where y(x) is a ray trajectory function with respect to position

x, R is the radius of the lens, (x0, y0) are initial ray positions,

and θ is the incidence angle of the ray. Detailed analytical

derivation of Eq. (2) is provided in the Appendix. The ray

043831-2



ANALYTICAL, NUMERICAL, AND EXPERIMENTAL … PHYSICAL REVIEW A 99, 043831 (2019)

FIG. 2. (a) Schematic representation of the image formation of the arbitrary object (knight silhouette) by a quadruple Luneburg lens system

where the image is separated into two parts and reversed, respectively. (b) Image correction schematic by doubling the quadruple Luneburg

lens system. In (a,b), different colors and line styles (solid, dotted, dashed, and dash-dotted) are used to present the image reversing behavior

of the Luneburg lens.

trajectory equation is simplified by considering the parallel

incident rays where incidence angle θ = 0◦:

y(x) =
y0

(

x0x + R

√

R2 + x2
0 − x2

)

x2
0 + R2

. (3)

At the back surface of the lens, propagated light rays

encounter the free space and, as a result of Snell’s law, they

refract with exit angles. The exit angles of the rays can be

obtained from the slope information of the ray trajectory.

Hence by taking the derivative of Eq. (2) with respect to

x, propagating rays leave the lens with angles of departure

according to the following equation:

ẏ(x) =
R2 sin(2θ ) + 2x0y0

2x2
0 + R2[1 + cos(2θ )]

+
2
√

2Rxy0[sin(θ ) − cos(θ )]
{

2x2
0 + R2[1 + cos(2θ )]

}
√

R2[1 + cos(2θ )] − 2x2 + 2x0

. (4)

The ray trajectories are calculated by using Eqs. (2)–(4)

and the corresponding ray pictures are plotted for single,

double, and quadruple combinations of Luneburg lenses in

Figs. 1(c)–1(e), respectively. The focusing property of the

Luneburg lens, where the incoming parallel rays are focused

into a single point, is proved by the solution of the ray tracing

equation and the obtained result is given in Fig. 1(c). In

addition, by adjoining two lenses, retransformation of the

focused light into the plane wave can be observed in Fig. 1(d).

In Fig. 1(d), one can see the “ray-free” regions (upside and

underside regions where two lenses are connected) that are

not affected by the incoming ray. From this point of view, as

a next step, via the two-by-two arrangement of the Luneburg

lenses, a quadruple lens system can be composed. Figure 1(e)

illustrates the ray picture of the quadruple lens system. Here,

one can see an isolated region from the incoming rays at the

center of the quadruple lens system, which is called the “dark

zone.” Thus, this region can be used to electromagnetically

hide an object from an incident wave.

It should be noted that due to the Luneburg lens refractive

index profile, an image of the object formed by incident

light is separated into two parts and reversed, respectively.

Figures 2(a) and 2(b) show the flipping of the image and

possible solution for the correction of the inverted or flipped
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image, respectively. As can be seen in Fig. 2, the isolated

region defined as the dark zone is not affected by the incoming

rays but when an external observer looks to the object at the

back space of the quadruple Luneburg lens system, the ob-

server detects the split and reversed image shown in Fig. 2(a).

Nevertheless, the formed image is received by the observer

without any distortion where all geometrical characteristics of

the object are preserved. Therefore, by cascading the same

quadruple lens system one can obtain a corrected image of

the object as can be seen in Fig. 2(b). On the other hand,

one can consider the combination of the Maxwell fisheye

lenses with the Luneburg lenses as another solution to obtain

a corrected image of the object where space occupancy can be

reduced by 25% of overall system size. In this case, the lens

system should be constructed in the following sequence of

Luneburg–Maxwell fisheye–Luneburg lenses. However, when

the Maxwell fisheye lenses are introduced to the system

configuration, cloaking ability is achieved only in a single

direction (where light is incident from left to right and right

to left) direction whereas the lens system which contains

only Luneburg lenses supports cloaking performance in two

orthogonal directions.

In summary, the provided results in Figs. 1 and 2 exhibit

the stunning potential of the quadruple Luneburg lens system

that may efficiently cloak an object. In order to design a

more realistic cloaking device in accordance with the cloaking

concept presented in ray-theory analysis, the realistic design

approach with its numerical analysis is given in the following

sections.

III. DESIGN APPROACH AND NUMERICAL ANALYSIS

In this study, the ray theory of light-ray propagation

through the Luneburg lens system is presented to provide

the concept of directional cloaking. Even though geometri-

cal optics gives some insights about the operation principle

of the proposed design, it is also necessary to analyze the

performance of the cloaking system by conducting the FDTD

method for the analysis of light matter interaction.

In general, the fabrication of the continuous GRIN media

with the desired index distribution can be considered as a

challenging task due to fabrication limitations. In order to

overcome these difficulties, the PC structures are widely used

for the approximation of continuous GRIN media via imple-

mentation of EMT. There are several methods to transform

a continuous GRIN medium to a GRIN PC medium, such

as appropriate arrangement of the radii of dielectric rods

and air holes, adjustment of spatial distances between PC

rods, and infiltration of PC air holes with different substances

having different refractive indices. The main objective of these

approaches is to design an inhomogeneous medium with the

desired index profile by gradual change of the filling factors

of elementary PC cells [42]. In the present study, in order

to discretize a continuous GRIN Luneburg lens, the Maxwell

Garnett EMT is employed. From the Maxwell Garnett EMT

[43], the equation of the effective permittivity for transverse

electric (TE) wave polarization can be expressed as follows:

εeff = εhost +
2 f εhost(εair − εhost )

2εhost + (1 − f )(εair − εhost )
, (5)

where εhost and εair are the permittivity values of the host me-

dia and air holes, respectively, while f = πr2/(a2) represents

the dielectric filling ratio, with r being the radius of the air

hole. Finally, the variation formula of radii of air holes for TE

polarization rTE can be expressed as follows:

rTE = a

√

[εhost − n(x, y)2](εhost + εair )

π [εhost + n(x, y)2](εhost − εair )
, (6)

where a is the lattice constant and n(x, y) is the refractive

index function of the Luneburg lens. By using (1) and (6),

one can design the square lattice GRIN PC Luneburg lens for

the desired host media.

In order to design the proposed cloaking concept by con-

sidering fabrication and characterization facilities, the host

medium is selected as PLA material. The permittivity of the

PLA material was selected as εPLA = 2.4025 in accordance

with the Nicolson-Ross and Weir method [44] for the mi-

crowave regime. The schematic view of the designed GRIN

PC Luneburg lens is presented in Fig. 3(a) with corresponding

structural parameters. Moreover, the PC unit cells having air

holes with maximum and minimum radii are given as insets

in the same figure plot where rmax = 0.48a and rmin = 0.17a,

respectively. A corresponding 3D view of the refractive index

profile is shown in Fig. 3(b) where gradual variation of index

values occurs between 1.13 and 1.49. Here, to define the

index profile, the limits of operating wavelengths should be

validated in accordance with EMT. As is well known, the

EMT is valid in the long-wavelength limit where the dielectric

constituents can be averaged over the dielectric unit cell as

an isotropic effective index. In order to define that long-

wavelength limit, where application of EMT is valid, the

dispersion relations of constituent PC unit cells (air holes

drilled in PLA dielectric slab) are calculated by exploiting

the plane-wave expansion (PWE) method [45]. The calculated

dispersion diagrams of the first band in the ŴX direction for

the largest and smallest air holes’ radii of PC unit cells are

depicted in Fig. 3(c) where the direction of ŴX is presented

by giving the irreducible Brillouin zone. As can be deduced

from this figure, the dispersion relation is nearly linear in

the normalized frequency interval between a/λ = 0.01 and

a/λ = 0.30. By using the slope information of the corre-

sponding band diagrams, effective refractive index curves are

extracted and depicted in Fig. 3(d). Here, effective refractive

index values are nearly constant (linear) in the normalized

frequency interval of a/λ = 0.01 and a/λ = 0.25. Hence,

operating within this normalized frequency range ensures the

validity of EMT.

The main purpose of this study is to design a cloaking

device which utilizes a Luneburg lens system. The concept of

the proposed cloaking approach is explained in the ray-theory

part of the study. If we consider plane-wave propagation

through a proposed lens system, one can observe that the

light inherently bends around the dark zone because of the

strong focusing effect. Hence, this zone is inherently bypassed

by the light waves so that this effect can be used for hiding

an object from the electromagnetic light waves. This region

can be considered as an “electromagnetically hidden” region

so that one can design a directional cloaking device for the

concealment of an object from the electromagnetic waves,
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FIG. 3. (a) Schematic representation of designed Luneburg GRIN PC lens and its (b) stairstep (discrete) version of the index profile for

frequency interval of a/λ = 0.01 and a/λ = 0.25. (c) The dispersion diagram of the first band along the ŴX direction is shown. (d) Phase

index curves corresponding to each dispersion band shown in (c). Note that the units of the length and frequency throughout this work are

taken as a and a/λ, respectively. Here, λ is the wavelength of incident light.

using the quadruple lens system as shown in Fig. 1(e). In this

regard, the GRIN PC Luneburg lens, which is designed and

presented in Fig. 3(a), can be considered as a composing part

for the proposed quadruple lens system. Here, the GRIN PC

Luneburg lens in Fig. 3(a) is scaled by adjusting the lattice

constant as a = 2.87 mm in order to operate in the microwave

regime. It is important to note that fabrication of the cloaking

device and its experimental verification are also considered

while fixing the lattice constant.

Figure 4, in general, presents the conceptual design of the

proposed cloaking device with its effective refractive index

profile. As it can be seen from Fig. 4(a), the cloaking device

is constructed by the junction of the four GRIN PC Luneburg

lenses. An air hole is intentionally reamed at the center of the

cloaking structure in which to place the object that is being

considered for concealing. Here, the position of the air hole

is arranged in a way that it overlaps with the emerging dark

zone shown in Fig. 1(e). The designed cloaking device has

width and length equal to 172 mm as shown in Fig. 4(b) and

the slab thickness is fixed to h = 24 mm. In Figs. 4(a) and

4(b), the arrows indicate the direction of wave propagation.

As a cloaking object, the cylindrical shaped PEC material

with diameter of 36 mm and height of 24 mm is used. The

corresponding 3D view of the effective refractive index profile

of the proposed cloaking system is presented in Fig. 4(c)

where the dark zone is defined by the dashed circle at the

center of the profile.

In order to numerically analyze the cloaking performance

of the proposed structure, the FDTD method is employed.

In the FDTD simulations, we used a plane-wave source to

excite the cylindrical PEC object to analyze its scattering

characteristics in a free-space medium. It is important to note

that PEC material is a conductive material with infinite con-

ductivity, which results in 100% reflection and 0% absorption

characteristic against an incident electromagnetic field. For

this reason, to clarify the cloaking performance of the pro-

posed structure, PEC material is used through the numerical

analyses. The TE polarized plane-wave source operating at a

microwave frequency of 8 GHz (this frequency is obtained

by transforming the normalized frequency of a/λ = 0.08 to

8 GHz) is utilized to illuminate the cloaking structure. It

should be noted that, for TE polarization, the electric field

components are along the xy plane (Ex, Ey) and the magnetic

field (Hz) is perpendicular to the xy plane. The magnetic

field (Hz) and phase (ϕ) distributions for the cases when

only PEC structure was placed in free space and the cloaking

structure covered the PEC object are calculated and given in

Figs. 5(a) and 5(b), respectively. As can be clearly observed

from magnetic field distribution in Fig. 5(a) (top), the incident

plane wave is strongly scattered by the PEC object. Also, the

corresponding phase distribution gives evidence of the wave

front’s deterioration as shown in Fig. 5(b) (top). On the other

hand, when the PEC is covered by the designed cloaking

structure, the scatterings are substantially suppressed where

the PEC region remains isolated. Here, the magnetic field and

phase profiles stay undeformed at the output of the structure

as can be seen in Figs. 5(a) (bottom) and 5(b) (bottom),

respectively. Thus, the plane-wave propagation nature of the

FIG. 4. (a) Three-dimensional and (b) top views of the designed cloak. (c) The stairstep (discrete) effective index profile of the proposed

cloaking system.
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FIG. 5. The numerically calculated (a) magnetic field and (b) phase distributions are given for the cases of PEC placed in free space (top),

and PEC is surrounded by cloaking structure (bottom). The arrows indicate the direction of propagation for the incident plane waves. (c) The

plotted amplitude and phase profiles are calculated at the positions denoted by dashed lines in (a,b).

incident light is mostly conserved even when a PEC material

is placed inside the structure. On the other hand, impedance

mismatching at the input and output faces of the cloaking

structure results in reflections at these interfaces. The resulting

reflections cause an optical power difference between incident

and outgoing waves. Nevertheless, unwanted reflections can

be suppressed by using appropriate antireflection coatings.

In order to quantitatively analyze the performance of the

cloaking device, cross-sectional amplitude and phase profiles

are calculated at the positions [dashed lines in Figs. 5(a)

and 5(b)] and shown in Fig. 5(c). As can be seen from this

figure, the PEC object highly scatters the incident wave which

results in high fluctuations of cross-sectional amplitude and

phase profiles. On the other hand, emerged fluctuations in

the field amplitude and phase are considerably smoothed by

the cloak introduced to the PEC object as shown in Fig. 5(c)

(bottom). One can conclude that the decrement of fluctuations

in cross-sectional profiles indicates the formation of plane

waves at the output that replicates the incident one. This effect

demonstrates the cloaking ability of the proposed quadruple

Luneburg lens system. It should also be pointed out that all

the numerical analyses, which were obtained by using the ray

theory, are in accordance with the FDTD simulations.

IV. EXPERIMENTAL VERIFICATION OF THE

NUMERICALLY ANALYZED CLOAKING

EFFECT IN THE MICROWAVE REGIME

The experimental verification of the cloaking concept via a

quadruple Luneburg lens system is achieved by performing

experiments at microwave frequencies. In this regard, the

designed cloaking structure is fabricated by 3D printing of

PLA material. Here, as aforementioned, the permittivity of

PLA material is equal to εPLA = 2.4025. In order to make

a realistic experiment, a cylindrical brass object was used

for experiments in place of the PEC object. Here, the brass

metallic object is a mixture of copper and zinc, and exhibits

strong scattering characteristics at the microwave frequencies

of interest. During the experimental process, we used an

Agilent E5071C ENA vector network analyzer to generate

and detect microwaves. The fabricated cloaking structure is

excited by using a horn antenna with operating bandwidth

of 6–12 GHz placed in front of it. Since the horn antenna

radiates a Gaussian profiled wave, it was located at an ad-

equate distance away from the cloaking structure to obtain

plane-wave-like propagating waves. Moreover, a monopole

antenna placed on a motorized stage was utilized to measure

the magnetic field (Hz) and phase (ϕ) distributions at the

scanning field behind the fabricated cloaking structure. In

order to measure the magnetic field and phase distributions,

the monopole antenna was moved by 2-mm steps along both

the x and y axes. It should be noted that the scanning field is on

a level with half of the thickness of the cloaking structure in

the z direction. The complete schematic representation of the

experimental setup is depicted in Fig. 6(a). Furthermore, the

photographic view of the fabricated cloaking structure with a

cylindrical brass object placed inside it is given in Fig. 6(b)

where a coin is placed for visual comparison of dimensions of

the structure and brass object.

Initially, we measured the scatterings due to the brass

object. Therefore, we positioned the brass object in front

of the horn antenna, and then scanned the magnetic field

and phase distributions behind it via the monopole antenna.

Next, we placed the cloaking structure with the brass object

at a sufficient distance away from the horn antenna and

measured the magnetic field and phase distributions behind

the cloaking structure. The corresponding magnetic field and

phase distributions were measured for an incident wave with

frequency of 8 GHz and represented in Figs. 6(c) and 6(d),

respectively. As can be seen from the top image of Fig. 6(c),

the incident light is strongly scattered and it is divided into

two branches by making a shadow at the back surface of the

brass object. On the other hand, the cloaking structure reduces

the scatterings (almost no sign of existence of the brass object)

and one can conclude that the cloaking structure has managed

to equalize the magnetic field amplitude along the y axis

by altering the scattered fields due to the brass object. In

order to give a complete picture of cloaking, the measured

phase distributions are given in the top and bottom images of

Fig. 6(d), respectively, for the brass object alone and the cloak-

ing structure with the brass object inside it. Here, the brass

object scatters the incident wave to have curved wave fronts

behind it, while the cloaking structure reshapes the propagated

fields to have plane wave fronts. The dashed lines in Figs. 6(c)
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FIG. 6. (a) Schematic representation of the experimental setup. (b) The photographic view of fabricated cloaking structure and cylindrical

brass cloaked object. A coin is shown for comparison of structural dimensions. (c) The measured magnetic field (Hz) and (d) phase (ϕ)

distributions in the scanning field at a frequency of 8 GHz for experiment cases with the brass object alone (PEC) and the cloaking structure

with the brass object inside (PEC + Struct). The arrows denote the direction of incident wave and the dashed lines indicate the positions of

cross-sectional profiles. (e) The corresponding cross-sectional profiles of magnetic field amplitude and phase.

and 6(d) indicate the positions of cross-sectional profiles of

magnetic field and phase distributions. The corresponding

cross-sectional profiles are plotted in Fig. 6(e) to demonstrate

the scatterings of the brass object and the cloaking effect of

the quadruple Luneburg lens system. As can be seen from the

plots in Fig. 6(e), the fluctuations in the amplitude and phase

profiles are reduced when the cloaking structure is introduced

to cloak the brass object.

V. CONCLUSION

In summary, the directional cloaking ability of the pro-

posed quadruple Luneburg lens system is presented. The ray

analysis of a single Luneburg lens is examined which is later

adapted to the formation of double and quadruple Luneburg

lenses. As a result, electromagnetically hidden space emerges

in the middle of a quadruple Luneburg lens system which

is an adequate region for optical cloaking of highly scatter-

ing objects such as PEC materials. In order to enable the

feasibility of the refractive index distribution of a Luneburg

lens, Maxwell Garnett EMT is applied by inserting air holes

with gradually varying radii on a dielectric slab which results

in a GRIN PC Luneburg lens. The host dielectric material

is selected as PLA with permittivity of εPLA = 2.4025 and

the EMT approximations are performed via the PWE method

which is discussed in detail. Further, cloaking of a cylindrical

PEC object by the quadruple GRIN PC Luneburg lens system

is analyzed by employing the FDTD method where the system

is excited by a TE polarized plane-wave source. According

to the numerical results, the designed system is able to cloak

the object and reproduce the plane-wave aspects of the in-

cident wave at the output area. Additionally, the proposed

Luneburg lens system is fabricated via 3D printing technology

and microwave experiments are performed at a frequency
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of around 8 GHz for the verification of analytical solutions

and numerical calculations of the directional cloaking effect.

During the experiments, brass alloy is preferred in substitution

for the PEC material and it is observed that the printed-

out lens system managed to suppress the scatterings due to

the highly scattering brass object. As a result, we designed,

fabricated, and both numerically and experimentally validated

the proposed cloaking concept of the quadruple Luneburg

lens system. The designed structure can be a good solution

candidate for optical cloaking from the incident light in a de-

fined propagation direction. One can increase the numbers of

Luneburg lenses to realize even larger arrays to hide multiple

objects.
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APPENDIX: DERIVATION OF RAY

TRAJECTORY EQUATION

The optical path length of a ray in an inhomogeneous

medium between points A and B can be defined as follows

[36,37]:

OPL =
∫ B

A

n(r)ds, (A1)

where n(r) corresponds to the refractive index function, which

varies with position, and the differential length is expressed

as ds =
√

dr2 + r2dϕ2 in polar coordinates. Since the re-

fractive index distribution of the Luneburg lens is a function

of r, so differential length ds can be rewritten as ds =
√

1 + r2( dϕ

dr
)
2
dr. Let dϕ

dr
= ϕ̇, then Eq. (A1) becomes

OPL =
∫ B

A

n(r)
√

1 + r2ϕ̇2dr. (A2)

Here, the shortest path that is followed by a light ray

according to Fermat’s principle can be obtained by the min-

imization of the integral of (A2). In this regard, to obtain the

derivative of (A2), the Euler-Lagrange equation can be used

where the Lagrangian is L(ϕ, ϕ̇, r) = n(r)
√

1 + r2ϕ̇2 [38,41]:

d

dr

∂L

∂ϕ̇
=

∂L

∂ϕ
. (A3)

Taking into consideration that the structure is invariant in

the ϕ direction, the derivative of ∂L/∂ϕ becomes equal to zero.

Then, the left-hand side of (A3), ∂L/∂ϕ̇, should be a constant

value, since d
dr

∂L
∂ϕ̇

= 0. Taking the derivative of the Lagrangian

equation with respect to the ϕ̇ and equalizing it to constant C1,

we obtain

∂L

∂ϕ̇
=

n(r)r2

√

1 + r2ϕ̇2
ϕ̇ = C1. (A4)

Next, the nonlinear differential equation (A4) can be

rewritten by replacing ϕ̇ with dϕ/dr:

n(r)r2

√

1 + r2
(

dϕ

dr

)2

dϕ

dr
= C1. (A5)

Then, as a step to reach ray trajectory r(ϕ), one should

solve (A5) for dϕ and integrate both sides as follows:

ϕ =
1

2
sin−1

⎡

⎣

r2 − C1
2R2

n(r)2

r2

√

1 − C1
2

n(r)2

⎤

⎦ − β, (A6)

where R is the radius of the lens. Next, by solving (A6)

with respect to r, the ray trajectory equation can be found as

follows:

r(ϕ) =
C2R

√

1 −
√

1 − C2
2 sin [2(ϕ + β )]

, (A7)

where C2 = C1
2/n(r)2 and β are constants. Since we are

dealing with ray propagation in Cartesian coordinates, it is

logical to transfer the ray trajectory formula (A1) to the

Cartesian coordinate [36,39]:

[1 − T sin(2β )]x2 + [1 + T sin(2β )]y2

− 2T cos(2β )xy + (T 2 − 1)R2 = 0. (A8)

T and β are constant numbers, and to find them the bound-

ary conditions which are related with the initial position and

the initial incident angle should be used. The first boundary

condition depends on the initial position of the ray, where

it enters the lens. Let us place the center of the lens to the

position [x = 0, y = 0]. If the angle of incidence is θ , then

the initial ray position is expressed as [x0 = −R cos(θ ), y0 =
−R sin(θ )]. By replacing x and y with the position of the initial

point in (A2), one can solve (A2) with respect to constant

number T as follows:

T = sin(2β + 2θ ). (A9)

The second boundary condition comes from the dy/dx =
tan(θ ) relation and by taking the derivative of (8) with respect

to x, and then solving it for T by setting x = x0 and y = y0:

T =
x0 + y0 tan(θ )

tan(θ )[x0 cos(2β ) − y0 sin(2β )] + [x0 sin(2β ) + y0 cos(2β )]
. (A10)

Here, to find the analytical expression for β, (A3) and (A4) are combined and solved for β as follows:

β =
1

2

[

tan−1

(

x0

y0

)

− θ

]

. (A11)
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Then, if β is inserted into (A3), both the T and β constants will be represented in terms of the initial positions [x0, y0] and

the incidence angle θ :

T = sin

[

tan−1

(

x0

y0

)

+ θ

]

. (A12)

After finding the constants T and β, (A2) can be solved for y by using the quadric formula as follows:

y =
T cos(2β )x

1 − T sin(2β )
+

√

[T cos(2β )xy]2 − [1 − T sin(2β )]{(T 2 − 1)R2 + [1 + T sin(2β )]x2}
1 + T sin(2β )

. (A13)

To simplify the representation of (A7), let us divide it into two components as follows:

A =
T cos(2β )x

1 − T sin(2β )
, (A14)

and

B =
√

[T cos(2β )xy]2 − [1 − T sin(2β )]{(T 2 − 1)R2 + [1 + T sin(2β )]x2}
1 + T sin(2β )

. (A15)

Next, solve them separately, and then merge them to obtain the final result. In this regard, firstly, we substitute the formulas

of constants T and β to the term A as follows:

A =
T cos(2β )x

1 − T sin(2β )
=

x sin[tan−1(x0/y0) + θ ] cos[tan−1(x0/y0) − θ ]

1 + sin[tan−1(x0/y0) + θ ] sin[tan−1(x0/y0) − θ ]
. (A16)

Then, with the help of trigonometric identities, (A10) can be further simplified to the following equation:

A =
x sin[tan−1(x0/y0)] cos[tan−1(x0/y0)]

1 + 0.5{[1 + cos(2θ )] − 2cos2[tan−1(x0/y0)]}
+

0.5 sin(2θ )x

1 + 0.5{[1 + cos(2θ )] − 2cos2[tan−1(x0/y0)]}
. (A17)

As a next step, by setting α = tan−1(x0/y0) and using the circle equation, one can obtain the definitions sin(α) = (x0/R) and

cos(α) = (y0/R). In this sense, (A11) can be rewritten as follows:

A =
[sin(α) cos(α) + 0.5 sin(2θ )]x

1 + 0.5{[1 + cos(2θ )] − 2cos2(α)}
=

x[(x0/R)(y0/R) + 0.5 sin(2θ )]x

1 + 0.5{[1 + cos(2θ )] − 2(y0/R)2}
=

[2x0y0 + R2 sin(2θ )]x

2x2
0 + R2[1 + cos(2θ )]

. (A18)

Equation (A12) is the last version of the first term A. The next goal is simplifying the second term B. For that purpose, (A9)

can be rewritten as indicated below:

B =
√

[T cos(2β )xy]2 − [1 − T sin(2β )]{(T 2 − 1)R2 + [1 + T sin(2β )]x2}
1 + T sin(2β )

=
√

(T 2 − 1)x2 + (T 2 − 1)[−T sin(2β ) + 1]R2

1 + T sin(2β )

=
√

(T 2 − 1){x2 − R2[1 + T sin(2β )]}
1 + T sin(2β )

. (A19)

There are two important expressions in (A13), which are (T 2−1) and [1 + T sin(2β )]. By substituting the formulas of

constants T and β to these expressions, the B term will be written in terms of the initial position and the initial incident angle.

For that purpose, the following operations were carried out with the mentioned expressions:

T 2 − 1 = sin [tan−1(x0/y0) + θ ]2 − 1 = sin (α + θ )2 − 1 =
1 − cos(2α + 2θ )

2
− 1

=
−1 − [2cos2(α) − 1] cos(2θ ) − 2 sin(α) cos(α) sin(2θ )

2

=
−R2 −

(

2y2
0 − R2

)

cos(2θ ) + 2x0y0 sin(2θ )

2R2
, (A20)

1 + T sin(2β ) = 1 + sin[tan−1(x0/y0) + θ ] sin[tan−1(x0/y0) − θ] = 1 + sin(α + θ ) sin(α − θ )

=
3 + cos(2θ ) − 2cos2(α)

2
=

[1 + cos(2θ )]R2 + 2x2
0

2R2
. (A21)
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Then, by combining (A13), (A14), and (A15), the final version of the B term can be obtained in the simplest way as

follows:

B =

√
2R[y0 cos(θ ) − x0 sin(θ )]

√

R2[1 + cos(2θ )] + 2x2
0 − 2x2

2x0
2 + R2[1 + cos(2θ )]

. (A22)

Here, the simplified versions of A and B are attained in (A12) and (A17), respectively. Finally, by merging (A12) and (A17),

we obtain the ray trajectory equation in the Cartesian coordinate system as follows:

y(x) =
[2x0y0 + R2 sin(2θ )]x

2x2
0 + R2[1 + cos(2θ )]

+

√
2Ry0 cos(θ )

√

R2[1 + cos(2θ )] + 2x2
0 − 2x2

2x2
0 + R2[1 + cos(2θ )]

−

√
2Rx0 sin(θ )

√

R2[1 + cos(2θ )] + 2x2
0 − 2x2

2x2
0 + R2[1 + cos(2θ )]

, (A23)

where y(x) is a ray trajectory function with respect to position x, R is the radius of the lens, (x0, y0) are initial ray positions, and θ

is the incidence angle of the ray. Moreover, the exit angle, which is the angle at which the ray exits the lens, should be computed

for the complete ray analyses. In order to determine the exit angle, the derivative of (A17) should be taken with respect to x as

follows:

ẏ(x) =
R2 sin(2θ ) + 2x0y0

2x2
0 + R2[1 + cos(2θ )]

+
2
√

2Rxy0[sin(θ ) − cos(θ )]
{

2x2
0 + R2[1 + cos(2θ )]

}
√

R2[1 + cos(2θ )] − 2x2 + 2x0

. (A24)

Equations (A17) and (A18) can be used to investigate

multiple configurations of Luneburg lenses. In this regard,

the ray trajectories that are obtained analytically by using

(A17) and (A18) for distinct cases are represented in Fig. 7.

FIG. 7. Ray tracing of parallel rays through (a) a single Luneb-

urg lens with incidence angles θ = 10◦, 0◦, and −10◦; (b) dou-

ble Luneburg lens system with an incidence angle θ = −10◦; (c)

quadruple Luneburg lens system with an incidence angle θ =
10◦ where the lens junction region is enlarged and given as an

inset.

In Fig. 7(a), the focusing characteristic of the Luneburg lens

under the different incidence angles is observed. From the

figure, one can conclude that, depending on the incidence

angle of the rays, the focal point shifts on the surface of

the lens. Moreover, by adjoining two, four, or more lenses,

specific Luneburg lens systems can be designed. Here, in

Figs. 7(b) and 7(c) ray trajectories for double and quadruple

lens systems are presented where the incidence angles are

chosen as −10◦ and 10◦, respectively. As can be seen from

Figs. 7(b) and 7(c), even though light is incident with an angle

different from normal, the ray-free zone has emerged.

Since incoming parallel rays are focused into a point at the

exact opposite surface of the Luneburg lens, the focal point

is no longer on the tangent point of the adjacent lenses under

the oblique incidence angle of 10◦ as can be seen in Fig. 7(c).

Here, the enlarged junction region shows that off-axis focused

light rays at the surface (shifted downward with respect to

the junction position of two Luneburg lenses) first diverged

into the free space and, after propagating small distance, they

entered the second lens at nonuniformly spaced positions.

In this case, the spacing of the light rays emanating from

the quadruple Luneburg lens becomes nonuniform under the

oblique incidence case. Hence, the obliqueness of the incident

wave may cause distortion of the image. On the other hand,

by applying the same image correction concept (two cascaded

quadruple lens systems) which is discussed in Sec. II [see

Fig. 2(b)], one can regenerate the distorted image outside of

the lens system for small incidence angles.

In summary, for certain initial conditions, the analyses of

several configurations of Luneburg lenses can be examined

with the help of the ray trajectory equation given in (A17).
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